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Summary

A considerable understanding of the fundamental cellular and molecular mecha-
nisms underpinning healthy acute wound healing has been gleaned from study-
ing various animal models, and we are now unravelling the mechanisms that
lead to chronic wounds and pathological healing including fibrosis. A small cut
will normally heal in days through tight orchestration of cell migration and
appropriate levels of inflammation, innervation and angiogenesis. Major surgeries
may take several weeks to heal and leave behind a noticeable scar. At the extreme
end, chronic wounds – defined as a barrier defect that has not healed in
3 months – have become a major therapeutic challenge throughout the Western
world and will only increase as our populations advance in age, and with the
increasing incidence of diabetes, obesity and vascular disorders. Here we describe
the clinical problems and how, through better dialogue between basic researchers
and clinicians, we may extend our current knowledge to enable the development
of novel potential therapeutic treatments.

What’s already known about this topic?

• Much is known about the sequence of events contributing to normal healing.

• The two pathologies of wound healing are chronic wounds and scarring.

What does this study add?

• We explain how the cell and molecular mechanisms of healing guide the therapeu-

tic strategies.

• We introduce zebrafish and the fruit fly, Drosophila as novel wound healing models.

• We highlight unanswered questions and future directions for wound healing

research.

Wound healing after damage to the skin involves a complex

interplay between many cellular players of the skin, primarily

keratinocytes, fibroblasts, endothelial cells of vessels and

recruited immune cells, and their associated extracellular matrix

(Fig. 1). In healthy individuals, restoration of a functional epi-

dermal barrier is highly efficient, whereas repair of the deeper

dermal layer is less perfect and results in scar formation with a

substantial loss of original tissue structure and function. When

the normal repair response goes awry there are two major out-

comes: either an ulcerative skin defect (chronic wound) or

excessive formation of scar tissue (hypertrophic scar or keloid).

Tissue repair is a universal phenomenon across all multicellu-

lar organisms, and so we presume that many conserved mecha-

nisms can be analysed in models more experimentally tractable

than humans, and subsequently extrapolated back to the clinic

for potential therapeutic benefit. Because of similarities to

human skin, pig models of wound healing were initially used

for investigating repair mechanisms,1 and remain a popular

model for preclinical trials of potential therapeutics. However,

cost issues and genetic opportunities have seen rodents take over

as the predominant models for investigating the fundamental

cellular and molecular mechanisms underlying tissue repair.

Much of what we know about the cellular and genetic

players in wound healing and the relative time courses of the

various phases of skin repair come from studies in mice. Trans-

genic and knockout mouse studies have provided opportunities
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to investigate the functions of many genes that turn out to have

key roles during skin healing.2 The recent advent of Cre-lox

and other tissue-specific and conditional knockout approaches

has enabled more thorough investigations than earlier studies

with whole-body knockouts.

The basic cell biology of wound re-
epithelialization

The wound epithelium repairs both from cut wound edges and

also from the stumps of hair and sweat gland appendages.

Mouse wound transcriptome studies have revealed numerous

genes upregulated after damage, and many of these gene

inductions occur in the wound edge epithelium, extending

back up to 70 or more rows of cells from the cut wound

edge.3–5 The earliest gene upregulations are classic immediate

early genes, including Ap1, Fos and Jun,6 and the krox zinc fin-

ger transcription factors.7 These presumably function as part of

the transcriptional activation machinery for the several hundred

genes that are subsequently upregulated in these cells, and

enable a surge in cell proliferation and associated epidermal

migration of a leading tongue of keratinocytes at the interface

between the scab and healthy wound granulation tissue. It has

become clear that at least some of these late-activated genes,

for example epidermal growth factor receptor, are generally

kept silent by histone methylation marks deposited by the

polycomb family of epigenetic regulators, but the polycombs

are downregulated and these marks are removed soon after

wounding so that the silenced genes can now be ‘open for

business’ and available for transcriptional activation.8

Before migrating forward, wound-edge keratinocytes must

change their cell-to-matrix adhesions. These adhesions will

previously have bonded basal epidermal cells to the basement

membrane, but during the repair process they must facilitate

migration over a new wound-specific, fibrin-rich matrix. Sev-

eral integrins are switched off in order for cells to detach from

the basement membrane, and others now become essential for

wound migration. For example, keratinocyte-specific knockout

of b1-integrins in mice leads to severe retardation in wound

re-epithelialization.9 Cell–cell junctions must also be modified.

A recent study showed how the desmosomal junctions linking

the advancing wound keratinocytes become ‘looser’ and cal-

cium dependent; this switch is likely to be protein kinase C

alpha dependent, because PKCa�/� mice fail to change these

adhesions and exhibit delayed healing.10 Proteases, in particu-

lar several matrix metalloproteases (MMPs), are needed to clip

the links between integrins and collagen as the epidermis

advances over the wound substratum.11

Re-epithelialization is then activated by several driving

growth factors, including hepatocyte growth factor (HGF) and
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Fig 1. Acute wound healing mechanisms. The healing of an acute wound involves coordinated cellular and molecular responses. (a) Initially

immune cells migrate to the wound site and, in addition to clearing invading pathogens, in part they also orchestrate the healing process. (b) Cut

epidermal edges upregulate wound-associated genes, thus enabling collective cell migration. (c) Local and blood-borne fibroblasts proliferate and

migrate to form the wound granulation tissue, provide structure and signalling cues and deposit new extracellular matrix (ECM). Some fibroblasts

differentiate into myofibroblasts to aid wound contraction. (d) The wound bed is perfused with oxygen and nutrients through new blood vessels

derived by angiogenesis. (e) Wound healing rates exhibit a positive correlation with innervation, but hyperinnervation after wound closure could

contribute to neuropathic pain. EGF, epidermal growth factor; HGF, hepatocyte growth factor; FGF, fibroblast growth factor; KGF, keratinocyte

growth factor; MSC, mesenchymal stem cell; nAG, newt anterior gradient protein.

© 2015 The Authors British Journal of Dermatology
published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

British Journal of Dermatology (2015) 173, pp370–378

Mechanisms of repair in wound healing, P. Martin and R. Nunan 371



one or more members of the fibroblast growth factor (FGF)

and epidermal growth factor (EGF) families. Studies have

shown that keratinocyte-specific knockout of c-met (HGF

receptor) or FGF receptors 1 and 2 leads to severe retardation

of the wound epidermis,12,13 and a global knockout of the

EGF receptor led to a lag in re-epithelialization in mice.14

Generally, epidermal cells are lost following any skin injury

and they must be replaced by cell proliferation, which occurs

largely in an epithelial zone back from the migrating epider-

mal tongue.15 The contribution to new keratinocytes by stem

cells and the source of such stem cells are not entirely clear;

labelled cells from the stem cell-dense bulge region of adja-

cent hair follicles move up and, at least initially, can populate

the denuded territory.16 A more permanent source of new

keratinocytes appears to be the non-bulge-region follicular

cells that make similar-sized contributions to those of cells

derived from stem cells outside of the hair follicles.17 Previ-

ously, it was believed that if a wound extended deeper than

the roots of the hair and sweat glands (the stumps of which

act like a wound-edge epidermis), then these structures would

not regenerate. However, this dogma is now in doubt because

of new murine studies in which hair follicles are seen to arise

de novo from apparently nonfollicular epidermis, in a Wnt-

dependent manner that appears to recapitulate embryonic

appendage formation.18

Wound granulation tissue and dermis
replacement

Many genes are also upregulated in the wound-edge fibro-

blasts. It was previously assumed that these cells were the sole

source of the wound granulation tissue that became activated

by exposure to various growth factor signals and are triggered

to proliferate and migrate in synchrony with the advancing

epidermis. Some of these cells transform into the contractile

specialist cell, the myofibroblast, after exposure to transform-

ing growth factor (TGF)-b and mechanical loading signals.19

But it now seems probable that at least a subset of fibroblasts

within wound granulation tissue is not derived locally but

rather originates from a bone-marrow-derived, mesenchymal

stem cell (MSC) pool. By tracking fluorescent MSCs after intra-

venous injection into mice, several groups have reported a

significant contribution by MSCs to the wound fibroblast pop-

ulation.20–22 A recent study showed that two populations of

local stem cells exist within the dermis: one superficially,

which is critical for hair development, and one deeper, form-

ing the lower dermis, which is the likely source of early

granulation-tissue fibroblasts.23

Inflammation is good and bad during skin
repair

Studies of repair in embryonic model organisms including

mice, and also in human patients undergoing fetal surgery,

have indicated that prior to the onset of a wound inflamma-

tory response, immature tissues are capable of scar-free heal-

ing.24,25 These observations suggest that inflammation might

be driving wound fibrosis. Indeed, mice lacking the family

transcription factor PU.1, and thus not able to generate any

leucocytic lineages, are nonetheless able to heal wounds

effectively as neonates, and do so without subsequent scarring,

unlike their wild-type littermates.26

There are now a plethora of mouse studies designed to test

individually the function of most immune cell lineages in the

wound repair process. For some lineages the jury is still out,

but the current consensus is that early-recruited neutrophils

largely deal with killing invasive microorganisms at the wound

site,27 whereas macrophages are needed for clearing apoptotic

neutrophils and orchestrating early wound closure events, and

also emit signals that cause later scarring.27,28 By contrast, mast

cells appear to play only fine-tuning roles during wound

repair, because their genetic depletion leads to almost entirely

normal healing.29,30 Other immune cell lineages are less well

studied and may become involved in the repair process only if

it becomes chronic. Currently very little is known about the

role of adaptive immunity in the normal wound healing pro-

cess, but one study of cd T cells suggests that these may be

vital for recognizing keratinocyte ‘damage’ signals and releas-

ing key growth factors for epidermal migration.31

Inflammatory cell recruitment and activation are a conse-

quence of many signals that occur at the wound site, and

some of the earliest of these include factors released by de-

granulating platelets32 and by damage- and pathogen-associ-

ated molecular patterns, where cells are damaged and

microbes gain access, respectively.33 All of these signals are

potential therapeutic targets for modulating the initial wound

inflammatory response in humans. A newly discovered and

clinically relevant signalling pathway is triggered by wound

mechanics; as a wound gapes open and then begins to con-

tract, focal adhesion kinase/extracellular signal-regulated

kinase leads to activation of chemokine ligand 2 release by

wound fibroblasts, which, in turn, draws in a larger inflam-

matory response.34 Blocking any of these steps leads to

reduced scarring in mice,34 supporting the theory that inflam-

mation is the primary driver of scarring at the wound site. An

alternative strategy for dampening the wound inflammatory

response is to treat with known resolving factors, and this

approach can also lead to reduced scarring.35 TGF-b1 is almost

certainly one of the growth factors downstream of the wound

inflammatory response, and knockdown of this signalling axis

has been shown to reduce scarring.36 What remains unclear is

precisely how inflammation-triggered molecular changes in

wound fibroblasts, which include upregulation of osteopontin37

and other ‘fibrosis’ markers, subsequently lead to deposition

and bundling of collagen fibres in ways that lead to pathological

scarring.

Wound angiogenesis and innervation

In the clinic, it is presumed that the considerable vascular

sprouting that occurs during any adult tissue repair process

must play a pivotal role in healing, and there is much
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clinical anecdote that cutaneous innervation is important also.

Neither of these episodes has been extensively researched in

the context of repair, but much is known about the develop-

ment of vascular patterning during embryogenesis, where we

know that endothelial cell sprouting is driven by vascular

endothelial growth factor, and macrophages are important in

these episodes.38–40 As for a role for nerves in the repair

process, the amazing regenerative capacity of the axolotl may

offer insight.41 Nerves turn out to be an intriguing contribu-

tor to the limb regenerative process whereby axon-ensheath-

ing Schwann cells are known to release an early pulse of

signals, including the secreted newt anterior gradient (nAG)

protein (of which there are mammalian orthologues). The

release of nAG from nerves appears to kick-start expression

of nAG in the wound epithelium.42 Without this initial

nerve signal, the wound stump heals but no limb grows

back in newts. Very little is known about the role of nerves

during skin healing, although studies in the chick embryo

suggest a reciprocal positive association between nerves and

wound repair.43

New wound healing models: Drosophila and
zebrafish offer translucency for live imaging,
and considerably better genetic tractability

Much of what is known about the molecular and genetic

aspects of skin wound healing has been gleaned from studies

in mice, alongside some descriptive clinical observations. But

the tissues of mouse and man are opaque and neither organ-

ism is particularly genetically tractable. These limitations have

encouraged wound healing studies in Drosophila44 and zebra-

fish.45 Of course, flies and fish will not perfectly model

human tissue healing, but their translucency offers opportuni-

ties for live imaging and their genetic tractability allows

insights into fundamental and conserved tissue repair mecha-

nisms that were not possible before.

In the Drosophila embryo, for example, movies of haemocytes

(the fly equivalent of macrophages) that are mutant for each

of the Rho-family small GTPases have revealed precise roles

for these regulators of the cytoskeleton as fly macrophages

undergo the wound inflammatory response.46 These molecular

mechanisms can almost certainly be extrapolated to neutroph-

ils and macrophages migrating to human wounds. Although

the advancing wound epidermis is hidden beneath a scab in

mouse wounds, the simpler fly epidermis can be live imaged,

revealing dynamic cytoskeletal machineries, including lamel-

lipodial and filopodial protrusions that enable fusion of epi-

dermal wound edges together at the end of the healing

process.47 Again, this is almost certainly revealing what we

cannot see but is occurring in mouse and man.

Recent studies in Drosophila have shown that there are many

active cell-shape changes and junctional alterations as epider-

mal cells jostle several rows back from the wound edge, and

this will focus attention away from the front row of cells,

which have been considered the only key players until now.48

Several genetic screens have been performed on embryo and

larval Drosophila wound models to identify differentially

expressed genes and mutants that suffer impaired healing;49,50

some of these are unique to flies, but others have highlighted

conserved transcriptional activator pathways, including wnt and

Grh,51 that have been shown to extrapolate to mammalian

repair52,53 and may be good therapeutic targets.

Translucent zebrafish larvae offer a phylogenetic step up

from Drosophila, with greater parallels to our own repair

machinery. For example, rather than a single immune cell

lineage, as in Drosophila, they have equivalents of all of our

innate immune cells. Currently the most exciting insight from

zebrafish studies of wound inflammation has been that reac-

tive oxygen species like hydrogen peroxide can serve as

immediate damage attractants to draw immune cells to

wounds.54 Zebrafish are also beginning to offer clues to the

endogenous mechanisms for resolution of inflammation. For

example, neutrophils may be partly responsible for their own

resolution by clearance of the attractants that first drew them

to the wound.55

In addition to studies of inflammation, there are now new

models of skin healing in adult zebrafish that reveal consider-

able parallels with mammalian wound repair, including simi-

lar, although faster, re-epithelialization, and transient scarring,

all driven by conserved signalling pathways.56 This will pro-

vide further opportunities to use zebrafish for high-through-

put, small-molecule drug screens, as an initial filter for testing

potential therapeutics to improve healing in the clinic.

Biology of chronic wound healing

Chronic wounds – diabetic foot ulcers, venous leg ulcers and

pressure ulcers – do not adhere to the standard time course of

cellular and molecular events that lead towards healing of a

healthy acute wound (Fig. 2). As an example, histological

studies of chronic venous leg ulcers show a characteristic

piled-up and hyperproliferative epidermal edge, abutting an

ulcer base that is covered with exudate loaded with necrotic

debris. Where there should be wound granulation tissue there

are vessels surrounded by fibrin cuffs (presumed to be a

response to venous hypertension), very little vessel sprouting

and few, if any, myofibroblasts. There is generally a heavy

inflammatory infiltrate, particularly of neutrophils, and these

cells may be phenotypically different from their equivalents in

a healing acute wound.57

Frequently, hyperpigmentation as a consequence of melano-

cyte recruitment can occur at the wound site, and persist even

after a chronic wound has successfully healed. At a molecular

level, it seems that the chronic wound edge keratinocytes

express a gene signature reflecting partial proliferative activa-

tion, with several cell-cycle genes – including the cyclins –
upregulated, but with suppression of checkpoint regulators

and p53; this might explain the epidermal hyperproliferation at

ulcer wound edges.58 The ulcer wound fibroblasts appear

senescent, have diminished migratory capacity59 and appear

unresponsive to growth factor signals,60 which is reflected in

dramatically reduced levels of TGF-b receptors and downstream
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signalling cascade components from biopsies of nonhealing

ulcers.60 An additional explanation for reduced growth factor

signalling and responsiveness may be the increased levels of

degrading MMPs in chronic vs. acute wound-tissue fluids.61

Potentially more informative for prognostic purposes than

comparisons of chronic vs. acute wounds are comparisons of

healing vs. nonhealing chronic wounds, and one such micro-

array study reveals major downregulation of the wound-associ-

ated keratin 16 and its heteropolymer partners keratins 6a and

6b in the nonhealing wound group.62

Chronic, persistent inflammation is a hallmark of most

chronic wounds,63 whereas during acute healing, the normal

pathway is for resolution of the inflammatory response. Of

course, it is difficult to distinguish whether the continual

open wound with exposure to microbes is causal of the

chronic inflammation, or vice versa, or both. For some

immune cell lineages in some chronic wound scenarios, more

may be better; for example, increased numbers of Langerhans

cells in the epidermis of diabetic foot ulcers have been shown

to associate with better healing outcome.64 However, in gen-

eral, a large influx and retention of innate immune cells into

chronic wounds is likely to inhibit many repair processes.

Even some of the useful functions of immune cells may be

disrupted in chronic wounds, as it seems that their bacterici-

dal and phagocytic activities may be reduced, in comparison

with those in an acute wound setting.65 Perhaps as a result of

the reduced phagocytic capacity of immune cells at the

chronic wound, one consistent obstacle in the healing of

many chronic wounds is a build-up of necrotic debris at the

wound edge; as a consequence it is often clinical practice to

debride the wound mechanically, to establish a ‘fresh new’

wound, which can help to restart the re-epithelialization pro-

cess.66

With the growth of microbiome 16S ribosomal RNA

sequencing opportunities, it is now possible to survey the full

microbial flora of wounds, and early datasets are revealing

some common genera between diabetic and venous leg ulcers,

and significant differences also, whereas the microbial com-

munity across a sample of pressure ulcers appears to be the

most variable.67,68 Almost certainly some of these pathogens,

and even excessive numbers of some otherwise commensal

species, might be key in modulating the efficiency of healing,

either directly by their actions on keratinocytes or wound

fibroblasts, or indirectly by modulating the inflammatory

response. The next investigative steps will need to include a

similar characterization of fungal and viral infections in

chronic wounds. What is clear is that there will be a complex

interplay between invading agents and the host immune
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Fig 2. Chronic wound biology. Chronic

wounds are often infected and exhibit a

persistent aberrant inflammatory profile. Re-
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part due to elevated matrix metalloproteases

(MMPs) and poor fibroblast infiltration.
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system, and quite possibly the best prognostic signatures for

indicating likely healing outcomes of chronic wounds will

combine both microbiome and host transcriptome/metabolo-

me components.

It is also important to note that many models of pathologi-

cal wound healing in mice, while accurately mirroring some

of the systemic causes of impaired healing (e.g. the obese and

hyperglycaemic diabetic (db/db) mouse), seldom make allow-

ance for other important associations, such as age and wound

microbial load. There is a strong case to be made for improv-

ing such models by layering on some of these additional

influencing factors so that data can be more usefully extrapo-

lated to the clinic. This would certainly lead to development

of more optimal models (as reviewed by Nunan et al.69).

What causes wound scarring?

One of the mysteries in the field of tissue regeneration and

repair is the heterogeneity among diverse organisms: some

animals, including axolotls, can perfectly regenerate injured

tissues and organs as complex as limbs, whereas others, like

humans, replace damaged tissue with a connective tissue char-

acterized by densely bundled orientated collagen fibrils called

a scar. The degree of fibrosis after damage varies across organs

and tissues and between individuals. In humans, perfect scar-

free tissue repair has been described in fetal skin.70 Postnatal

human liver, the haematopoietic system and, to a lesser

degree, the gut and skin represent tissues that maintain the

highest regenerative capacity.

In human skin, two types of scarring following injury are

distinguished: hypertrophic scars and keloids (Fig. 3). Aestheti-

cally disturbing hypertrophic scars develop after surgery or

from other trauma, particularly burns. Keloids differ from

hypertrophic scars in that they extend beyond the margins of

the original tissue damage, and they do not regress spontane-

ously (hypertrophic scars generally partially regress within

6 months). Moreover, keloids tend to show a genetic predispo-

sition, with particular association with darker-skinned popula-

tions.71 Keloids and hypertrophic scars can also be

histologically distinguished by their different arrangement of

collagen fibres, presence of a-smooth muscle actin-positive

myofibroblasts, and extent of angiogenesis.72,73 Scarring can

cause functional disability, for example if extended over a joint,

or may cause patient discomfort and psychological stress.

Both hypertrophic scars and keloids are major therapeutic

challenges for surgeons and dermatologists. Although multiple

treatment regimens are practised, including silicone gel

sheeting, pressure therapy, corticosteroids, cryotherapy,

5-fluorouracil, laser therapy and radiation, none of these is

optimal and effective, and therapeutics based on molecular tar-

gets have not yet gone beyond clinical trials.74 Novel therapies

for the treatment of cutaneous pathological scarring can

potentially be extrapolated from clinical trials targeting fibrosis

in other organs including lung, liver and kidney.75 Although
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tissue-specific features of fibrogenesis appear to exist, there is

increasing appreciation of common pathways of fibrosis that

are conserved among tissues, including TGF-b, connective tis-

sue growth factor, interleukins 4 and 13, platelet-derived

growth factor and osteopontin.76 Perhaps the closest to thera-

peutic treatments for blocking scarring in the skin have been

the various approaches used to modulate TGF-b1/2 signalling

immediately following wounding, either by blocking receptor

activation or by addition of the competing ligand TGF-b3 to

the wound.36 Approaches such as these will eventually lead to

scar-blocking therapeutics in the clinic.

Important future directions for wound healing
research

In order to aid advancement of wound healing research in

directions that will lead to benefits in the clinic, we need a

good dialogue between clinicians and basic scientists. There

follows just a few of the key unmet needs that might be

worthy of research and provide clues as to prognostics and

therapeutics for chronic wounds and for scarring.

When during the normal cycle of repair does a chronic

wound stall?

We know that almost all chronic wounds begin as a small cut

or abrasion, and almost certainly begin the repair process as a

normal acute wound. At some stage they stall, but of course

this is likely to be some days or weeks or even months before

the patient presents at the clinic. Unfortunately, we have little

understanding of the time or stage in the normal cycle when

stalling happens, and this may be crucial in developing thera-

peutics to reverse the failed process. There is a clear correla-

tion between chronic wound duration and healing efficacy,77

but more precise biomarkers to indicate key stages in the nor-

mal repair process would certainly be useful here and might

also serve as prognostic indicators.

Is there a microbe/host transcriptome signature that

predicts healing outcome, and can the immune response

in chronic wounds be reprogrammed to be better at

killing wound pathogens?

It is now well understood that innate immune cells exhibit

various phenotypes or activation states that can be either very

antimicrobial or more dedicated towards nurturing of repair-

ing tissue by their release of growth factors and cytokines.

Learning how to manipulate or reprogramme the inflamma-

tory response so it is most effective at staving off infection,

and then able to switch to repair mode, and finally to resolve

in a timely fashion to avoid the chronic inflammatory pheno-

type so common in persistent chronic wounds, would provide

superb therapeutic tools. If we knew which microbe combina-

tions and what host response led to the most stubborn non-

healing wounds then we would have very useful prognostic

indicators to guide which wounds need what treatment.

Can hypertrophic excessive scarring be dampened or

reversed without affecting the rate and quality of skin

wound healing?

It is generally believed that aspects of the acute wound inflam-

matory response drive scar formation at the time when skin

wound healing is occurring – but can inflammation or its

downstream consequences be modulated in ways that allow

efficient healing but reduce scarring? One opportunity here

might be to utilize the body’s own inflammation resolution

signals to drive early ‘shutdown’ of the inflammatory

response.35 A better understanding of precisely how wound fi-

broblasts alter their behaviour, after receiving ‘fibrosis’ signals

from inflammatory cells, and subsequently deposit collagen in

pathological ways would also offer insight into antifibrotic

therapeutic targets.

Is the molecular basis for keloid scarring similar to that

for hypertrophic scarring?

If inflammation causes hypertrophic scarring, then does even

more inflammation cause the ‘overflowing’ keloid scar? Or is

keloid scarring due to an inability of wound fibroblasts to

respond to wound ‘stop’ signals and, if so, what are these?

There are no animal models of keloid scarring, but there are

opportunities for genome-wide association studies to identify

genes that might predispose to keloid scarring, and these

might also lead us towards more generic antiscarring therapies

if the mechanisms of hypertrophic and keloid scarring are at

all related.

Much is known about the cellular and molecular basis of

normal skin healing, but there are still avenues of research left

to unravel that will guide us towards better prognostic indica-

tors and better therapeutics for the various skin wound heal-

ing pathologies reviewed above.
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