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Abstract: While the coprime array still suffers from performance degradation due to the mutual
coupling dominated by the interleaved subarrays, we propose an array switching strategy for coprime
linear array (CLA) by utilizing the large inter-element spacings of the subarrays to mitigate the mutual
coupling. Specifically, we first collect the signals by separately activating the two subarrays, where
the severe mutual coupling effect is significantly reduced. As a result, well-performed initial direction
of arrival (DOA) estimates can be achieved. Subsequently, we establish a quadratic optimization
problem by reconstructing the contaminated steering vector of the total CLA elaborately to calculate
the mutual coupling coefficients with the initial DOA estimates. Finally, we can obtain refined DOA
estimates by an iteration procedure based on the estimated mutual coupling matrix. In addition,
numerical simulations are provided to demonstrate the merits of the proposed scheme.
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1. Introduction

As a fundamental part of array signal processing, direction of arrival (DOA) estimation plays a
critical role in various fields, e.g., radar, acoustics, cognitive radio and wireless communication [1–7].
Numerous high-resolution DOA estimation algorithms are developed for uniform linear arrays (ULAs),
such as MUSIC [8], ESPRIT [9] and the variants [10,11]. However, the compact array structure will
lead to limited array aperture and serious mutual coupling effect.

In recent years, coprime array [12–16] has received considerable attention due to the promising
merits, such as the enhanced resolution, the increased degrees of freedom (DOFs) and the reduced
mutual coupling. Specifically, the DOA estimation methods proposed for coprime linear array (CLA)
can be divided into two categories in general. The first type is to decompose the CLA into two
uniform subarrays and then eliminate the phase ambiguity problem based on the arrangements with
coprime property [17–19]. The other one is to construct an equivalent received signal collected from
an augmented virtual array to avoid spatial aliasing and enhance the DOF [20–23]. However, the
aforementioned researches critically depend on the array manifold that is not distorted by impairments
such as mutual coupling [24]. Since the two subarrays in the prototype CLA are interleaved, the mutual
coupling cannot be neglected, which can significantly degrade the performance. To tackle this problem,
an unfolded CLA was designed in [25], where the two subarrays are configured along the positive
and negative axis respectively and thereby the minimum adjacent distance is enlarged. The coprime
array with displaced subarrays (CADiS) in [26] introduces a displacement between the two subarrays
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to enlarge the smallest inter-element spacing, which can prominently alleviate the mutual coupling.
Particularly, an extended coprime array structure in [27] relocates a proper number of sensors in the
CADiS, where the mutual coupling is further reduced. In [28], the thinned coprime array exploits
the redundancy in the difference co-array to achieve increased DOFs, where the mutual coupling
is decreased simultaneously, owing to the reduced number of sensor pairs with small separations.
However, since at least one sensor pair is needed to generate the virtual sensors, the sensor pairs with
small separations still lead to severe mutual coupling effect. Although significant efforts have been
put into mutual coupling reduction techniques for CLA, the investigations about mutual coupling
calibration for CLA are neglected.

As alternative approaches to deal with mutual coupling, a series of mutual coupling calibration
algorithms are proposed [29–37], and a few of them are applicable to nonuniform linear arrays.
Specifically, the active calibration [35] utilizes auxiliary sources with exactly known locations to
perform calibration, whereas it is time-consuming and impractical in real systems. Moreover, as the
mutual coupling effect varies with the environment, repeated off-line calibrations are not conducive
to the engineering applications. An iteration-based calibration method was proposed in [36] for
nonuniform linear arrays, but the solution may fall into local optimum and the convergence cannot
be guaranteed theoretically. Besides, two mutual coupling compensation methods for nonuniform
linear arrays were proposed in [37]. The first one is an iteration method which is based on the precisely
known mutual impedance matrix obtained by electromagnetic simulation while the second method
is proposed by employing a global optimization algorithm, but suffering from heavy computational
burden and the loss of the structural characteristics of CLA.

In this paper, the issue of DOA estimation for the prototype CLA with unknown mutual coupling
is investigated and an array switching strategy is designed based on the structural features of CLA.
Specifically, the two subarrays are separately activated as received arrays first, where the mutual
coupling effect can be mitigated to a great extent since the coupling between subarrays is avoided.
Then we exploit the uncalibrated polynomial rooting to the two subarrays respectively and obtain the
initial DOA estimates by exploiting the coprime property, which is less susceptible to mutual coupling
benefiting from sparse arrangement of CLA. Subsequently, the total CLA is activated to collect the
signals and the contaminated steering vector is remodeled for decoupling, which is carefully extended
from the reconstruction in ULA utilizing two selection matrices. Furthermore, the closed-form solutions
to the mutual coupling coefficients (MCCs) are provided by employing a quadratic optimization
problem. Finally, re-estimation with few iterations is performed to refine the parameter estimates.
Numerical simulations corroborate that the proposed array switching-based scheme for CLA can
effectively deal with the mutual coupling and achieve improved estimation accuracy.

We summarize the main contributions of our work as follows.

(1) The unknown mutual coupling in CLA potentially degrades the estimation performance, whereas
the conventional calibration methods for uniform arrays are difficult to apply to CLA due to its
nonuniform structure. To tackle this issue, we comprehensively investigate the characteristics
of mutual coupling in CLA and significantly mitigate the mutual coupling by exploiting the
inherent sparse structural features of CLA.

(2) We propose an array switching strategy, which can be developed for online calibration, by
separately activating the subarrays of CLA to considerably alleviate the severe mutual coupling
caused by the two interleaved subarrays in CLA and calculate the well-performed DOA estimates
with the signals from subarrays based on the coprime property.

(3) We reconstruct the contaminated received signal of the total CLA to directly solve the mutual
coupling coefficients by utilizing the initial DOA estimates and, in turn, calculate the refined
DOA estimates via an iteration procedure. In particular, the reconstruction of the steering vector
of CLA for decoupling can be extended to nonuniform linear arrays of arbitrary structure.
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The remainder of the paper is given as follows. We provide the preliminary for our work in
Section 2, including the data model of CLA and the analysis of mutual coupling characteristics in
CLA. Section 3 elaborates the proposed scheme via the array switching strategy and the performance
analysis is provided in Section 4. Section 5 exhibits numerical simulations and Section 6 concludes
this paper.

Notations: Matrices and vectors are denoted by upper-case and lower-case bold characters,
respectively. (·)T and (·)H are transpose and conjugate transpose operators, respectively. x ∈ 〈a, b〉
represents the set of integers which satisfies a ≤ x ≤ b. IM denotes an M ×M identity matrix. 0M×N

stands for an M×N matrix in which all elements are zero. diag(C) symbolizes a matrix composed of
the principal diagonal elements of C. Toeplitz{c} generates a symmetric Toeplitz matrix having c as its
first column and first row. ‖·‖F is Frobenius norm. angle(·) represents the phase operator. tr(·) is the
trace of matrix.

2. Preliminaries

In this section, we first introduce the data model of CLA in the absence of mutual coupling.
Subsequently, we modify the data model with mutual coupling and explore the characteristics of
mutual coupling in CLA.

2.1. Data Model without Mutual Coupling

The CLA under study in this paper is composed of two uniform linear subarrays with M1 and M2

omnidirectional sensors, as illustrated in Figure 1. The inter-element spacing of the subarray 1 with
M1 sensors is d1 = M2d while that of the subarray 2 with M2 sensors is d2 = M1d, where M1 and M2

are coprime integers,d = λ/2 and λ represents the wavelength. Without loss of generality, assume
that M1 < M2. The CLA has M = M1 + M2 − 1 sensors in total and the location set of elements can be
given by LCLA = SCLAd, where SCLA is expressed as

SCLA = {m1M2, m1 ∈ 〈0, M1 − 1〉} ∪ {m2M1, m2 ∈ 〈0, M2 − 1〉}. (1)
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Assume that K far-field uncorrelated narrowband signals impinging on the CLA from distinct
directions θk(k ∈ 〈1, K〉). The received data of the CLA can be represented by

x(t) =

[
A1

A2

]
s(t) +

[
n1(t)
n2(t)

]
= As(t) + n(t)

, (2)

where s(t) = [s1(t), s2(t), · · · , sK(t)]
T represents the signal vector, ni(t) is the white Gaussian noise,

t ∈ 〈1, L〉 and L is the number of snapshots. A = [AT
1 , AT

2 ]
T

is the total steering matrix of the CLA and the
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corresponding steering vector is a(θk) = [aT
1 (θk), aT

2 (θk)]
T.Ai = [ai(θ1), ai(θ2), · · · , ai(θK)] (i = 1, 2)

is the steering matrix of the i-th subarray, where ai(θk) = [1, e− j2πdi sinθk/λ, · · · , e− j2π(Mi−1)di sinθk/λ]
T

.
The total steering matrix of the CLA can be also constructed by Ac = [ac(θ1), ac(θ2), · · · , ac(θK)] after
row exchange, where ac(θk) = [e− jπl1 sinθk , e− jπl2 sinθk , · · · , e− jπlM sinθk ]

T
and lm ∈ SCLA(m ∈ 〈1, M〉).

In particular, the CLA can be extracted from a filled ULA (FULA) with inter-element
spacing d = λ/2 and MF = M1(M2 − 1) + 1 sensors. As a result, we have Ac = G1AF,
where AF = [aF(θ1), aF(θ2), · · · , aF(θK)] denotes the steering matrix of the FULA and aF(θk) =

[1, e− jπ sinθk , · · · , e− jπ(MF−1) sinθk ]
T

. G1 is an M ×MF selection matrix composed of the tm−th(tm =

lm + 1, m ∈ 〈1, M〉) rows of IMF .
In practice, the covariance of the received signal x(t) is usually estimated by using L snapshots

R̂ =
1
L

∑L

t=1
x(t)xH(t). (3)

Performing eigenvalue decomposition of R̂ and we have

R̂ = ÛsΛ̂sÛ
H
s + ÛnΛ̂nÛH

n , (4)

where Λ̂s and Λ̂n denotes the diagonal matrices composed of the K largest and the remaining
eigenvalues of R̂, respectively. Ûs and Ûn represent the signal subspace and noise subspace composed
of the corresponding eigenvectors, respectively.

2.2. Data Model with Mutual Coupling

In the presence of mutual coupling, the model in Equation (2) should be reconstructed by

x̃(t) = CAs(t) + n(t), (5)

where C represents the mutual coupling matrix (MCM) and depends on practical factors, e.g., the
type of antennas. For instance, the MCM of a linear dipole array with M elements can be written
as [24,33,38,39]

C = (ZA + ZL)(Z + ZLIM)−1, (6)

where ZA and ZL denote the antenna/load impedance, respectively. Z is the mutual impedance matrix
and can be expressed asZ =

η0
4π (0.5772 + ln(2βl) −Ci(2βl) + jSi(2βl)), p = q

Z =
η0
4π (<p,q + jℵp,q), p , q

, (7)

where β = 2π/λ, l denotes the length of dipole antennas and

<p,q = sin(βl)(−Si(u0) + Si(v0) + 2Si(u1) − 2Si(v1))

+cos(βl)(Ci(u0) + Ci(v0) − 2Ci(u1) − 2Ci(v1) + 2Ci(βdp,q))

−(2Ci(u1) + 2Ci(v1) − 4Ci(βdp,q))

, (8)

ℵp,q = sin(βl)(−Ci(u0) + Ci(v0) + 2Ci(u1) − 2Ci(v1))

+cos(βl)(−Si(u0) − Si(v0) + 2Si(u1) + 2Si(v1) − 2Si(βdp,q))

+(2Si(u1) + 2Si(v1) − 4Si(βdp,q))

, (9)
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where dp,q is the distance between the p-th element and the q-th element, u0 = β(
√

d2
p,q + l2 − l),

u1 = β(
√

d2
p,q + 0.25l2 − 0.5l),v0 = β(

√
d2

p,q + l2 + l) and v1 = β(
√

d2
p,q + 0.25l2 + 0.5l). Si(u) and Ci(u)

are defined as

Si(u) =
∫ u

∞

sin x
x

dx, Ci(u) =
∫ u

∞

cos x
x

dx. (10)

In order to facilitate the theoretical study of parameter estimation, a series of simplified models of
mutual coupling are established based on certain assumptions [24–40]. In this paper, we assume that
cp,q can be characterized by [24,33,38,39]

cp,q =

 0,
∣∣∣dp − dq

∣∣∣≥ B

c|dp−dq |,
∣∣∣dp − dq

∣∣∣< B
, (11)

where dp, dq ∈ SCLA, cp,q represents the coupling effect between the q-th sensor and the p-th sensor in
CLA. cb = c|dp−dq | are defined as the MCCs which satisfy 1 = c0 >|c1|>|c2|> · · · >|cB| = 0. The threshold
of mutual coupling range B = 3 and B = 5 are commonly selected assumptions in the existing
work [32,40,41]. Specifically, as the mutual coupling depends on practical factors, the value of B is
generally determined by the actual scenario. To explain it more intuitively and provide a reliable
foundation for the proposed scheme, we provide the S-parameter characteristics of two kinds of
arrays below as an example. In practical applications, S-parameters are typically used to characterize
the mutual coupling and Sp,q captures the coupling degree between the p-th element and the q-th
element [42]. Figure 2 exhibits the S-parameter characteristics from an electromagnetic simulation
software, i.e., HFSS, where two ten-element ULAs composed of microstrip antennas and dipole
antennas are studied. The operating frequencies corresponding to the two arrays are 0.8 GHz and
2.95 GHz. It is generally believed that the mutual coupling is relatively weak when Sp,q is lower than
-40dB [43,44], and by assuming that the mutual coupling effect can be ignored when Sp,q < 55dB, the
value of B in the above two arrays can take 5 and 6, respectively.
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According to the labels of the sensors in Figure 3, C can be partitioned by

C =



1 c1,2 c1,3 · · · c1,M1 c1,M1+1 c1,M1+2 · · · c1,M

c2,1 1 c2,3
. . . c2,M1 c2,M1+1 c2,M1+2 · · · c2,M

c3,1 c3,2 1 · · · c3,M1

...
...

...
...

...
. . .

...
... · · ·

. . .
...

cM1,1 cM1,2 cM1,3 · · · 1 cM1,M1+1 cM1,M1+2 · · · cM1,M

cM1+1,1 cM1+1,2 · · · cM1+1,M1 1 cM1+1,M1+2 · · · cM1+1,M

cM1+2,1 cM1+2,2 · · ·
... cM1+2,M1 cM1+2,M1+1 1

... cM1+2,M
...

...
. . .

...
... · · ·

. . .
...

cM,1 cM,2 · · · · · · cM,M1 cM,M1+1 cM,M1+2 · · · 1



,

=

[
D1 B1

B2 D2

]

(12)

where Di ∈ CMi×Mi denotes the MCM in the i-th (i = 1, 2) subarray while B1 ∈ CM1×M2 and B2 ∈ CM2×M1

capture the coupling effect between the two subarrays. In particular, C = CT.
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Since the inter-element spacings in the two subarrays of CLA are large, we can conclude that
the mutual coupling in CLA is mainly caused by the interaction between the two subarrays. It is
noteworthy that most of the elements in D1 and D2 are zero, and especially when Mi ≥ B, no mutual
coupling exists in the j-th subarray (i = 1, 2; j = 3 − i), which motivates us to propose the array
switching scheme to mitigate the mutual coupling in CLA by exploiting the inter-element spacings of
the two subarrays.

3. The Proposed Parameter Estimation Scheme

In this section, we introduce the proposed scheme to deal with mutual coupling for improved
parameter estimation performance through the array switching strategy.

Figure 4 presents the implementation flow of the proposed scheme. Based on the inherent sparse
structural characteristic of CLA, we first estimate the initial DOAs by separately activating the two
subarrays, which can avoid the mutual coupling resulting from the interlaced subarrays. Then the
two interactive subarrays receive signals at the same time and the MCCs of the total CLA can be
estimated by utilizing the initial DOA estimates. Furthermore, re-estimation is performed by an
iteration procedure based on the estimated MCM to refine parameter estimates.
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3.1. Initial DOA Estimation

To begin with, the two subarrays are separately activated to collect signals Xini
1 and Xini

2 , which are
inherently less susceptible to mutual coupling benefiting from the large inter-element spacings. As a
result, we directly apply the uncalibrated polynomial rooting technique to the two subarrays respectively,
then the initial unambiguous DOAs can be determined by utilizing the coprime property [17].

In this situation, the MCMs of the two subarrays are assumed to be identity matrices and then the
MUSIC spectrum function of the i-th subarray can be represented by [17]

fi(θ) =
1

aH
i (θ)U

ini
i,n(U

ini
i,n)

H
aH

i (θ)
, (13)

where Uini
i,n is the noise subspace corresponding to Xini

i . Let zi = e− j2πdi sinθ/λ, we have ai(θ) =

a(zi) = [1, zi, · · · , zMi−1
i ]

T
and the DOA estimation is transformed into solving the roots of the

polynomial [11]

aT
i (z
−1)Uini

i,n(U
ini
i,n)

H
ai(z) = 0, (14)

Consequently, the initial ambiguous DOA estimates can be achieved by

sin(θ̂ini
i,k ) = −angle(ẑi,k)λ/2πdi (k ∈ 〈1, K〉), (15)

The phase ambiguity, which stems from the inter-element spacing larger than λ/2, can be
eliminated based on the coprime property [17]. As a result, the true estimates θ̂ini

k can be uniquely
determined from the K pairs of closest estimates of the two subarrays. Once the DOA estimates θ̂ini

k
free from severe mutual coupling is obtained, we can further use it to estimate the MCCs by receiving
the signal X of the total CLA.

3.2. Mutual Coupling Estimation

Herein, we first reconstruct the contaminated steering vector of the whole CLA to decouple
the DOA and mutual coupling. Subsequently, a quadratic optimization problem is established to
achieve the mutual coupling estimation. Finally, refined DOA estimates can be obtained via an
iteration procedure.

Due to the banded symmetric Toeplitz characteristic of the MCM in ULA [24], the contaminated
steering vector of the FULA can be transformed into CFaF(θ) = T(aF(θ))cF, where CF ∈ CMF×MF and
cF = [1, c1, c2, . . . , cB−2]

T are the MCM and mutual coupling vector of the FULA, respectively. The
steering vector transformation matrix T(aF(θ)) ∈ CMF×B can be obtained by

T(aF(θ)) = T1(aF(θ)) + T2(aF(θ)), (16)

[T1(aF(θ))]p,q =

{
[aF(θ)]p+q−1, p + q ≤MF + 1

0, otherwise
, (17)

[T2(aF(θ))]p,q =

[aF(θ)]p−q−1, p ≥ q ≥ 2

0, otherwise
. (18)

Due to the nonuniform array structure, the MCM of CLA no longer has such special banded
symmetric Toeplitz form. As a result, the reconstruction of the steering vector in ULA cannot be
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directly applied for further decoupling. To address this, we utilize two matrices G0 and G1 derived
from the relation between FULA and CLA to reconstruct the contaminated steering vector of CLA as

ã(θ) = Ca(θ)
= G1CF(G0aF(θ))
= G1T(a

′

F(θ))cF

= H(θ)cF

(19)

where a
′

F(θ) = G0aF(θ) and G0 ∈ CMF×1 is a column vector whose tm−th(tm = dm + 1, m ∈ 〈1, M〉)
elements are 1 and the rest entries are 0. It is noteworthy that this reconstruction method of the
contaminated steering vector is applicable to other nonuniform linear arrays.

Based on the transformation in Equation (19), the mutual coupling estimation can be achieved
from the following quadratic optimization problem

min
cF

cF
HHH(θ̂ini)UnUH

n H(θ̂ini)cF, s.t. eHcF = 1, (20)

where Un is the noise subspace of the signal X received by the whole CLA and e1 = T
∈ RB×1. Construct

the Lagrange function as
L(θ, cF) = cF

HQ(θ)cF − ε(e1
HcF − 1), (21)

where Q(θ) = HH(θ)UnUH
n H(θ), ε stands for a Lagrange multiplier. By taking the partial derivative

of L(θ, cF), i.e., ∂L(θ, cF)/∂cF = 2Q(θ)cF − εe1 = 0, we can obtain the estimates of cF by

ĉF,k =
Q−1(θ̂ini

k )e1

eH
1 Q−1(θ̂ini

k )e1
, (22)

ĉF =
1
K

K∑
k=1

ĉF,k. (23)

Subsequently, the MCM of CLA can be constructed by

Ĉ = G1ĈFGT
1 , (24)

where ĈF = Toeplitz{ĉF, 01×(MF−B)}.

3.3. Iteration Procedure for Refined Estimation

Since there exists a certain deviation between the spectral function in Equation (13) and the actual
one contaminated by mutual coupling, the performance of the initial estimation is still potentially
degraded. For further improvement in estimation performance, an iteration approach based on the
initial MCM estimate Ĉ is designed in this part. The detailed steps are outlined in Table 1.

Table 1. Steps of the iteration procedure.

Procedure: Iterations for refined estimates

Step 1: Initialization: Initialize iter = 0 and C(0) = Ĉ.
Step 2: DOA Estimation: Obtain the DOA estimates θ(iter) by solving the roots of polynomial

f (iter)(z) = aT(z−1)(C(iter))
H

UnUH
n (C

(iter)a(z)) = 0, then let iter = iter + 1.

Step 3: Mutual Coupling Estimation: Calculate c(iter)
F = Q−1(θ(iter))e1/(eH

1 Q−1(θ(iter))e1) and further obtain

C(iter) = G1C(iter)
F GT

1 .

Step 4: Convergence Determination: Go to step 2 until ‖C(iter)A(iter−1)
−C(iter−1)A(iter−2)

‖
2
< δ, where δ is a

given threshold, such as 10−2.
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Note that the conventional iteration-based mutual coupling calibration algorithm [30,36] usually
sets C(0) = I, whereas the convergence speed and estimation accuracy heavily depends on C(0). The
proposed scheme can provide well-performed initial DOA estimates which contributes to the estimation
of MCM, thus it requires few iterations and can gain superior estimation performance simultaneously.

3.4. Procedure of the Proposed Scheme

The detailed steps for implementation of the proposed scheme is summarized below.
1. Activate the two subarrays of CLA separately and compute Rini

i with Xini
i to obtain Uini

i,n (i = 1, 2).
2. Employ the polynomial rooting according to Equations (14)–(15) and distinguish the

unambiguous angles θ̂ini
k based on the coprime property.

3. Activate the whole CLA and calculate R with the received signal X to obtain Un.
4. Construct Q(θ) and achieve the mutual coupling estimation according to Equations (20)–(24).
5. Perform the re-estimation to further improve the estimation accuracy.

Remark 1. It is assumed that the DOAs and statistical characteristics of the signals are constant during the
array switching process.

Remark 2. Based on the steering vector reconstruction in Equation (19), the well-known rank-reduction (RARE)
estimator [33,34] can be extended from ULA to CLA to achieve DOA and mutual coupling estimation, which is
provided in the comparison and termed as RARE-based calibration in this paper.

4. Performance Analysis

4.1. Complexity Analysis

The computational complexity of the proposed scheme is analyzed in this part and it is
represented by the number of complex multiplications. In the process of initial DOA estimation,
calculating the covariance Rini

i (i = 1, 2) with L snapshots requires O(L(M2
1 + M2

2)) and performing
eigenvalue decomposition costs O(M3

1 + M3
2). Constructing the polynomial needs O(2M1(M1 − K)

+M1 + 2M2(M2 −K) + M2) and the complexity of root-finding operation is O((M1 − 1)3 + (M2 − 1)3).
As for the mutual coupling estimation, constructing Q(θini) takes O(M3 + LM2 + B2M + MMFB+
2M(M − K)B) operations and calculating Q−1(θini) costs O(B3). The complexity of the recovery of
MCM is O(MM2

F + M2MF). The complexity calculation of the iteration process is similar to that of the
previous part. Table 2 lists the complexity of the proposed scheme in steps, where niter stands for the
iteration times.

Table 2. Complexity of the proposed scheme.

Step Computational complexity

Initial DOA Estimation
O(L(M2

1 + M2
2) + M3

1 + M3
2 + 2M1(M1 −K) + 2M2(M2 −K)

+M1 + M2 + (M1 − 1)3 + (M2 − 1)3)

Mutual Coupling Estimation O(M3 + (L + MF)M
2 + M(B2 + M2

F + MFB) + 2M(M−K)B + B3)

Iteration Process
O(niter(2M(M−K) + M + (MF − 1)3) + (niter − 1)(MFM2

+M(B2 + M2
F + MFB) + 2M(M−K)B + B3))

Total
O(L(M2

1 + M2
2 + M2) + M3

1 + M3
2 + M3 + (M1 − 1)3 + (M2 − 1)3

+2M1(M1 −K) + 2M2(M2 −K) + M1 + M2 + niter(2M(M−K)(1 + B)
+M + (MF − 1)3 + MFM2 + M(B2 + M2

F + MFB) + B3)

In addition, we compare the complexity of the proposed scheme with the RARE-based calibration
scheme. Table 3 gives the total complexities of the two schemes, where n1 = 180/ds is the peak search
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times and ds is the searching grid. The complexity comparisons of the two schemes are illustrated in
Figures 5 and 6, where B = 6, ds = 0.001◦ and niter = 3. Figure 5 exhibits the complexity comparison
versus M2, where M1 = 5, K = 3 and L = 500, while the comparison versus snapshots is presented in
Figure 6, where M1 = 5, M2 = 6 and K = 3. It can be seen clearly in Figures 5 and 6 that the proposed
scheme requires significantly lower computational cost than the RARE-based calibration method,
which is attractive for online calibration.

Table 3. Complexities of different schemes.

Scheme Computational complexity

Proposed
O(L(M2

1 + M2
2 + M2) + M3

1 + M3
2 + M3 + (M1 − 1)3 + (M2 − 1)3

+2M1(M1 −K) + 2M2(M2 −K) + M1 + M2 + niter(2M(M−K)(1 + B)
+M + (MF − 1)3 + MFM2 + M(B2 + M2

F + MFB) + B3)

RARE-based calibration
O(2LM2 + 2M3 + n1(2MMFB + 2M(M−K)B + MB2) + MMFB

+M2B + 2M(M−K)B + B3 + MM2
F + M2MF)
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4.2. Mutual Coupling Analysis

In this part, we employ the coupling leakage [38] to measure the inhibition of the proposed scheme
on mutual coupling which is defined as γ = ‖C− diag(C)‖F/‖C‖F. Conceptually, the smaller γ, the
weaker the mutual coupling is.

Table 4 exhibits the coupling leakage comparison of the ULA, the general CLA [12] and the CLA
based on array switching with the number of sensors, where the MCCs are provided as in Equation
(11) with c1 = 0.3e jπ/3 and cb = c1e− jπ(b−1)/8/b for 2 ≤ b < B. As depicted in Table 4, compared with
the general CLA, the mutual coupling effect is significantly alleviated in the CLA by exploiting the
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proposed array switching strategy, as the severe mutual coupling caused by the interleaved subarrays
is avoided.

Table 4. Comparison of coupling leakage γ among uniform linear arrays (ULA) and CLA in two cases.

Condition ULA CLA (General) CLA (Switching-Based)

M1 = 5, M2 = 6, M = 10, B = 5 0.6177 0.3530 0
M1 = 5, M2 = 6, M = 10, B = 10 0.6251 0.3741 0.1156
M1 = 8, M2 = 13, M = 20, B = 5 0.6312 0.2578 0

M1 = 8, M2 = 13, M = 20, B = 10 0.6424 0.2736 0.0654

4.3. Cramer-Rao Bound

To provide a benchmark of parameter estimation performance, the Cramer-Rao Bound (CRB) [24]
with CLA under unknown mutual coupling is derived. Define the vector of unknown parameters as

pT = [θ1,θ2, · · · ,θK,ρ1,ρ2, · · · ,ρB−1, η1, η2, · · · , ηB−1], (25)

where θk(k ∈ 〈1, K〉) represents the DOAs of the signals. ρb and ηb(b ∈ 〈1, B− 1〉) are the real and
imaginary parts of the MCCs. The CRB corresponding to p can be determined by

CRB = diag(F−1), (26)

where F is the Fisher information matrix (FIM) and can be represented by

F =


Fθθ Fθρ Fθη
Fρθ Fρρ Fρη
Fηθ Fηρ Fηη

. (27)

The (u,v)-the element of the FIM can be specified as

Fu,v = L× tr
[
R−1 ∂R

∂pu
R−1 ∂R

∂pv

]
= 2L×Re

{
tr
[
DuRsÃ

H
R−1ÃRsDvR−1

]
+ tr

[
DuRsÃ

H
R−1DH

v RsÃ
H

R−1
]} (28)

where Ã = CA, Du = ∂Ã/∂pu and Dv = ∂Ã/∂pv.

4.4. Advantages

The proposed scheme for CLA against mutual coupling has the following advantages:

(1) The proposed scheme can be employed as an online calibration technique, which requires no
extra auxiliary sources or auxiliary sensors.

(2) The proposed scheme can significantly alleviate the mutual coupling by exploiting the structural
characteristics of CLA. In particular, it outperforms the RARE-based and iterative calibration
methods in parameter estimation, which is illustrated in Section 5.

(3) The proposed scheme is computationally efficient since no spectral search is required, which is
attractive in practical applications.
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5. Simulation Results

In this section, extensive simulations are carried out to corroborate the superiority of the proposed
scheme. The root mean square error (RMSE) with 1000 Monte Carlo trials is defined as

RMSE =

√√√
1

1000K

1000∑
ν=1

K∑
k=1

(θk − θ̂k,ν)
2
, (29)

where θk and θ̂k,ν denote the theoretical DOA and the estimate for the v-th trial of the k-th signal,
respectively.

5.1. Verification of the Parameter Estimation

We provide the DOA estimation results of the proposed scheme in Figure 7, where M1 = 5,
M2 = 6, SNR = 10dB, L = 500 and B = 6. Consider K = 3 narrowband uncorrelated signals with
[θ1,θ2,θ3] = [30◦, 40◦, 50◦]. The MCCs are set as c1 = 0.7e jπ/3 and cb = c1e− jπ(b−1)/4/b, 2 ≤ b < B. It
is illustrated in Figure 7 that all signals can be resolved correctly. In addition, Figure 8 presents the
estimation results of MCCs in polar coordinates and Table 5 lists the mean values and estimation biases
of the estimated MCCs, where the estimation bias is defined as εr =

∑1000
ν=1 ‖cb − ĉb,ν‖F /‖cb‖F/1000, cb

and ĉb,ν represent the theoretical value and the estimate for the v-th trial of the b-th MCC, respectively.
The results demonstrate that the proposed scheme can obtain well-performed MCC estimates, which,
in turn, contribute to the refined DOA estimates.
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Table 5. Estimation results of mutual coupling coefficients.

Theoretical Value of cb Mean Value of
^
cb Estimation Biases εr

c1 0.3500 + 0.6062i 0.3484 + 0.6081i 0.0139
c2 0.3381 + 0.0906i 0.3391 + 0.0893i 0.0241
c3 0.2021 − 0.1167i 0.2000 − 0.1206i 0.0555
c4 0.0453 − 0.1690i 0.0529 − 0.1640i 0.0805

5.2. RMSE Performance of Different Schemes

In this example, we compare the RMSE results of different schemes, including the proposed
scheme without iterations (marked as “proposed scheme-initial”), the proposed scheme with iterations
(marked as “proposed scheme-refined”), the mutual coupling calibration schemes (the RARE-based,
auxiliary source-based [35] and iterative calibration [36] methods), the uncalibrated root-MUSIC
algorithm with unknown mutual coupling, where K = 2, [θ1,θ2] = [30◦, 40◦], M1 = 6, M2 = 7, B = 8,
c1 = 0.7e jπ/3, cb = c1e− jπ(b−1)/8/b and the searching grid of spectral search is set to ds = 0.0001◦. The
estimation performance of the root-MUSIC [45] in the absence of mutual coupling and the CRB are
also plotted for reference.

Figure 9 exhibits the RMSE results versus signal-to-noise ratio (SNR), where L = 500. It is
indicated explicitly that the uncalibrated root-MUSIC method [45] performs the worst and achieves
little improvement in performance with the increase of SNR, which signifies that even though the
mutual coupling effect in CLA is relatively weak, it still degrades the performance. By comparison,
since the subarrays are less susceptible to mutual coupling benefiting from the large inter-element
spacing, the proposed scheme can obtain well-performed initial DOA estimates, which is even superior
to the RARE-based algorithm at low SNRs and contributes to the estimation of MCM. As the mutual
coupling is not compensated or calibrated in the initial estimation process, the estimation performance
of the initial estimates is inevitably restricted. By comparison, it is observed that refined DOA estimates,
especially at high SNRs, can be achieved via an iteration procedure by utilizing the MCM estimates.
In particular, the proposed scheme can obtain similar DOA estimates to the method with auxiliary
source. The estimation performance of the auxiliary source-based method generally improves with
the increase of the number of auxiliary sources to some extent, whereas it is exceedingly difficult to
implement in practical systems.Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 
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Meanwhile, the RMSE comparison in terms of snapshots is captured in Figure 10, where
SNR = 10dB. It is illustrated that the RMSE results improve with the number of snapshots increasing
due to the more accurate estimated covariance matrix. We can also conclude from Figure 10 that the
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proposed scheme can provide as good DOA estimation performance comparable to the calibration
methods, indicating that the array switching strategy can effectively alleviate the mutual coupling effect.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 

 

 

Figure 9. Root mean square error (RMSE) of different schemes versus signal-to-noise ratio (SNR) 
(L=500). 

Meanwhile, the RMSE comparison in terms of snapshots is captured in Figure 10, where 
SNR 10dB . It is illustrated that the RMSE results improve with the number of snapshots increasing 
due to the more accurate estimated covariance matrix. We can also conclude from Figure 10 that the 
proposed scheme can provide as good DOA estimation performance comparable to the calibration 
methods, indicating that the array switching strategy can effectively alleviate the mutual coupling 
effect. 

 

Figure 10. RMSE of different schemes versus snapshots (SNR=10dB). 

5.3. RMSE Performance of Different Mutual Coupling 

In this example, we provide the RMSE results of the proposed scheme with different B versus 
SNR and snapshots in Figures 11 and 12, where 2K  , 1 2[ , ] [30 ,40 ]     , 1 5M  , 2 7M   and the 
MCCs are the same as those in Section 5.2. In the two examples, we set 500L   and SNR 10dB , 
respectively. The RMSE results of the RARE-based calibration are also given for comparison. It is 
indicated by Figures 11 and 12 that the DOA estimation performance of the two methods deteriorates 
with strong mutual coupling effect. Besides, the proposed scheme yields more accurate DOA 
estimates than the RARE-based calibration in all three cases and has better robustness of the range of 
mutual coupling. 

Figure 10. RMSE of different schemes versus snapshots (SNR=10dB).

5.3. RMSE Performance of Different Mutual Coupling

In this example, we provide the RMSE results of the proposed scheme with different B versus SNR
and snapshots in Figures 11 and 12, where K = 2, [θ1,θ2] = [30◦, 40◦], M1 = 5, M2 = 7 and the MCCs
are the same as those in Section 5.2. In the two examples, we set L = 500 and SNR = 10dB, respectively.
The RMSE results of the RARE-based calibration are also given for comparison. It is indicated by
Figures 11 and 12 that the DOA estimation performance of the two methods deteriorates with strong
mutual coupling effect. Besides, the proposed scheme yields more accurate DOA estimates than the
RARE-based calibration in all three cases and has better robustness of the range of mutual coupling.Sensors 2020, 20, x FOR PEER REVIEW 14 of 16 
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6. Conclusions

In this paper, we have presented an array switching strategy for DOA estimation with CLA in the
presence of mutual coupling. Due to the nonuniform array configuration of CLA, the conventional
calibration methods for ULAs become difficult to apply. Motivated by the sparse arrangement and the
characteristics of mutual coupling in CLA, we design an array switching-based scheme to achieve the
DOA estimation against mutual coupling. In the proposed scheme, the two subarrays are separately
activated first to collect the signals and estimate the initial DOAs, then the total CLA is used to achieve
the mutual coupling estimation and further re-estimate for refined estimates. As a consequence, the
well-performed DOA estimates free from the severe mutual coupling effect can be obtained. Numerical
simulations corroborate the superiority of the proposed scheme for CLA with regard to computational
complexity, mutual coupling and parameter estimation performance. Considering that the mutual
coupling is more complicated in practice, the calibration technique with modified coupling model, e.g.,
direction-dependent model, based on engineering applications will constitute our future work.
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