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Abstract: Bilirubin is a yellow endogenous derivate of the heme catabolism. Since the 1980s, it has
been recognized as one of the most potent antioxidants in nature, able to counteract 10,000× higher
intracellular concentrations of H2O2. In the recent years, not only bilirubin, but also its precursor
biliverdin, and the enzymes involved in their productions (namely heme oxygenase and biliverdin
reductase; altogether the “yellow players”—YPs) have been recognized playing a protective role
in diseases characterized by a chronic prooxidant status. Based on that, there is an ongoing effort
in inducing their activity as a therapeutic option. Nevertheless, the understanding of their specific
contributions to pathological conditions of the central nervous system (CNS) and their role in these
diseases are limited. In this review, we will focus on the most recent evidence linking the role of the
YPs specifically to neurodegenerative and neurological conditions. Both the protective, as well as
potentially worsening effects of the YP’s activity will be discussed.

Keywords: bilirubin; bilirubin oxidation products; biliverdin; heme; heme oxygenase; biliverdin
reductase; yellow players; neurodegenerative diseases; central nervous system (CNS)

1. Introduction

Bilirubin, the end product of the consecutive enzymatic activity of heme oxygenase (HMOX) and
biliverdin reductase (BLVR) (Figure 1), is mostly known as a serum marker of hepatic diseases [1,2].
Bilirubin circulates in the blood in its unconjugated form (UCB, unconjugated bilirubin) bound to
albumin, with a minimal portion being unbound (free bilirubin, Bf, about 0.1% in physiological
conditions) [3], and is mainly produced from heme, originating from the senescent red blood cells
in the spleen. UCB is highly hydrophobic and potentially toxic in high concentrations [4–6], and is
conjugated in the liver with 1 or 2 molecules of glucuronic acid. The formed polar conjugated bilirubin
(CB), after its further metabolism in the gut lumen, is easily discarded from the body though feces.
Defects in hepatic conjugation will increase the UCB content in blood, with consequent rise of the Bf
fraction in serum when UCB concentration exceed the capacity of its binding compounds [3]. Due to
its lipophilic properties, Bf may diffuse across the cellular bilayer entering the cells. Based on this
classic concept, the blood supply has been for a longtime considered the unique source of bilirubin
content in the extrahepatic tissues, including the central nervous system (CNS) [7,8].
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where bilirubin is oxidized back to its precursor biliverdin (BV) by reactive oxygen species (ROS), 
and, in turn, BV is rapidly reduced by BLVR to bilirubin [10]. As a result, the antioxidant effects of 
UCB is amplified without increasing the cellular concentration of the pigment to a toxic level. 

 
Figure 1. The yellow players. 

Figure 1 resumes the main steps of bilirubin metabolism, as well as the basis for its antioxidant 
capability. The concentration of systemic (blood) bilirubin derives from the transformation of the 
intracellular heme (the so-called labile heme) into biliverdin (BV), together with CO and Fe2+, by the 
action of heme oxygenase (HMOX) enzymes. BV is then converted into unconjugated bilirubin (UCB) 
by the enzyme biliverdin reductase (BLVR). Transported to the liver by blood, UCB hydrophobic and 
toxic in high concentrations, is then conjugated by the uridine diphospho-glucuronosyl transferase 
(UGT) 1A1 to conjugated bilirubin (CB), and eliminated from the body. Inside the cell, the powerful 
antioxidant action of UCB is due to its conversion back to BV during the scavenging of the cellular 
ROS. In this BV-bilirubin redox cycle, the protection is continuously renewed maintaining the 
intracellular physiological concentration of the pigments. Based on this traditional concept, the main 
source of labile heme (thus UCB) is the turnover of the senescent red blood cells in the spleen, and 
the intracellular concentration of UCB in extrahepatic tissues is believed to depend on blood supply. 
If true, it may account for even toxic supply of heme and UCB in case of stroke or CNS conditions 
compromising the blood-brain interfaces. Nevertheless, recent data suggest that extrahepatic cells 
may produce de novo UCB, starting from a pool of labile heme that might also be replenished from 
both an import, as well as an in situ (intracellular) synthesis. Added to the ubiquitarian on-demand 
induction of HMOX and BLVR under stressor stimuli, the YPs form a local homeostatic and defensive 
cellular system, that might act in synergy or independently from the systemic blood bilirubin, with 
hemopexin (Hx), haptoglobin (Hp), and ferritin preventing the generation of ROS by the 
chelating/binding of free hemoglobin and iron. 

Figure 1. The yellow players.

When entering cells, UCB may counteract 10,000× higher concentrations of H2O2, being one of the
most potent antioxidants in nature [3,9]. For a long time the explanation of this incredible antioxidant
ability has been based on the concept of the bilirubin-biliverdin redox cycle (Figure 1), where bilirubin
is oxidized back to its precursor biliverdin (BV) by reactive oxygen species (ROS), and, in turn, BV is
rapidly reduced by BLVR to bilirubin [10]. As a result, the antioxidant effects of UCB is amplified
without increasing the cellular concentration of the pigment to a toxic level.

Figure 1 resumes the main steps of bilirubin metabolism, as well as the basis for its antioxidant
capability. The concentration of systemic (blood) bilirubin derives from the transformation of the
intracellular heme (the so-called labile heme) into biliverdin (BV), together with CO and Fe2+, by the
action of heme oxygenase (HMOX) enzymes. BV is then converted into unconjugated bilirubin (UCB)
by the enzyme biliverdin reductase (BLVR). Transported to the liver by blood, UCB hydrophobic and
toxic in high concentrations, is then conjugated by the uridine diphospho-glucuronosyl transferase
(UGT) 1A1 to conjugated bilirubin (CB), and eliminated from the body. Inside the cell, the powerful
antioxidant action of UCB is due to its conversion back to BV during the scavenging of the cellular ROS.
In this BV-bilirubin redox cycle, the protection is continuously renewed maintaining the intracellular
physiological concentration of the pigments. Based on this traditional concept, the main source of labile
heme (thus UCB) is the turnover of the senescent red blood cells in the spleen, and the intracellular
concentration of UCB in extrahepatic tissues is believed to depend on blood supply. If true, it may
account for even toxic supply of heme and UCB in case of stroke or CNS conditions compromising
the blood-brain interfaces. Nevertheless, recent data suggest that extrahepatic cells may produce de
novo UCB, starting from a pool of labile heme that might also be replenished from both an import,
as well as an in situ (intracellular) synthesis. Added to the ubiquitarian on-demand induction of
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HMOX and BLVR under stressor stimuli, the YPs form a local homeostatic and defensive cellular
system, that might act in synergy or independently from the systemic blood bilirubin, with hemopexin
(Hx), haptoglobin (Hp), and ferritin preventing the generation of ROS by the chelating/binding of free
hemoglobin and iron.

Based on the recent experimental as well as clinical data not only of UCB but also of the enzymes
and precursors involved in its production seem to be importantly implemented in the pathogenesis of
CNS’s disorders.

Both HMOX and BLVR possess multiple binding sites for transcription factors on the promoter
region of the gene, making them able to react on demand to stressor stimuli, including those
characterizing the diseases [11–16], pointing to an active role in the cellular defense. In line with this
concept is their induction described in several pathological conditions [1,17].

Recently, different cell types (including neuronal cells), have been demonstrated in vitro to be
able to produce de novo bilirubin from its precursors, increasing cellular resistance to damage [18–20].
In eels, UCB cellular production and storage (UCB bind to a protein named UnaG, belonging to the
fatty acid-binding protein (FABP) family) have been suggested to provide a cellular homeostatic system
able to face the oxidative challenge of the eel migration [21,22]. This has not only confirmed the idea
of an active role of UCB in response to stress but has underlined the importance of the cellular UCB
concentration in this process.

Finally, a correlation between UCB concentration, as well as HMOX1/BLVR activation, and the
diseases have been described both in the experimental and clinical studies [1,17].

Considering quite a specific environment of the CNS-highly lipophilic, with high O2 consumption
and a limited expression of antioxidant defense, making the brain highly susceptible to oxidative
stress—the modulation of bilirubin and the YPs may be an intriguing therapeutic target.

The vast majority of our current knowledge on the role of the YPs derives from extra CNS diseases
(such as cardiovascular diseases, metabolic syndrome, diabetes, etc.), while what this entails specifically
for the CNS is still largely unknown.

In this work, we review the key knowledge and the most recent opinions about the potential effects
of the YP on the onset and progression of the neurological conditions. We highlight the association of
the YP with brain diseases and address the potential molecular mechanisms involved in both protection
and damage of the CNS.

2. The Yellow Players (YP)

2.1. Heme

Heme is a cyclic tetrapyrrolic molecule belonging to a superfamily of the most conserved
compounds in nature [3]. Heme forms a prosthetic group for a variety of hemoproteins, the most
important being hemoglobin, myoglobin and cytochromes, and is implicated in multiple cellular
functions including energy generation, oxygen transport, defense against increased oxidative stress,
cell signaling as well as light-harvesting in higher plants, cyanobacteria and blue-green algae [3].
As usual, heme might be toxic when surpassing certain threshold concentrations, but may also exert
potent protective effects [23], and this is true also for the CNS [12,24–27] (Tables 1 and 2). In cultured
neurons, heme accumulates intracellularly and can be even more neurotoxic than iron [28]. The heme
metabolism in the brain seems to be impaired in neurodegenerative diseases as documented by elevated
expression of HMOX1 in these pathologies ([29], see also below). Simultaneously, hereditary defects of
the heme synthesis, cellular export, and import of heme as well as impairment of its incorporation
into hemoproteins or heme degradation are associated with specific neurodegenerative disorders
supporting the role of heme metabolism in the brain damage [24]. The role of heme in CNS pathologies
is provided by studies on intracranial bleeding demonstrating neurotoxicity of free hemoglobin and its
degradation products released during hemorrhage [30].
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Table 1. Association of the yellow players (YPs) with brain diseases.

Yellow Players Pathological Condition Ref.

Heme

Essential for oxygen storage, neurogenesis, cell survival, differentiation, circadian rhythms regulation, cellular energy production, gene and micro RNA (miRNA) processing. [12,24]

Accumulating in the brain in course of hemorrhage, traumatic brain injury, stroke, ischemia, and diseases with increased BBB permeability (such as Parkinson’s, Alzheimer’s, and
Huntington’s disease). [12]

Neuroprotective against xenobiotic toxicity. [25–27]

Neuroprotective against ischemic, traumatic and neurodegenerative insults, by inducing neuroglobin. [31]

Protective in a pharmacological model of Huntington’s disease. [32]

Contributing to the progression of brain diseases (such as intracerebral/subarachnoid hemorrhage; neuropathic porphyria; Friedreich ataxia; posterior column ataxia, retinitis
pigmentosa, hereditary sensory and autonomic neuropathy). [12,24]

Neurotoxic in brain hemorrhage. [30]

HMOX1/2

HMOX1

Protective in neurodegenerative and other neurological diseases (such as Alzheimer’s and Parkinson’s disease, ischemic brain injury). [33,34]

Protective against glutamatergic/aspartatergic excitotoxicity. [35,36]

Protective against ethanol-induced neurotoxicity. [37]

Protective against mitochondrial toxicity. [32,38]

Protective in a pharmacological model of Huntington’s disease. [32]

Reduces the progression of neuropsychiatric syndrome. [12]

Protective against ROS via the production of bilirubin from heme. [3]

Depending on specific conditions, inducing apoptosis and cell cycle arrest (thus being protective), but also capable of increasing chemoresistance and worsening the diagnosis in
CNS malignancies. [39]

Involved in neurodegeneration (such as cerebral infarction; Alzheimer’s and Parkinson’s disease, Down syndrome, schizophrenia; stroke and CNS trauma) and brain aging when
excessively expressed. [16,40]

HMOX2

Protective from cerebral ischemia-reperfusion injury; and traumatic brain injury. [12,41–43]

Protective from oxidative stress-mediated brain injury, such as epileptic seizures [44]

Deletion of HMOX2 increases redox stress damage in epileptic seizures (protective). [12]

Iron Neurotoxic and involved in neurodegenerative diseases when accumulating in the brain (almost all neurological conditions). [12,45,46]

CO

Neuroprotective (in low concentrations) against vasospastic reaction accompanying subarachnoid bleeding. [46]

Neuroprotective (in low concentrations) against toxic noxious substances. [38]

Neurotoxic in high concentrations. [47]

May impair auditory functions. [48,49]

May impair cognitive and olfactory functions as well as the neuroendocrine system. [12]

Biliverdin

Protective against cerebral infarction; cerebral ischemia-reperfusion. [50,51]

Inducing brainstem auditory evoked potential abnormalities [52].

Induces fetal toxicity. [53,54]
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Table 1. Cont.

Yellow Players Pathological Condition Ref.

BLVRA/B

BLVRA

Protective in meningioma and glioma. [55]

Ameliorating autoimmune encephalomyelitis (a model for multiple sclerosis). [56]

Involved in the pathogenesis of Alzheimer’s disease. [29,57,58]

Improving neurological function in germinal matrix hemorrhage (a disease of premature infants which could bring complications like developmental delay, mental retardation,
hydrocephalus and cerebral palsy). [59]

BLVRB
Potentially protective during fetal life. [53,54]

Biomarker for Alzheimer’s disease and ischemic stroke. [60,61]

Bilirubin

Neuroprotective in cellular and animal models of experimental autoimmune encephalomyelitis. [44,62,63]

Protective in stroke and ischemia. [64,65]

Protective against ethanol-induced neurotoxicity. [37]

Protective against mitochondrial toxicity. [38]

Reducing tumor size and improving survival in glioma. [63]

Protective against neurotoxicity in Parkinson’s disease model. [66]

Protective in traumatic brain injury. [67]

Protective in asymptomatic intracranial atherosclerosis. [68]

Improving survival of grafted neural stem cells. [69]

Contributing to inflammation in intracerebral hemorrhage. [70]

Correlating negatively with the neuropsychiatric/neurodegenerative disorders (bipolar disorder, schizophrenia, schizoaffective disorder, Alzheimer’s disease, dementia, multiple
sclerosis, cerebral infarction in adults.) [1,2,71,72]

Correlating with intraventricular hemorrhage, retinopathy and greater vision loss; hypoxic-ischemic encephalopathy; and neonatal encephalopathy due to hepatic injury in infants. [72–75]

Responsible for brain damage in severe neonatal hyperbilirubinemia (kernicterus spectrum disorder: KSD) and Crigler-Najjar type I syndrome. [4–6,76]

Bilirubin degradation products

Bilirubin photoisomers Pro-inflammatory activities. [77]

Biopyrrins Increased urinary excretion in Parkinson’s disease. [78]

Propentdyopents Increased in cerebrospinal fluid in subarachnoid bleeding. [79]

Z-BOX A/B Increased in cerebrospinal fluid in subarachnoid bleeding. [80]

Abbreviations: BBB, blood brain barrier; BLVR, biliverdin reductase; Z-BOX A/B, Z isomer of bilirubin oxidation products type.A or B; CNS, central nervous system; CO, carbon monoxide;
HMOX, heme oxygenase; KSD, kernicterus spectrum disorder; ROS, reactive oxygen species.
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Table 2. The YPs and their molecular targets.

Yellow Players Target Effect Ref

Heme

Generation of ROS/RNS
Vascular hypertension and vasoconstriction.

In turn, the pro-oxidant milieu increases the oxidation of hemoglobin, enhancing heme release, protein carbonylation,
lipids oxidation, MMP9 release, and tissue damage.

[12,30,81]

Activation of TLR4 Proinflammatory activity: neutrophil migration, secretion of IL8, TNFα (activating NF-κB); increased vascular
permeability; edema. [30,81]

Nrf2/Bach1/Keap1 Inhibiting the antioxidant response. [24]

Activation of PI3K/Akt Reducing apoptosis, increasing the expression of antioxidant enzymes (SOD, and HMOX1). [26]

Binding to hemopexin (Hx) Chelating heme. [12,30]

Binding to haptoglobin (Hp)

Chelating heme via binding of hemoglobin.
If not sufficient: increased CNS hemorrhage, oxidative stress, impaired brain performance, and reduced neurological

activity.
Marker of BBB disruption.

[12,30]

Modulation of proteasome activity. Impairing the activity of the ubiquitin-proteasome system; impairing the unfolded protein response
(PERK/ATF6/IRE1a); and leading to the accumulation of unfolded proteins. [24]

Cofactor for cytochrome c and the mitochondrial
electron transport chain (complexes II, III, IV)

Mitochondrial dysfunction, impairing ATP translocation into the cytoplasm; mitophagy and apoptosis. Impairing
mitochondrial trafficking (especially relevant for neurons). [24]

Binding to Slo1 BK ion channel Inhibiting the cellular excitability. [12]

Induction of neuroglobin expression Reducing the apoptosis, cytochrome c, and mitochondrial dysfunction. [25]

Induction of ferritin Chelating Fe. [28]

Inducing HMOX1

Increasing cell survival and reducing redox stress. [27]

Decreasing lipid peroxidation, increasing the expression of the anti-apoptotic Bcl2, decreasing damage. [46]

Possibly increasing Fe influx in mitochondria worsening the damage, increasing redox stress and inflammation. [46]
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Table 2. Cont.

Yellow Players Target Effect Ref

HMOX1/2

HMOX1

Production of CO, BV and Fe.

Promoting proliferation trough synthesis of cGMP (maybe acting on CREB). [18]

Increasing VEGF in astrocytes, leading to angiogenesis.
Activating of the BDNF–TrkB–PI3K/Akt signaling with increased neuronal survival, and reduced inflammation. [67]

When overexpressed, increasing cholesterol synthesis and cellular efflux, with an increased presence of oxysterols
(products of cholesterol oxidation). The same result is obtained by the addition of CO or iron to the culture,

suggesting one or both the HMOX1 products as the real effectors.
[16,82]

Decreasing oxidative and nitrosative stress; increasing (restored) GSH and catalase activity; reducing the release of
TNFα and IL1β; reducing (restored) the GSK3 activity. [32]

Increasing Fe production and deposition into astroglial mitochondria, with cellular bioenergetics failure.
Increasing DNA damage (8-OHdG), protein oxidation (carbonyls), and lipid peroxidation.

Altering the mitochondria morphology and cellular distribution, with mitophagy and autophagy.
Enhancing the conversion of catecholamines and catechol-estrogens to neurotoxic radicals, making neurons more

sensitive to H2O2 and dopamine insult.

[16]

Acutely induced after stimuli, mainly in glial cells (astrocytes, microglia). Acute up-regulation might be protective,
while a chronic up-regulation may cause toxicity.

Inducing Fe cell export.
[33]

Decreasing the expression of NLRP1, possibly through the inhibition of ATF4, inhibiting the inflammasome, reducing
the neuronal death by apoptosis, and improving functional recovery. [83]

Increasing miRNA expression (miR16, 17 and 140)
Downregulating the mitochondrial functions (including ATP production; mitochondrial antioxidant enzymes level;
intrinsic apoptotic pathway; enhancement of TNFα synthesis; up-regulation of MAPK signaling to compromise he

oxidative phosphorylation).
[16]

Migrating into nuclei
HMOX1 can migrate into nuclei and act as a transcription factor of the genes involved in the cellular antioxidant

response, immunity and inflammation, autophagy, hypoxia, tumor resistance, etc. However, this mechanism has not
been studied in CNS diseases so far.

[1]

HMOX1/2 Amyloid protein precursor binding to HMOX1/2 Reduced HMOX1/2 activity, reduced UCB production, and increased cellular sensitivity to H2O2 and hemin toxicity. [84]

HMOX2

Generation of CO, BV and Fe2+. Fostering cell survival (via UCB action) and proliferation (via cGMP signaling). [18]

Basal production of UCB and CO in neurons. CO: inducing cyclic guanylyl cyclase, in turn producing cGMP (possibly via ERK). [33]

Production of UCB and cGMP Increasing neuroprotection toward redox stress. [85]



Antioxidants 2020, 9, 900 8 of 26

Table 2. Cont.

Yellow Players Target Effect Ref

CO

Voltage-gated K+ channel Modulating the cellular excitability. [24]

Activation of guanylyl cyclase Increasing cGMP, activating of cGMP protein kinase and p38 MAPK, preventing neurons degeneration, activating
noradrenergic neurons, decreasing apoptosis, reducing inflammation. [3,33,86]

AMPK Inhibiting AMPK activation, decreasing the toxicity of the Aβ. [87,88]

HIF1α Activating the Ca channels, CAMK2B, AMPKα, increasing mitochondrial respiration. [67]

HMOX1 Inducing HMOX1 (through Nrf2 signaling) [67]

miRNA Increasing miR-140, 17, 16. Decreasing miR-297, 206, 187, 181a, 138, 29c, in turn reducing the mRNA levels of Ngfr,
Vglut1, MAPK3, TNFα, and Sirt1, abnormally expressed in various central nervous system disorders. [89]

Iron

Generation of hydroxyl radicals.

Inducing a high rate of protein carbonylation, reducing SOD activity, increasing DNA damage, inhibiting the DNA
repair system.

Activating NF-κB and AP-1 with BBB disruption and worsening of damage.
Reducing mitochondrial respiratory functions.

[81]

Activation of NF-κB and induction of inflammation.
Inducting the glutamate excitotoxicity (release of glutamate) with increased BBB permeability, neuronal autophagy,

neuronal atrophy and death.
Releasing of MMP9, TNFα, IL1β, microgliosis.

[81]

miRNA Increasing miR-140, 17, 16. Decreasing miR-297, 206, 187, 181a, 138, 29c, in turn reducing the mRNA levels of Ngfr,
Vglut1, MAPK3, TNFα, and Sirt1, abnormally expressed in various CNS disorders. [89]

BV

Scavenging ROS Lowering DNA damage (8-OHdG). [51,90]

miR-204-5p, Ets1 Lowering Th1 type response. [51]

NF-κB Lowering NF-κB-DNA binding and pro-inflammatory factors transcription/production [91,92]

TLR4 Inducing BLVR translocation into the nucleus, binding to TLR4 promoter, repressing the expression of TLR4, and
leading to the inhibition of inflammatory cytokine production. [93]

JNK Reducing the JNK activation, affecting JNK/AP-1 pathway, suppressing the transcription of TNFα and diminishing
endothelial cell apoptosis. [94]

PI3K/Akt Inducing the interaction of BLVRA with PI3K, activating Akt signaling, and increasing anti-inflammatory cytokine
(IL10) production in macrophages. [95]

ROS, NRS formation Preventing oxidative damage in rat brain microsomes [50,90]

Complement Inhibiting C5aR gene and protein expression that is mediated by mTOR pathway accompanied by the reduction of
pro-inflammatory cytokines (TNFα and IL6) gene expression (macrophages). [93]

BLVR Inducing BLVR translocation into the nucleus. [96]

Histones Possible inhibition of the histone synthesis. [97]
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Table 2. Cont.

Yellow Players Target Effect Ref

BLVRA

Akt gene Modulating glycogen synthase kinase, and Tau protein deposition in the brain. [98–101]

NF-κB Direct binding, arresting the cell cycle. [91]

eNOS/NO/TLR4 pathway Binding on the gene promoter, inhibition of transcription, reducing the inflammation. [96]

Improving hematoma resolution and neurological functions. [59]

MAPK/PI3K Maintaining the synaptic plasticity, memory consolidation, inducing the genes required for neuronal and synapse
growth, maintenance and repair processes. [29]

MAPK/Akt Inhibiting MAPK/Akt activation, reducing apoptosis, protecting the hippocampal neuronal cell from oxidative stress. [102]

BACE-1 protein Reducing the BLVRA activation inducing the phosphorylation of BACE-1, promoting insulin resistance and
increasing Aβ levels in the brain of an animal model of aging. [103]

MEK1-ERK1/2-Elk1 signaling Transcriptional activation of stress-induced genes, including HMOX1. [104]

Insulin receptor Inducing an early activation of IRS1 and improving brain insulin resistance. [105]

HMOX1 Improving cellular antioxidant defense via HMOX1 induction. [106]

UCB

NF-κB
Direct binding, arresting the cell cycle. [91]

Preventing NF-κB-DNA binding, suppressing T-cell activation. [107]

Histone acetylation Modulating histone 3 acetylation and the transcription of genes involved in brain development. [108]

ER Inducing ER stress, inflammation and apoptosis [109]

Nrf2 Activating the Nrf2 pathway, thus the antioxidant response. [110]

CREB Increasing the phosphorylation of CREB possibly leading to BDNF production, boosting the survival and the repair
processes in traumatic brain injury. [67]

AKT Enhancing blood flow and regeneration in ischemic injury. [67]

HIF1α Stabilizing HIF1α, activating Ca channels, CAMKβ, AMPKα, and increasing mitochondrial respiration. [67]

AhR Modulating the transcription of genes coding for detoxification enzymes (CYP1A1, UGT1A1), acting on the cell cycle,
MAPK cascade, Nrf2 pathway, and immune response. [111,112]

CAR Involved in the disposal of exogenous and endogenous substances, and inhibition of gluconeogenesis. [113]

ApoD A non-albumin carrier of bilirubin in human plasma, contributing to protection against oxidative stress, is highly
expressed in the brain. [113]

Neurotrophic factor Increasing the expression of BDNF in neurons and GDNF in glia, leading to reduction of neuronal loss in substantia
nigra in animal model of Parkinson’s disease [66]

MRGPRX4 Mediating the cholestatic itch in the primary sensory neurons, acting in host defense and immune reaction. [113]

Angiogenic and energy-sensing genes in astrocytes Enhancing PGC1α and HIF1α production in astrocytes which plays a role in mitochondria biogenesis, reduction of
inflammatory, and angiogenesis [67]

ROS/RNS generation
Inhibiting of NMDA excitotoxicity, preventing neuronal death. [104,114]

Affecting BBB permeability and preventing inflammatory cell invasion [62]
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Table 2. Cont.

Yellow Players Target Effect Ref

Macrophages and T cells Immuno-modulatory activity by reducing the expression of Fc receptor in macrophage and inhibiting T cell response. [115]

PKC/ICAM-1 signaling, Contributing to neutrophil infiltration, early inflammation, and edema.
Decreasing nitrate/nitrite formation, reduced perihematomal microgliosis. [70]

Mrp1/ABCc1 Upregulating and translocating its transporter (Mrp1/ABCc1) from the Golgi apparatus to the plasma membrane. [116]

Cellular and subcellular membranes Altering membrane polarity and fluidity, the opening of the permeability transition pores, inducing cellular energy
failure, activating the mitochondrial apoptotic pathway. [117,118]

P38MAPK-JNK1/2-NFkb Inducting of inflammation, the release of TNFα, IL1β, reduction of the cellular viability [119,120]

NMDA receptors, glutamate Inducing glutamate excitotoxicity, reducing the expression of the NMDA receptors, impairing long-term potentiation
and long-term depression [121–123]

ERK-Akt-CREB Scavenging ROS, decreasing neurotrophic factor availability. [124]

Mrp1/ABCc1 and Pgp/MDR1/ABCb1 Modulating the expression of its transporters (Mrp1/ABCc1 and Pgp/MDR1/ABCb1) at the blood-brain interfaces [125]

DNA Inducing ROS, which in turn leads to DNA damage, despite the activation of the DNA repair pathways. [126]

Cell cycle Inducing cell cycle arrest [127]

UCB degradation products Ca channels Opening of the Ca channels and decreasing the conductance of the cerebral myocytes, inducing vasoconstriction. [79]

The present table is not intended to collate all the known targets and molecular mechanisms modulated by the YP, but it is restricted solely to the direct evidence of their effects in CNS
biology. Abbreviations: Aβ, amyloid β; Akt, protein kinase B; ATF6, activating transcription factor 6; ATF4, activating transcription factor 4; ATP, adenosine triphosphate; AMPK,
5′ adenosine monophosphate activated protein kinase; AP-1, activator protein 1; AMPKα, 5′ AMP-activated protein kinase alpha; AhR, aryl receptor; ApoD, apolipoprotein D; Bcl2,
B-cell lymphoma 2; BACE-1, β-site APP cleaving enzyme 1; Bach1, the transcription factor BTB and CNC homology 1;.BBB: blood brain barrier; BDNF, brain-derived neurotrophic
factor; BLVR, biliverdin reductase; BV: biliverdin; C5aR, complement receptor 5a; CAMKβ, Ca-calmodulin-dependent protein kinases beta; CAMK2B, Ca-Calmodulin dependent protein
kinase β; CAR, constitutive androstane receptor; cGMP, cyclic guanosine monophosphate; CNS, central nervous system; CO: carbon monoxide, CREB, cAMP responsive element
binding; CYP, cytochromes P450; Elk1, ETS Like-1 protein; eNOS, endothelial nitric oxide synthase; ER stress, endoplasmic reticulum stress; ERK, extracellular signal-regulated kinases;
GSH, glutathione; GSK3, glycogen synthase kinase 3β; GDNF, glial cell line-derived neurotrophic factor; H2O2, hydrogen peroxide; HIF1α, hypoxia-inducible factors; HMOX1, heme
oxygenase 1 Hp, haptoglobin; Hx, hemopexin; IRS1, insulin receptor substrate-1; IRE1a, serine/threonine-protein kinase/endoribonuclease inositol-requiring enzyme 1 α; IL: interleukin;
MMP9: metalloproteinase 9; ICAM-1, intracellular adhesion molecule 1; JNK, c-Jun NH2-terminal kinase; Keap, Kelch-like ECH-associated protein 1; miRNA, micro RNA; MAPK,
mitogen-activated protein kinase; MEK1, mitogen-activated protein kinase kinase; MRGPRX4, Mas-related G protein-coupled receptor X4; mTOR, mammalian target of rapamycin;
Mrp1/ABCc1, multidrug resistance protein 1/ATP binding cassette protein c1; Ngfr, neuronal growth factor receptor; NLRP1, nod-like receptor protein 1; NO, nitric oxide; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; Nrf2, nuclear factor erythroid 2-related factor; NMDA, N-methyl-d-aspartic acid; PI3K: phosphatidylinositol 3-kinase; PERK: protein
kinase RNA-like endoplasmic reticulum kinase; PGC-1α: peroxisome proliferators-activated receptor γ (PPARγ)-coactivator-1α; Pgp/MDR1/ABCb1, P-glycoprotein/multidrug resistance
protein1/ATB binding cassette protein b1; PKC, protein kinase C; RNS, reactive nitrogen species; ROS: reactive oxygen species; Sirt1, Sirtun 1; Slo1 BK, Ca2+- and voltage-activated K+
channel; SOD, super oxide dismutase; TLR4, toll like receptor 4; TNFα, tumor necrosis factor alpha; TrkB, tropomyosin receptor kinase B; Th1, T helper cells; UCB, unconjugated bilirubin;
UGT, uridine 5′-diphospho-glucuronosyltransferase; VEGF, vascular epithelial growth factor; Vglut1, vesicular glutamate transporters, 8-OHdG, 8-hydroxy-2′ deoxyguanosine (marker of
DNA damage).
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On the other hand, heme might be neuroprotective by reducing neuronal apoptosis, improving
mitochondrial functions as shown in experimental animal studies. These effects might be mediated via
HMOX1 induction or by increasing the expression of neuroglobin [25,26], the hemoprotein positively
correlated with a beneficial outcome in several neurotoxic insults including ischemic and traumatic
brain injuries and Alzheimer’s disease [31]. Neuroprotective effects of hemin against lead neurotoxicity,
also mediated by increased expression of HMOX1, were reported also in another experimental
study [27].

2.2. Heme Oxygenase (HMOX), Carbon Monoxide (CO) and Iron

As described above, heme is involved in the pathological processes of the brain. Under physiological
conditions heme homeostasis is tightly regulated by HMOX enzymes. Two HMOX isoforms exist in the
human body, the inducible HMOX1, and the HMOX2 isoenzyme constitutively expressed also in the
CNS [15].

In addition to converting heme to BV, HMOX1 possess a wide spectrum of DNA-binding motifs
on its promoter (e.g., CRE/Erg1—cAMP response element/early growth response, NF-kB, AP2, Hif,
cJun/Fos, ATF, stRE—tress response element), making it able to rapidly modulating a plethora
signaling pathway involved in adaptation to stress, proliferation, differentiation and cell survival,
immunity, anti-oxidant response, as well as modulating the expression of HMOX itself [1].

In the CNS context, HMOX1 is generally viewed as neuroprotective and significant effort is being
made to therapeutically induce HMOX1 to prevent various neuropsychiatric and neurodegenerative
diseases, either via direct HMOX1 induction or by activating its transcription factor Nrf2 by
therapeutics passing the blood-brain barrier (BBB) [33,128,129]. Based on mostly experimentally
studies, HMOX1 was indeed proved to protect the brain in various neurotoxicity models such
as acute glutamatergic and aspartatergic excitotoxicity [35,36], ethanol-induced neurotoxicity [37],
glycolysis inhibition-induced neurotoxicity and toxicity against mitochondria in cerebellar granule
neurons [38,130] as well as rat model [32] (Table 1). These data supporting the protective role of HMOX1
in neurotoxicity and neurodegeneration are in line with studies by Takahashi et al. demonstrating the
inhibition of HMOX in neurons of a transgenic mice model of Alzheimer’s disease [84].

On the other hand, the exaggerated activity of HMOX1 may result in an overproduction of
heme-derived carbon monoxide (CO) and especially iron, leading to increased astroglial stress
accompanied with oxidative mitochondrial membrane damage, iron sequestration and mitophagy,
as well as to gliopathy present in many aging-related neurodegenerative brain disorders [16] (Table 1).
Excessive HMOX1 overexpression was reported to contribute to the pathological iron deposition and
mitochondrial damage in aging-related neurodegenerative disorders [46,131] with all the pathological
consequences associated with iron accumulation in the brain tissue [45], Similarly, although CO at
low doses is neuroprotective by diminishing cerebral vasospasms in subarachnoid hemorrhage [129],
and by protecting neurons from toxic noxious substances [38], CO at higher concentrations is certainly
toxic [47,49] (Table 1).

Not only HMOX1, but also HMOX2 constitutively expressed in the CNS is implicated in the
protection from various neurological disorders as demonstrated in the experimental models of cerebral
ischemia-reperfusion injury [43,132] or oxidative stress-mediated hippocampal and neuronal toxicity
(Table 1).

Altogether, the current knowledge suggests HMOX, and especially HMOX2, as part of a CNS
cellular defensive machinery, and (particularly the inducible HMOX1) as an interesting pharmacological
target for enhancing the brain adaptation to the pathological conditions. Nevertheless, and differently
for the extra-CNS organs, special care of the side effects due to an excessive HMOX1 induction, must be
taken into consideration (see BLVR section and Conclusion and perspective).
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2.3. Biliverdin

BV, the greenish, water-soluble metabolite produced by the catalytic degradation of heme by
HMOX [11,133], is probably the least studied product of this enzyme. Due to its rapid reduction to
UCB by BLVR [134,135], BV is almost undetectable in serum and cells [90,136,137].

Nevertheless, experimental studies have demonstrated that BV administration to rats ameliorates
brain damage by reducing oxidative stress, and decreasing DNA damage (Tables 1 and 2) [50], and is a
biomarker for oxidative stress in many neurodegenerative diseases (Figure 2) [138]. When administered
in vivo, BV alleviates the pro-inflammatory response [51,91,92], playing a role in the progress of
neurodegeneration [139], and inhibits the toll-like receptor (TLR) 4 signaling [93,96], a frequent
contributor to neuronal death, BBB damage, edema, ischemic brain injury [140–146], and upregulated
in microglia of Alzheimer’s disease patients [147–149]. The rapid conversion of BV to UCB still leaves
open the question of which of the molecules (BV or UCB) is the more important effector.
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The specific contribution of BV has been thoroughly investigated in in vitro (chemical) studies
where BV has been demonstrated to scavenge NO radicals [150], and inhibit lipid peroxidation with a
2-fold higher efficacy compared to α-tocopherol [90]. This data has been supported in vivo studies
with BLVRA deficient mice as well as in the cell lines in which the BLVRA was silenced [151].

Altogether, the data indicate that the protection observed both in cellular systems as well as
in vivo, might be a combination of a direct antioxidant effect of BV and its conversion into bilirubin.

On the other hand, BV administration in jaundiced Gunn rats has been shown to induce
abnormalities in the brainstem auditory evoked potential comparable with those observed in human
newborn hyperbilirubinemia (Table 1). In this study, BV administration was followed by an increase in
plasma bilirubin level, the real effector of the brain damage [52].

2.4. Biliverdin Reductase (BLVR)

Two isoforms of BLVR (A and B) reduce BV to UCB, and both possess kinase activity.
BLVRB is highly expressed in the early fetal stages and reduces the fetal BV IXβ, whose

accumulation, together with the ferric ion derived from the heme cleavage, may leads to toxicity to the
developing fetus [53,54] (Table 1). Despite detectable in the adult tissues, the role in adults has not
been deciphered. Nevertheless its detection in serum has been suggested as a potential biomarker for
early diagnosis of Alzheimer’s disease [60], intra-plaque hemorrhage in atherosclerosis and carotid
atherosclerosis, common causes of cerebral thromboembolism or ischemic stroke [61].

BLVRA has been much more investigated. Its expression increases later in gestation [152] and is
ubiquitously expressed in the adult [153], with maximal levels in the brain and lungs.

BLVR may be found both in the cytoplasm and in the nucleus. In the cytoplasm, apart from reducing
BV to bilirubin IXα, it may be a substrate for the insulin receptor tyrosine kinase (IRK), and acting as a
kinase on itself, as well as on several signaling pathway with important adaptive/defensive functions
(e.g.,—anti-oxidant, inflammatory and hypoxia response, detoxification, apoptosis, carcinogenesis;
response to insulin. For details see [1], in addition to Table 2 in this review). BLVRA may also
translocate into the nucleus transporting heme and ERK (extracellular signal-regulated kinases)
and act as a transcription factor binding directly to ARE (antioxidant responsive elements )/AP1-2
(activating protein), and ATF2 (activating transcription factor)/CRE (cAMP response element) DNA
sequences (present also on the promoter region of HMOX1), or acting in complex with ERK/Elk (ETS
domain-containing protein) or Nrf2 (nuclear factor (erythroid-derived 2)-like 2)/ARE (antioxidant
responsive elements) [1,154–156] (Table 2). Altogether, BLVR possesses the potential for modulating a
wide number of biological function in the cells, including the self-regulation of the YPs, through an
impressive array of signaling pathway [1].

As a transcription factor, BLVRA binds to NF-κB, arresting the cell cycle [91]. As a consequence,
BLVRA is downregulated in brain tumors, particularly meningiomas and gliomas, where a correlation
between the enzyme expression and the anti-oxidant status has been found [55]. BLVRA deficiency has
a role also in the maintenance of the endothelial phenotype controlled by HMOX and iron homeostasis
control, with potential implications for the BBB integrity during diseases [157–160]. Deregulation
of the BLVRA activity is a common feature of Alzheimer’s disease, at least in the most advanced
stages, with BLVRA inhibition enhancing Tau phosphorylation and deposition in the brain [98–101]
(Tables 1 and 2). The suggested explanation for the BLVRA enzymatic inactivation lies in the excessive
oxidative and nitrosative stress ongoing the disease, damaging the enzymatic functions [57,58,161],
a phenomenon common in most of the neurological conditions.

Notably, BLVRA is also a member of the insulin receptor substrate family [162], modulating the
glucose uptake [105,154,163] (Table 2), with insulin resistance frequently observed in Alzheimer’s
disease [164–166]. The role of BLVRA in insulin resistance and disease progression, has been better
unraveled in animals models, where the reduced BLVRA activity, the brain insulin resistance, and the
disease severity, have been improved by intranasal insulin administration, the effect not occurring in
the BLVRA knock-out animals [167].
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Vice versa, BLVR intracranial administration in rats ameliorates the outcome of autoimmune
encephalomyelitis (a model for multiple sclerosis). The efficacy has been explained by the multifactorial
functions of bilirubin (anti-complement, inhibiting the antibody-dependent lymphocytes cell-mediated
cytotoxicity, in addition to its antioxidant action (Table 2)).

Collectively, BLVRA induction seems always beneficial to CNS, while its enzymatic inactivation
looks detrimental, possibly by reducing the final concentration of UCB inside the cell. Convincing
experimental demonstrations of the role of BLVR are still required to unravel the importance of this YP
per se, and the side effects linked with a hyper-activation of HMOX1.

2.5. Unconjugated Bilirubin (UCB)

UCB is considered a powerful anti-oxidant molecule [9,10], with its chemical characteristic
contributing to the physiological implications. Bilirubin contains an extended system of conjugated
double bonds and a pair reactive hydrogen atom that is involved in antioxidant activity via H-donation
to an incipient radical [168]. Owing to its hydrophobic nature, bilirubin mostly accounts for the
preferential scavenging of lipophilic radicals that can attack lipid membranes, with the GSH/GSSG
system more active on the cytosolic protection [169].

Unlike BV that has a double bond between the inner pyrrole rings, UCB contains a single
bond. This UCB electrophilic characteristic accounts for its ability to react with thiol compounds
characteristic of many transcription nuclear factors [133]. Thus, UCB may modulate key signalling
pathways [107,112,113] (Table 2).

Among the biological functions, UCB scavenges not only ROS [62], but also RNS (reactive nitrogen
species) [90,150], with reduction of the superoxide production [114]), and inhibition of the glutamate
excitotoxicity [170] (Table 2). Besides, UCB is a known multi-target anti-inflammatory molecule with
the pro-inflammatory processes ever noticed in CNS diseases and co-responsible for the neurological
damage [107,171] (Table 2).

These properties explain why bilirubin might play a key role in reducing neuronal damage in
CNS pathologies (Table 1) [42,62–65]. Nanoparticle-delivered UCB [172] into the brain reduced the
tumor size and improved the survival in a mice model of glioma [63].

An interesting correlation between the serum bilirubin and the neurological conditions is emerging.
Increasing clinical observations indicate a lower serum bilirubin concentrations during oxygen radical
associated and inflammatory neurological conditions of the adult life (Table 1), with both a correlation
with the diagnosis and the prognosis [1,2,171]. As reviewed by Fujiwara et Al. [75], similar data are
present also in neonates [72–74], where a close association between the plasma bilirubin concentration
and the plasma antioxidant capacity has been reported [75], with icteric neonates showing a favourable
plasma antioxidant capacity, that phototherapy worsened [173]. After more than a century, this supports
the speculation that the production of UCB from BV, an unnecessary energy-consuming reaction,
is motivated by the benefits of having higher antioxidant defense. Altogether, these data suggest that
lower serum bilirubin concentrations harm the systemic antioxidant defence system, possibly starting
or enhancing the progression of oxidative stress-mediated neurological diseases. The real contribution
of the serum bilirubin level vs. the in situ (CNS) activity of the UCB players must be further explored.

The complexity in interpreting the interplay between the liver (as the main controller of the systemic
UCB level), the brain (neurological diseases) and the YPs is also present in the non-alcoholic fatty
liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. NALFD is a pandemic
condition involving also the pediatric population [174,175], and regarded as one of the newest risk
factors for neurological diseases [176,177], with the life style and the diet regimen being key factors in
the CNS pathology progression [178–180]. The liver and brain appear to be inter-connected at various
levels (so-called liver brain axis): (1) A negative correlation between serum bilirubin concentrations
and NAFLD stage has been reported [75,181–184]; (2) the modulation of HMOX1/CO/iron, in turn
acting on sirtuin1 (Sirt1—see Table 2), a histone deacetylase controlling the adaptive mechanism to
disease and the bilirubin transport in both organs [89,185–187] has been also demonstrated; and (3),
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the liver and brain may be connected by insulin resistance [183], a feature of the metabolic syndrome
whose CNS consequences have been discussed in Section 2.4.

On the other side, UCB in high concentrations such in severe neonatal hyperbilirubinemia may
cause neurological sequelae with temporary or permanent auditory dysfunctions, cognitive and motor
impairment or even death [4] due to its prooxidant, proinflammatory and proapoptotic activities as
well as alteration of the epigenetic control of postnatal brain development [6,108]. At the toxic level,
no doubts exist that the UCB content in the CNS is due to the pigment entering from the blood (Table 2).

2.6. UCB Degradation Products

Apart from the main heme catabolic pathway comprising in the reduction of double bonds within
the UCB molecule and resulting in the production of a series of products known as urobilinoids [188],
UCB, under conditions of increased oxidative stress or upon exposure to light, can be oxidized to several
UCB oxidation products. Although these include also BV produced in the so-called bilirubin/biliverdin
redox cycle scavenging the overproduction of ROS [189] (Figure 1), UCB is easily (photo)oxidized
into many oxidation products with biological importance [190]. These bilirubin oxidation derivatives
include tetra-, tri-, di-, and mono-pyrrolic bilirubin oxidation products. Probably most clinically
important are tetrapyrrolic bilirubin photo-isomers formed during phototherapy of severe unconjugated
hyperbilirubinemia. However, no solid data exists whether the bilirubin photo-isomers might have
the potential to affect pathologic processes of the brain tissue. Nevertheless, bilirubin photo-isomers
might have neuro-inflammatory effects, as shown in vitro [77] (Table 1). Although proinflammatory
cytokines and chemokines have generally been considered deleterious for the CNS and is involved
in neurodegeneration [191,192], these cytokines, apart from being mediators of damage, might also
have beneficial functions, serving as trophic and/or neuroprotective agents (for review see [193]).
For instance, the beneficial role of IL-6 in neuroregeneration [194], as well as increased proliferation of
neural progenitor cells upon exposure to TNFα treatment [195] have been reported. More data are
necessary to identify the exact roles of bilirubin photo-isomers in the biology of the cells of the CNS,
compared to proved deleterious (proinflammatory) effects of high concentrations of UCB [196,197].

Biopyrrins, tripyrrolic compounds representing clinically relevant markers of increased oxidative
stress, comprise another group of bilirubin oxidation products [198,199]. Although their increased
urinary outputs have been reported in many human pathologies associated with increased oxidative
stress, their role in brain biology or bilirubin phototherapy is unexplored and deserves further
investigation. The only clinical evidence on the possible role of biopyrrins in the brain pathology is the
report by Chinese researchers demonstrating increased urinary excretion of biopyrrins in patients with
Parkinson’s disease [78] (Table 1).

Much more is known about dipyrrolic propentdyopents and monopyrrolic bilirubin oxidation
products (Z-BOX A and B) which recently have been demonstrated to have potential clinical impact,
especially in the pathogenesis of brain damage during subarachnoid hemorrhage [79,80] (Tables 1
and 2). Again, further studies are desperately needed to reveal all the biological roles of these bilirubin
oxidation products. The recently reported analytical method for the simultaneous determination of
major bilirubin photooxidation products [200] will be instrumental.

As discussed in the text, the YPs have been demonstrated to be involved in the pathogenesis
and/or in the protection in neurodegenerative diseases and other CNS diseases. This figure highlights
the potential molecular targets of each one of the YPs in the specific CNS diseases, based on
the available literature (see References in Figure 2), resuming and connecting the text to Tables 1
and 2. The YPs: Aβ, amyloid β; BV, biliverdin; BVR, biliverdin reductase; CO, carbon monoxide;
CREB, cAMP-responsive element-binding; HMOX, heme oxygenase; NFT, neurofibrillary tangles;
Nrf2, nuclear factor erythroid 2–related factor 2; NF-κB, nuclear factor kappa-light-chain-enhancer
of activated B cells; NO, nitric oxide; ROS, reactive oxygen species; RNS, reactive nitrogen species;
UCB, unconjugated bilirubin; UPR, unfolded protein response; UPS, ubiquitin-proteasome system;
Tp53, human p53 tumor protein.(For details see [201–207]).
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3. Conclusions

Heme, UCB, BV, BVLR and HMOX, are the components of a complex cellular system. In this
review, we addressed the role of each YPs on brain heath, discussing both beneficial and detrimental
effects. Recent experimental and clinical studies have demonstrated their role and importance in
development and progression of various neurological conditions. Future detailed and controlled
studies are needed to explore precise role of all the YPs in pathogenesis of these diseases, and how to
modulate the YPs in a balanced fashion to prevent or improve their course.
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