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Abstract: The quantum measurement incompatibility is a distinctive feature of quantum mechanics.
We investigate the incompatibility of a set of general measurements and classify the incompatibility by
the hierarchy of compatibilities of its subsets. By using the approach of adding noises to measurement
operators, we present a complete classification of the incompatibility of a given measurement
assemblage with n members. Detailed examples are given for the incompatibility of unbiased
qubit measurements based on a semidefinite program.
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1. Introduction

The incompatible measurements are one of the striking features in quantum physics, and can
be traced back to Heisenberg’s uncertainty principle [1] and wave-particle duality [2,3]. There are
observables like position and momentum, that are impossible to be exactly measured simultaneously,
unless some amount of noise is added [4]. The existence of incompatible measurements [5–7] also
implies the no-cloning theorem [8,9] and Einstein-Podolsky-Rosen (EPR) steering [10–12].

The incompatibility of quantum measurements is also known to be a powerful tool in many
branches of quantum information theory [13–19]. As a resource for quantum information processing
[20], quantum incompatibility has been the object of intense research [21–38]. In [39] Bell-like
inequalities have been presented by using some partial compatible measurements.

Based on the investigation on the uncertainty relations of two measurements [15–17], the authors
in [40] found that a triple measurement uncertainty relation deduced from uncertainty relations for
two measurements is usually not tight. There exist genuinely incompatible triple measurements such
that they are pairwise jointly measurable, as in the case of genuine tripartite entanglement or genuine
nonlocal correlations. Based on statistical distance, Qin, et al. [41] formulated state-independent tight
uncertainty relations, satisfied by three measurements, in terms of their triple joint measurability.
Another way to quantify the joint measurability of a set of measurements is to add noise to the
measurement operators, and numerically calculate the noise threshold for the measurements to be
jointly measurable [21,25,26].

In this paper, similar to the quantum multipartite entanglement or non-locality, we classify the
measurement incompatibility for a given set of measurements, and present a hierarchy of quantum
measurement incompatibilities. We then study the transition between different types of incompatible
measurements by using the semidefinite programm (SDP) [34]. We present a criterion to judge the
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incompatibility of a given multiple measurements. Detailed examples are given for unbiased qubit
measurements.

2. Measurement Incompatibility Classification and Quantification

A general positive operator valued measure (POVM) is given by a collection of
positive-semidefinite operators summing up to an identity. We consider a POVM with measurement
operators {Aa}a, {Aa ≥ 0, ∑a Aa = I}, where I stands for the identity operator. Given a state ρ, the
probability of measurement outcome a is p(a) = trAaρ.

Given two POVMs, {Aa} and {Bb}, {Aa} is called a coarsening of {Bb}, or equivalently, {Bb}
is called a refinement of {Aa}, if the former can be derived from the latter by data processing, Aa =

∑b p(a|b)Bb, for every a, where p(a|b) ≥ 0, and {p(a|b)}a is a probability distribution, for every b [35].
For a set of n POVMs, i.e., a POVM assemblage A = {{Aa|x}a}n

x=1, we say that the POVM assemblage
is compatible (or jointly measurable) if and only if all the POVMs in the assemblage possess a common
refinement. This common refinement is called the parent POVM [34]. Otherwise, A is incompatible.

The incompatibility of a POVM assemblage with n members implies that there does not exist
a common refinement for all of the n measurements. However, some of the measurements of the
assemblage may have a common refinement, that is, there might be some subassemblages which are
jointly measurable. Obviously, if a subset of a POVM assemblage is incompatible, the whole assemblage
is incompatible. However, the converse is not true. Therefore, it is of significance to characterize the
measurement incompatibility of a POVM assemblage in a finer way, as in the separability classification
in quantum entanglement [42,43]. To give a uniform description of the measurement incompatibility
of a POVM assemblage with n measurements, we have the following classifications:

Given a POVM assemblage A = {{Aa|x}a}n
x=1 and k ≤ n, we have

(1) A is (n, k)-compatible, if all k-member subsets of A are compatible;
(2) A is (n, k)-incompatible, if at least one k-member subset of A is incompatible;
(3) A is (n, k)-strong incompatible, if all k-member subsets of A are incompatible;
(4) A is (n, k + 1)-genuinely incompatible, if A is (n, k)-compatible, and (n, k + 1)-incompatible;
(5) A is (n, k + 1)-genuinely strong incompatible, if A is (n, k)-compatible, and (n, k + 1)-strong

incompatible.

From above classification, we have the following conclusions:

Proposition 1. Given a set of POVMs A = {{Aa|x}a}n
x=1, we have

(1) A is compatible, if and only if, it is (n, n)-compatible;
(2) A is (n, k + 1)-compatible implies that it is (n, k)-compatible;
(3) (n, k)-strong incompatible is a special case of (n, k)-incompatible;
(4) (n, k)-incompatible implies (n, k + 1)-incompatible but not (n, k + 1)-genuinely incompatible;
(5) (n, k + 1)-genuinely incompatible means that (n, k + 1)-incompatible and (n, k)-compatible;
(6) (n, 2)-(strong) incompatible is equivalent to (n, 2)-genuinely (strong) incompatible.

For a given POVM assemblage A with n members, an interesting problem is to judge if it is
incompatible. If A is incompatible, we need to determine which kind of incompatibility it is. If
A is (n, k)-incompatible or (n, k)-strong incompatible, it would become (n, k)-, (n, k + 1)- or even
(n, n)-compatible by adding more and more white noise.

Adding noise to a POVM assemblage A = {{Aa|x}a}x is to mix each measurement operator in A
with white noise, so as to get a new set of POVMs Aη ,

Aη

a|x = ηAa|x + (1− η)trAa|x
I
d

. (1)

As {{trAa|x
I
d}a}x is a compatible assemblage, Aη will eventually become jointly measurable for

sufficient small η. The critical parameter η∗, at which the transition from incompatible to compatible



Entropy 2020, 22, 161 3 of 7

occurs, is called the noise robustness of A, which is a meaningful incompatibility quantifier [21,25,26].
The bigger η∗, the weaker incompatibility of A. A is compatible if and only if η∗ = 1. It is generally
formidably difficult to obtain the accurate value of η∗. The estimation of the upper or lower bound of
η∗ is an interesting problem. In [34] Designolle et al. gave an expression of η∗ by using SDP (2) and its
strong dual (3),

η∗ = max η

s.t. {Aη

a|x} compatible

0 ≤ η ≤ 1, (2)

η∗ = min
{Xa|x}a,x

1 + tr ∑
a,x

Xa|x Aa|x

s.t. 1 + tr ∑
a,x

Xa|x Aa|x ≥
1
d ∑

a,x
trXa|xtrAa|x,

∑
x

Xjx |x ≥ 0, ∀ji, i = 1, 2, · · · , n, (3)

where any {Xa|x}a,x that satisfies the constraints in (3) can give rise to an upper bound of η∗.
The critical parameter η∗ can be also used to characterize the transition from general

(n, n)-incompatible to (n, n)-compatible, as well as from (n, k)-incompatible to (n, k)-compatible,
or (n, k)-strong incompatible to (n, k)-incompatible. We denote η∗(n,k) the critical parameter at which
the transition from (n, k)-incompatible to (n, k)-compatible occurs. The η∗ given in (2) and (3) is simply
η∗(n,n). IfA is (n, k)-compatible, then η∗(n,k) = 1. Otherwise, η∗(n,k) < 1. Since (n, k)-incompatible implies
the (n, k + 1)-incompatible, we have η∗(n,k) ≥ η∗(n,k+1).

Denote [n] = {1, 2, · · · , n}. Let αk represent an arbitrary subset of [n] with k numbers. Given
any k-member subset of A, Aαk = {{Aa|x}a|x ∈ αk}. If Aαk is (k, k)-incompatible, by using the same
SDP (2) and SDP-dual (3) procedure, we can get the critical number η∗αk

, at which the transition from
(k, k)-incompatible to (k, k)-compatible occurs for Aη

αk ,

η∗αk
= max η

s.t. {Aη

a|x}x∈αk compatible

0 ≤ η ≤ 1, (4)

η∗αk
= min 1 + tr ∑

x∈αk

∑
a

Xa|x Aa|x

s.t. 1 + tr ∑
x∈αk

∑
a

Xa|x Aa|x ≥
1
d ∑

x∈αk

∑
a

trXa|xtrAa|x,

∑
x∈αk

Xjx |x ≥ 0, ∀ji, i ∈ αk. (5)

For any subset with k members Aαk of A, Aη
αk is (k, k)-compatible if η ≤ η∗αk

, and
(k, k)-incompatible if η > η∗αk

. Set

ηmin
(n,k) = min

αk
η∗αk

, ηmax
(n,k) = max

αk
η∗αk

. (6)

We have η∗(n,k) = ηmin
(n,k). ηmin

(n,k) and ηmax
(n,k) can identify all kinds of incompatibilities of a POVM

assemblage. If ηmin
(n,k) = ηmax

(n,k) = 1, namely, Aαk is compatible for all αk, then A is (n, k)−compatible. If

ηmin
(n,k) < 1 and ηmax

(n,k) = 1,A is (n, k)-incompatible but not strong incompatible. If ηmax
(n,k) < 1, we conclude
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that A is (n, k)-strong incompatible. If ηmin
(n,k+1) < 1 and ηmin

(n,k) = 1, then A is (n, k + 1)-genuinely

incompatible. If ηmax
(n,k+1) < 1 and ηmin

(n,k) = 1, then A is (n, k + 1)-genuinely strong incompatible.
Therefore, we have the following theorem.

Theorem 1. The numbers ηmin
(n,k) and ηmax

(n,k), defined in (6), can classify all kinds of incompatibility of a POVM
assemblage A = {{Aa|x}a}n

x=1 for k = 2, 3, · · · , n.

From another point of view, in the case of ηmin
(n,k) < ηmax

(n,k) ≤ 1, Aη is (n, k)-strong incompatible

for η > ηmax
(n,k), because every Aη

αk is incompatible. Aη is (n, k)-compatible for η ≤ ηmin
(n,k), and

(n, k)-incompatible but not strong incompatible for ηmin
(n,k) < η ≤ ηmax

(n,k). In this sense, we can say that

ηmin
(n,k) is the critical parameter for the transition from (n, k)-compatible to general (n, k)-incompatible.

ηmax
(n,k) is the one for the transition to (n, k)-strong incompatible.

It is clear that ηmin
(n,k) ≥ ηmin

(n,k+1) and ηmax
(n,k) ≥ ηmax

(n,k+1). Nevertheless, the general relation between

ηmin
(n,k) and ηmax

(n,k+1) is not clear. If ηmax
(n,k+1) < ηmin

(n,k), then Aη is (n, k + 1)-genuinely strong incompatible

for ηmax
(n,k+1) < η ≤ ηmin

(n,k). But if ηmax
(n,k+1) < ηmin

(n,k), A
η is not (n, k + 1)-genuinely strong incompatible for

all η.
By considering “maximally incompatible” measurements, the authors in [44–47] discussed the

projective measurements on mutually unbiased bases (MUBs), the bases regarded as “maximally
noncommutative” and “complementary” [44]. MUBs play a central role in quantum information
processing [48], and have been used in a wide range of applications [49–54].

In the following, we give examples of different kinds of incompatibility by using projective
measurements on mutually unbiased bases in qubit systems. Given three mutually unbiased bases
{{|ψa|x〉}2

a=1}3
x=1,

|〈ψa|x|ψb|y〉|2 =
1
2

, x 6= y, a, b = 1, 2,

and
〈ψa|x|ψb|x〉 = δab, x = 1, 2, 3, a, b = 1, 2.

We consider the projective measurements given by these bases, A = {{Aa|x = |ψa|x〉〈ψa|x|}a}3
x=1.

Correspondingly, there exist three unit real 3-dimensional vectors ~mx, such that

{Aa|x = |ψa|x〉〈ψa|x|}a=1,2 =

{
A±|x =

I ± ~mx ·~σ
2

}
, x = 1, 2, 3.

The mutual unbiases of {|ψa|x〉}a, x = 1, 2, 3, gives that ~m1, ~m2, and ~m3 are mutually orthogonal.
Adding noise to Aa|x, we find Aη = {Aη

±|x = ηA±|x + (1− η) I
2}3

x=1, namely,

Aη = {Aη

±|x =
I ± η~mx ·~σ

2
}3

x=1.

Using the results in [31,34,36], we have critical parameters η∗(3,2) = ηmin
(3,2) = ηmax

(3,2) =
1√
2
, η∗(3,3) =

1√
3
. Hence, if η ≤ 1√

3
, then Aη is (3, 3)-compatible. If 1√

3
< η ≤ 1√

2
, then Aη is (3, 2)-compatible, but

(3, 3)-incompatible, i.e., (3, 3)-genuinely incompatible. If η > 1√
2

, thenAη is (3, 2)-strong incompatible.
On the other hand, we can add different white noise to different POVMs in A. We have new

POVM assemblage as {Aηx
±|x}

3
x=1, ηx ∈ [0, 1]. Then Aηx

±|x and A
ηy
±|y, with 1 ≤ x < y ≤ 3, are compatible

if η2
x + η2

y ≤ 1 [29]. If η1 = η2 ≡ η > 1√
2

and η2
3 + η2 ≤ 1, then {Aη1

±|1, Aη2
±|2} are incompatible, but Aηx

±|x
and Aη3

±|3 are compatible (x = 1, 2). Hence {Aη1
±|1, Aη2

±|2, Aη3
±|3} is an example for (3, 2)-incompatible

but not (3, 2)-strong incompatible.
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3. Conclusions

We have investigated the measurement incompatibility of a general measurement assemblage. We
have classified such quantum into (n, k)-compatible, (n, k)-incompatible and (n, k)-strong incompatible.
By using the approach of mixing with noises, detailed examples are presented. Incompatibility and
compatibility of measurements play profound roles not only in the fundamental research of quantum
physics, but also in quantum information processing, raging from uncertainty relations to the detection
of Bell nonlocality and device-independent certification of entanglement. Finer characterization of
the incompatibility of measurement assemblages can give rise to better applications. Our results may
highlight further researches on jointly measurability and applications of incompatible measurements
in quantum information processing.
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