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Abstract: Arsenic is a toxic metalloid that causes skin cancer and binds to cysteine residues—a property that could be used to infer arsenic 
responsiveness of a target protein. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) result in amino acid substitutions and 
may alter arsenic binding with cysteine residues. Thus, the objective of this investigation was to identify and analyze nsSNPs that lead 
to substitutions to or from cysteine residues as an indication of increased or decreased arsenic responsiveness. We hypothesize that 
integration of data on molecular impacts of nsSNPs and arsenic-gene relationships will identify nsSNPs that could serve as arsenic 
responsiveness markers. We have analyzed functional and structural impacts data for 5,811 nsSNPs linked to 1,224 arsenic-annotated 
genes. In addition to the identified candidate nsSNPs for increased or reduced arsenic responsiveness, we observed i) a nsSNP that 
results in the breakage of a disulfide bond, as candidate marker for reduced arsenic responsiveness of KLK7, a secreted serine protease 
participate in normal shedding of the skin; and ii) 6 pairs of vicinal cysteines in KLK7 protein that could be binding sites for arsenic. 
In summary, our analysis identified non-synonymous SNPs that could be used to evaluate responsiveness of a protein target to arsenic. 
In particular, an epidermal expressed serine protease with crucial function in normal skin physiology was prioritized on the basis of 
abundance of vicinal cysteines for further research on arsenic-induced keratinocyte carcinogenesis.
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Introduction
Arsenic (As) is recognized as an environmental 
toxicant of concern for global public health and 
a leading cause of toxicity and carcinogenicity.1,2 
Arsenic targets the human skin and long-term 
exposure to arsenic, principally through drinking 
water, has been correlated with increased risk of skin 
cancer.3–5 The cellular toxicity of arsenic has been well 
documented from case studies of poisoning incidents 
and medicinal use.2,6 However, due to increased 
epidemiological reports of arsenic related cancers 
in places such as Southeastern Michigan (USA), 
Taiwan, China, India and Bangladesh, public health 
concerns about long-term exposure have arisen.2,6–8 
Inorganic arsenic is classified by the United States 
Environmental Protection Agency (U.S. EPA) as a 
Group A carcinogen based on sufficient evidence of 
carcinogenicity in humans.9 Chronic oral exposure to 
inorganic arsenic can have adverse effects on tissues 
in the human body systems.10 However, the human 
skin is the critical organ of arsenic toxicity because 
arsenic has a strong affinity for the keratin proteins 
which are rich in the sulphur containing cysteine 
residues.11–13 Chronic exposure to arsenic induces 
sequential changes in the skin epithelium, proceed-
ing from hypopigmentation to hyperkeratosis which 
may eventually lead to skin cancer.11 Arsenic-induced 
skin lesions are early warning markers for develop-
ment of cancers in internal organs.14,15 A well-known 
beneficial use of arsenic is that arsenic trioxide is used 
for treatment of relapsed or refractory acute promy-
elocytic leukemia.16–20 However, side effects of treat-
ment with arsenic trioxide include significant adverse 
cardiac effects.21

The avalanche of genome sequences combined 
with genome-enabled datasets from high-throughput 
gene expression, genotyping, haplotyping and protein 
assays is making it possible to gain biological insights 
into previously unknown gene-toxicant interactions. 
Arsenicogenomics, an aspect of toxicogenomics, 
therefore, provides a means to i) understand how vari-
ous genes respond to arsenic and ii) how arsenic mod-
ifies the function and expression of specific genes in 
the genome. Early physical manifestations of arsenic 
toxicity in endemic areas are skin lesions includ-
ing melanosis and keratosis. However, not every-
one exposed to arsenic in an endemic region would 
develop skin lesions.22 Therefore, future research 

on arsenic-induced cancers and, in particular, skin 
lesions should consider the impact of genetic varia-
tion in individual susceptibilities to arsenic toxicity.

Single nucleotide alterations in the DNA 
sequence represent a major source of genetic 
heterogeneity23 and the most common type of 
genetic variation in the human genome. The diver-
sity of single nucleotide polymorphisms (SNPs) 
derived from arsenic responsive genes in differ-
ent populations could provide biomarkers for an 
individual’s susceptibility to arsenic-induced dis-
eases. Genomic and bioinformatics techniques now 
exist to identify and analyze the presence of SNPs 
in populations.24 Furthermore, the dense distribu-
tion of SNPs across the genome makes them ideal 
markers for large-scale genome-wide association 
studies to discover genes in common complex dis-
eases, such as cancer. A SNP-induced amino acid 
substitution in the coding region can be broadly 
divided into synonymous (no change in amino 
acid) or non-synonymous (change in amino acid).25 
Furthermore, the functional impact of the SNP on 
protein function has been described as deleterious 
(disruptive) or non-deleterious (benign/neutral).26 
Non-synonymous substitutions could lead to 
missense or nonsense mutations in the encoded 
polypeptide. In particular, nonsense mutations that 
generate premature termination codons (PTCs) are 
responsible for approximately one-third of human 
genetic diseases.27 In addition, substitutions in one 
or two amino acids of a protein sequence can alter 
the quantity of encoded protein during expression in 
mammalian cells.28 Considering that arsenic trioxide 
is also used for treatment of acute promyelocytic 
leukemia,16,18,19,29 genetic variation may also affect 
response to therapy.

Arsenic binds to sulfhydryl (SH) groups of 
cysteine (Cys) residues to form arsenic-thiol 
linkages, a property that could be used to infer 
arsenic responsiveness of a protein target as well 
as contribute to oxidative and protein folding 
stresses.30–32 In the human arsenic (+3 oxidation state) 
methyltransferase (hAS3MT) sequence, Cys residues 
at positions 156, 206 and 250 play important roles  
in the enzymatic function and structure.33 Mutation 
of the arsenic-sensing Cys151  in Kelch-like ECH-
associated protein 1 (Keap1) abolished arsenic acti-
vation of nuclear factor erythroid 2-related factor 2, 
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a transcription factor responsible for induction of 
antioxidative cytoprotective genes.34

Non-synonymous Single Nucleotide Polymor-
phisms (nsSNPs) result in amino acid substitutions and 
may alter the number of cysteine residues available to 
arsenic for binding to a protein cellular target. There-
fore, the objective of this investigation was to identify 
and analyze nsSNPs that lead to substitutions to or 
from cysteine residues as an indication of increased 
or decreased arsenic responsiveness of a protein. We 
hypothesize that integration of data on molecular 
impacts of non-synonymous single nucleotide 
polymorphisms and arsenic-gene relationships will 
help identify nsSNPs that are candidate arsenic 
responsiveness markers.

An integrative approach combining results from 
selected web-based toxicogenomics and genomics 
databases as well as bioinformatics tools was used 
to prioritize candidate nsSNPs markers for arsenic 
responsiveness of protein targets. In the first step, 
a list of genes annotated to interact with arsenicals 
was retrieved from the Comparative Toxicogenomics 
Database.35 Subsequently, the nsSNPs linked to these 
arsenic-annotated genes were extracted from SNPs3D36 
and analyzed for functional and structural impacts data 
on protein isoforms. Significant amino acid substitu-
tions to or from cysteine residues were then prioritized 
based on structural effect resulting in breakage of a 
disulphide bond as well as function in skin cells. Fur-
thermore, structural homology modeling was used to 
identify vicinal (neigboring) cysteines in prioritized 
protein targets of arsenic. In order to facilitate addi-
tional investigations on prioritized SNPs, protein tar-
gets and molecular mechanisms of arsenic action, we 
have constructed a collection of over 100,000 sentences 
from over 16,000 PubMed37 abstracts on arsenic. 
Finally, a web resource Arsenic Sentence Database was 
developed to enable web-based search of the sentences 
by keywords and PubMed identifiers.

Methods
Functional and structural impacts  
of single nucleotide polymorphisms  
on arsenic annotated genes
The molecular functional effects of non-synonymous 
SNPs based on sequence and structure analysis 
were retrieved from the SNPs3D web resource and 

database36 for genes curated in the Comparative 
Toxicogenomics Database (CTD)35 to have a rela- 

tionship with arsenic. In the CTD, the term gene 
also includes mRNA and proteins. We described 
relationship in terms of arsenic modifying the function 
and/or expression of genes. Furthermore, we referred 
to the genes as arsenic-responsive genes or proteins. 
In SNPs3D, the classification into in vivo functional 
impact categories of the SNP was based on two Sup- 
port Vector Machine (SVM) models: protein sequence 
conservation profiling and protein structure stability. 
In both machine learning models, an SVM is trained 
using 5 sequence profiles and 15 protein stability fea-
tures. Additional details on the methods are available 
at the SNPs3D website http://www.snps3d.org/help/
method.html. The nsSNPs were ranked according to 
SVM score. For both sequence and structure SVM 
scores, a nsSNP with negative score was classified 
as deleterious while a nsSNP with a positive score 
was classifed as non-deleterious. We observed that 
some nsSNPs in SNPs3D were assigned a SVM 
score of -0.00. However, they were not tagged as 
deleterious. Thus, these nsSNP were classified in this 
investigation as non-deleterious. Furthermore, High 
Confidence (HC) SVM scores were greater than 0.50 
or less than −0.50.38

The computational workflow consisting of a suite 
of customized Perl and Unix scripts was developed to 
process results obtained from CTD and SNPs3D. The 
Entrez Gene37 Identifiers and Gene Symbols were 
extracted from XML formatted results of arsenic-
gene interactions from CTD. Furthermore, the 
Entrez Gene identifiers were then used to remotely 
download the SNP Analysis page in SNPs3D for 
each CTD arsenic-annotated gene. For example, the 
SNP Analysis page for a known arsenic-interacting 
gene Glutathione S-transferase Omega 1 (Gene 
Symbol: GSTO1 and Entrez Gene Identifier: 9446) 
in SNPs3D is http://www.snps3d.org/modules.php? 
name=SnpAnalysis&locus_ac=9446.

The collection of html files was processed to mine 
for relevant data to construct a dataset. The fields 
of the dataset were the dbSNP identifier,37 RefSeq 
protein isoform identifier,37 mutation, SVM sequence 
profile score, SVM structure score and description 
of impact of nsSNP on protein stability. There were 
instances that no data were predicted for the SVM 
structure score and the protein impact. However, 
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scores were predicted for all the SVM sequence 
profile. The gene symbols were also extracted from 
the CTD and combined with the dataset from SNPs3D. 
The final integrated dataset consisted of the Entrez 
Gene Identifier, Gene Symbol, the SNP Identifier, the 
Amino Acid Substitution, the SVM score computed 
for the sequence and structure profile models and the 
structural consequence of the SNP. In SNPs3D, we 
preferred to remotely download the SNP Analysis 
pages so as to extract data and links to additional 
information such as i) sequence alignment evidence 
of tolerance of the amino acid position to mutation 
and ii) values associated with the 15 protein stability 
factors. These additional datasets were not available 
in the files available for download.

Arsenic responsiveness based  
on substitution to or from  
cysteine residues
We conjectured that substitution to or from a 
cysteine residue could lead to increased or decreased 
responsiveness of a protein isoform to arsenic. In 
order to identify these cysteine substitutions, a suite 
of customized Perl and Unix scripts was developed to 
extract records that met the criteria from the integrated 
CTD and SNPs3D dataset. For example, in SNPs3D 
SNP Analysis page for GSTO1, nsSNP rs45529437 
is linked to substitution from cysteine to tyrosine 
in position 32 (C32Y). Furthermore, rs11509436 
is linked to substitution to cysteine from serine in 
position 86 (S86C).

Structural homology modeling
Structural models of protein mutants link to candidate 
SNPs that alter arsenic responsiveness were generated 
using MODELLER 7v739 with  appropriate homologous 
high resolution X-ray crystal structure templates from 
the Protein Data Bank (PDB).40 SYBYL (Tripos Inc) 
was used to identify vicinal cysteines following a quick 
minimization routine using AMBER force field.

Construction of sentences collection 
from PubMed abstracts on arsenicals
In order to identify descriptors of interest in sentences 
and cluster sentences with identical descriptors, we 
implemented a sentence splitting algorithm on a 
collection of PubMed37 abstracts annotated with at 
least one of the Medical Subject Heading (MeSH) 

terms: arsenic or arsenicals. The sentence splitting 
algorithm implemented uses Perl regular expressions 
to enhance the Comprehensive Perl Archive Network 
(CPAN) Text: Sentence splitter module (http://search.
cpan.org/) to achieve a high accuracy in sentence 
disambiguation. A web interface for searching the 
catalog of sentences was also developed.

Results
Functional and structural impacts  
of single nucleotide polymorphisms  
on arsenic annotated genes
The set of genes for predicting potential responsive- 
ness to arsenic was obtained from the Comparative 
Toxicogenomics Database (CTD).35 A total of 
1,604 genes consisting of 1,492 human genes and 112 
non-human genes documented to have a relationship 
with arsenicals (Medical Subject Heading Identifier 
[MeSH ID]: D001152) were retrieved on May 10, 
2010 (Supplementary Data). We describe the gene set 
as a list of arsenic-annotated genes and their protein 
isoforms as arsenic-annotated proteins. The functional 
impacts of SNPs on protein function, as predicted by 
support vector machine (SVM), were retrieved from 
SNPs3D.36 Support Vector Machines (SVM) are super-
vised machine learning techniques that have been 
applied to numerous classification tasks to predict the 
class of an example based on training examples. The 
SNPs3D database provides an SVM profile score for 
the functional impact (deleterious or non deleterious) 
of an nsSNP as well as 3-dimensional protein struc-
ture of the impact of the nsSNP on protein stability. 
According to Yue et al36 the SVM used in SNPs3D is 
trained on monogenic disease data, thus deleterious 
is defined as “sufficiently damaging to protein func-
tion in vivo as to be consistent with a monogenic dis-
ease outcome”. A screenshot of a section of SNPs3D 
page for a gene is presented in Figure 1. The pages of 
the arsenic-annotated genes available in the SNPs3D 
database were the data source for extracting relevant 
data. The protein stability impacts in SNPs3D were i) 
Four classes of electrostatic interaction: reduction of 
charge–charge, charge–polar or polar–polar energy, 
or introduction of electrostatic repulsion; ii) three sol-
vation effects: burying of charge or polar groups, 
and reduction in non-polar area buried on folding; 
iii) and two terms representing steric strain: backbone 
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strain and over-packing; cavity formation (affecting van 
der Waals energy); iv) and loss of a disulfide bridge.

From SNPs3D, we extracted the Entrez Gene 
Identifier, the SNP Identifier, the Amino Acid 
Substitution and the SVM score computed for the 
sequence and structure profile models. The data-
set constructed consisted of 5,811 nsSNPs linked 
to 1,224 arsenic-annotated genes. Furthermore, a 
total of 8,992 nsSNP-induced substitutions (3,700 
deleterious, 5,292 non-deleterious) were linked 
to 1,872 protein isoforms in the National Center 

for Biotechnology Information (NCBI) Reference 
Sequence Database.37 The SVM scores observed for 
the substitutions ranged from -4.73 to 6.59 with 743 
unique scores (Fig. 2). Of the 3,700 nsSNP-predicted 
substitutions, there were 2,739  high confidence 
deleterious substitutions (SVM sequence profile 
score ,-0.5) linked to 745  genes, 1,785 nsSNPs 
and 1,094 protein isoforms. Furthermore, there were 
4,191  high confidence non-deleterious substitutions 
(SVM sequence profile score .0.5) linked to 
964 genes, 2,829 and 1,459 nsSNPs. A summary of 
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Figure 1. Screenshot of a SNPs3D page for a gene. The functional and structural impacts, molecular effect and frequency of non-synonymous SNPs associated 
with the protein isoforms (RefSeq accession) is documented on the page. The negative SVM score (value in red) indicates a deleterious substitution.

Figure 2. Plot of frequencies of unique Support Vector Machine (SVM) scores for dataset of non-synonymous SNPs linked to arsenic-annotated genes. 
The SVM score predicted for each nsSNP substitution was extracted from the SNPs3D page.
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the dataset is presented in Table 1. In order to facili-
tate selection of nsSNPs according to confidence of 
SVM score, we classed substitutions into categories 
with a 0.5 interval (Table 2).

Arsenic responsiveness based on 
substitution to or from cysteine residues
A total of 196 nsSNPs linked to 144  genes and 
225 protein isoforms were observed to cause substitu-
tions to cysteine residues. In the case of substitutions 
from cysteine residues, 92 nsSNPs linked to 79 genes 
and 122 protein isoforms were observed. In the protein 
isoforms analyzed, the substitutions to or from cysteine 

residues were restricted to the following six amino acid 
residues: Phenylalanine (F), Glycine (G), Arginine (R), 
Serine (S), Tryptophan (W) and Tyrosine (Y).

Four classes of nsSNPs were identified on the basis 
of significant deleterious and non-deleterious effects 
on protein function as well as SNP-associated residue 
changes to or from cysteine (Table 3). The 111 nsSNPs 
that resulted in non-deleterious substitutions to or 
from cysteine are candidates for evaluating increased 
or decreased responsiveness to arsenic, respectively 
(Supplementary Data). A set of nsSNPs that mutates 
the residue to or from cysteine with significant impact 
on protein function and structure (with agreement of 
both SVM scores for sequence and structure profiles) 
are presented in Table 4 and Table 5, respectively. All 
the identifiers for SNP are from the dbSNP and begin 
with “rs”.

Structural homology modeling
In SNPs3D, breakage of a disulfide bond is assigned 
to any mutation that replaces a cysteine residue in an 
S–S bond with a non-cysteine residue. Eight nsSNPs 
from 6  genes (9 protein isoforms) were identified 
to result in breakage of a disulfide bond (Table  6). 
The impact of these nsSNPs on protein stability has 
pointed us to potential regions of arsenic binding to 
vicinal (neigboring) cysteines. Since, we are interested 
in arsenic-induced skin cancer, we further analyzed the 

Table 1. Summary of datasets.

Dataset Count
Arsenic-annotated genes Retrieved  
from CTD 

1,604

Arsenic-annotated genes with nsSNPs  
in SNPs3D

1,224

Non-synonymous SNPs 5,811
Arsenic-annotated protein isoforms 1,872
Amino acid substitutions 8,992
Deleterious substitutions 3,700
Non-deleterious substitutions 5,292
High confidence deleterious substitutions* 2,739
High confidence non-deleterious  
substitutions**

4,191

SVM sequence profile score: *SVM ,-0.5; **SVM .0.5

Table 2. Distribution of SVM scores for nsSNP substitutions.

SVM score class* Non-deleterious Deleterious
Frequency Percent frequency Frequency Percent frequency

0.0–0.5 1083 20.46% 977 26.41%
0.5–1.0 1186 22.41% 831 22.46%
1.0–1.5 1170 22.11% 627 16.95%
1.5–2.0 826 15.61% 448 12.11%
2.0–2.5 560 10.58% 348 9.41%
2.5–3.0 246 4.65% 255 6.89%
3.0–3.5 126 2.38% 132 3.57%
3.5–4.0 49 0.93% 63 1.70%
4.0–4.5 25 0.47% 18 0.49%
4.5–5.0 12 0.23% 1 0.03%
5.0–5.5 2 0.04%
5.5–6.0 3 0.06%
6.0–6.5 3 0.06%
6.5–7.0 1 0.02%
Note: *Absolute values.
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Table 3. Categories of nsSNPs observed in analysis of 
arsenic-annotated genes.

Category Gene 
count

SNP 
count

Protein 
isoforms

From Cys, deleterious 45 53 67
From Cys, non-deleterious 36 39 58
To Cys, deleterious 101 130 145
To Cys, non-deleterious 63 72 108

Table 4. Candidate nsSNPs that increase protein’s arsenic responsiveness through amino acid change to cysteine.

Entrez 
gene

Gene 
symbol

nsSNP Protein 
isoform

Mutation SVM 
sequence 
score

SVM 
structure 
score

Impac on  
protein 
stability**

834 CASP1 3203613 NP_150635 S33C 2.76 1.33 PS
834 CASP1 3203613 NP_150634 S126C 2.36 1.33 PS
11200 CHEK2 28909981 NP_665861 S471C 2.20 1.13 PS; HBL
834 CASP1 3203613 NP_150636 S33C 1.99 1.33 PS
8644 AKR1C3 35575889 NP_003730 R170C 1.82 1.59
55713 ZNF334 41283032 NP_955473 R237C 1.71 1.08 PS
55713 ZNF334 41283032 NP_060572 R275C 1.68 1.08 PS
6389 SDHA 1041948 NP_004159 S346C 1.62 0.92 HBL
2877 GPX2 17880492 NP_002074 R146C 1.61 0.84 SBL
983 CDC2 8755 NP_203698 R59C 1.53 1.22 PS
10935 PRDX3 11554910 NP_054817 Y53C 1.19 0.99 PS
10935 PRDX3 11554910 NP_006784 Y71C 1.14 0.99 PS
5265 SERPINA1 1802962 NP_000286 S325C 0.88 1.37 PS
5265 SERPINA1 1802962 NP_001002235 S325C 0.88 1.37 PS
5265 SERPINA1 1802962 NP_001002236 S325C 0.88 1.37 PS
983 CDC2 8755 NP_001777 R59C 0.81 1.22 PS
4233 MET 34589476 NP_000236 R970C 0.77 0.99 PS

*Abbreviations: PS, On the protein surface; HBL, hydrogen bond lost; SBL, saltbridge lost.

stratum corneum chymotryptic serine protease KLK7 
(kallikrein-related peptidase 7) for annotated structural 
consequences of SNP marker for reduced responsive-
ness, the effects of arsenic on expression as well as dis-
tribution of cysteine residues. A screenshot of SNPs3D 
page on structural impact of nsSNP rs17855561 is 
presented in Figure 3. The nsSNP rs17855561 in both 
KLK7 protein isoforms is predicted to result in break-
age of a disulfide bond and potentially reducing respon-
siveness to arsenic by changing the Cys in position 226 
to Tryptophan (W) (Table 6). Furthermore, according 
to data extracted from Bae et  al41 by CTD curators, 
sodium arsenite results in decreased expression of 
KLK7 mRNA in the virally immortalized human kera-
tinocyte cell line RHEK-1. Structures of KLK7 from 
protein sequences NP_005037 and NP_644806 were 
generated using high resolution X-ray crystal structure 

of human kallikrein (PDB ID: 2QXI). Structural homol-
ogy models of wild type KLK7 structure revealed six 
cysteine pairs 36–165; 55–71; 137–239; 144–211; 176–
190 and 201–226 (Fig. 4).

Construction of sentence collection from 
PubMed abstracts on arsenicals
In order to facilitate further studies on these identified 
genes, single nucleotide polymorphisms and other 
aspects of arsenic, we have segmented 16,057 PubMed 
abstracts into a collection of 108,235  sentences. 
The abstracts were selected based on annotation of 
the abstract in PubMed with at least one of the Medical 
Subject Heading (MeSH) terms: arsenic or arsenicals. 
An Arsenic Sentence Database that facilitates query 
of the sentences with keywords as well as retrieval of 
sentences for specific PubMed abstracts is available 
at http://compbio.jsums.edu/arsenic_pubmed.

The utility of the database was demonstrated by a 
search for “GSTO1” the symbol for gene encoding 
the enzyme glutathione S-transferase omega 1 which 
catalyzes the monomethyl arsenate reduction, the rate-
limiting step for inorganic arsenic biotransformation 
in humans.42,43 A cluster of 80 sentences containing the 
symbol were retrieved from the database. Furthermore, 
a subset of the GSTO1 sentences and containing the 
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word “polymorphism” allowed us to identify 13 sen-
tences from 7 PubMed abstracts (Table  7). These 
abstracts were on genetic variation observed in GSTO1 
and other genes involved in arsenic metabolism.

Discussion
Since amino acid substitutions to or from cysteine 
residues attributed to SNPs might be a determinant 
of responsiveness of target proteins to arsenic and 

possibly arsenic-induced skin cancer, we undertook to 
prioritize genes and SNPs to understand keratinocyte 
carcinogenesis resulting from arsenic exposure. Our 
analysis of the functional and structural impacts of 
5,811 nsSNPs associated with 1,224 putative arse-
nic responsive genes identified i) 196 candidate 
nsSNPs for increased arsenic responsiveness by 
substitutions to cysteine residues for 144 genes; ii) 
92 candidate nsSNP for decreased arsenic respon-
siveness by substitutions from cysteine residues 
for 79 genes; iii) nsSNP rs17855561 that results in 
breakage of a disulfide bond, as candidate marker 
for reduced arsenic responsiveness in KLK7, a 
secreted serine protease that has been demonstrated 
to participate in normal shedding of the skin44 and 
iv) 6 pairs of vicinal cysteines in KLK7 protein.

The bioinformatics analysis pipeline identified 
genes with evidence for potential SNP-induced 
increased or decreased responsiveness to arsenic. 
To the best of our knowledge this report is the first 
large-scale analysis of SNP-induced substitutions 
evaluating the abundance of cysteines in putative 
protein targets of arsenic. A recent large-scale analysis 
of the curation of chemical-gene relationships from 

Table 5. Candidate nsSNPs that reduce protein’s arsenic responsiveness through amino acid change from cysteine.

Entrez 
gene

Gene 
symbol

nsSNP Protein  
isoform

Mutation SVM  
sequence 
score

SVM  
structure 
score

Impact  
on protein 
stability*

23660 ZKSCAN5 28411998 NP_055384 C579W -3.63 -0.84 BP; OP
23660 ZKSCAN5 28411998 NP_659570 C579W -3.63 -0.84 BP; OP
7465 WEE1 17854721 NP_003381 C379R -3.62 -1.18
9753 ZSCAN12 2232432 NP_001034732 C332R -3.59 -1.11 ESR
9446 GSTO1 45529437 NP_004823 C32Y -3.53 -1.20 OP
5650 KLK7 17855561 NP_644806 C226W -2.44 -1.20 OP; BDB
5650 KLK7 17855561 NP_005037 C226W -2.43 -1.20 OP; BDB
5879 RAC1 7673785 NP_008839 C157R -2.06 -1.24 BC; OP
3945 LDHB 3575 NP_002291 C294Y -1.83 -1.05 BP; OP
5879 RAC1 7673785 NP_061485 C176R -1.77 -1.52 OP
5265 SERPINA1 8350 NP_000286 C256W -1.76 -0.51 BP
5265 SERPINA1 8350 NP_001002235 C256W -1.76 -0.51 BP
5265 SERPINA1 8350 NP_001002236 C256W -1.76 -0.51 BP
2868 GRK4 35824641 NP_892027 C215R -1.66 -0.79 ESR; OP
2868 GRK4 35824641 NP_001004057 C215R -1.55 -0.79 ESR; OP
835 CASP2 11551881 NP_116764 C370F -1.54 -0.99 OP
2868 GRK4 35824641 NP_001004056 C183R -1.51 -0.80 ESR; OP
10465 PPIH 11550298 NP_006338 C131R -1.28 -1.41 BC; ESR; OP
3107 HLA-C 41563216 NP_002108 C125R -1.15 -1.28 BC; OP; BDB
3107 HLA-C 41543517 NP_002108 C188W -0.81 -0.86 BP; OP; BDB

*Abbreviations: BP, buriedpolar; BC, buriedcharged; BDB, breakage of a disulfide bond; ESR, electrostaticrepulsion; OP, overpacking; SBL, saltbridge lost.

Table 6. Non-synonymous SNPs that predict potential 
region of arsenic-binding to vicinal cysteines.

Gene  
symbol

nsSNP Protein  
isoform

Mutation

FST 1127760 NP_006341 C239S
FST 1127760 NP_037541 C239S
HLA-C 41563216 NP_002108 C125R
HLA-C 41543517 NP_002108 C188W
HLA-C 41562916 NP_002108 C188F
IL4 4986964 NP_000580 C27R
IL4 4986964 NP_758858 C27R
KLK7 17855561 NP_005037 C226W
KLK7 17855561 NP_644806 C226W
TFRC 9852079 NP_003225 C363W
TLR4 2770145 NP_612564 C306W
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biomedical literature has provided over 1,400 genes 
whose activity were perturbed by arsenic in a vari-
ety of conditions and/or cell types.35 Our analysis 
extends the curation efforts by CTD by integrating 
SNP data that could help understand the molecular 
mechanisms of arsenic action in diverse cell types 
including keratinocytes.

We have used the structural impact annotation 
“breakage of a disulfide bond” as an evidence of 
the presence of potential arsenic-binding vicinal 
cysteines in a protein sequence. The function and 
structure of proteins are often determined by Cys 
residues since many proteins folding are depen-
dent on disulfide bonds.33 Arsenic binding to target 
protein depends on the number, accessibility and 
relative positioning of Cys residues.45 Furthermore, 
the ability for trivalent arsenicals to bind to thiol 
groups of biomolecules is an accepted mechanism 
for being more toxic than pentavalent arsenicals. The 
mRNA from the tissue serine protease KLK7 that 
was identified by our pipeline was down-regulated 
by arsenic in human keratinocyte cell line RHEK-1.41 
The proposed functions of KLK7 in the normal skin 
physiology include i) activating interleukin 1 beta 
(IL-1b) and ii) basal permeability barrier function 
of stratum corneum by degrading two major lipid 
processing enzymes beta-glucocerebrosidase and 
acidic sphingomyelinase.44,46,47 The crucial function 

of KLK7  in normal skin function and potential 
perturbation by arsenic justifies a need to determine 
the potential energy of each Cys residues in KLK7 
combined with their proximity to enzyme active sites 
or other functional regions of the protein. We hypoth-
esize that arsenic binds to at least one of the 6 pairs of 
vicinal cysteines resulting in conformational changes 
that down regulate KLK7 function. Our hypothesis 
for KLK7 can be tested using similar experiments 
conducted to determine the role of the 8 Cys residues 
in arsenic binding for human beta-tubulin.32 In 
this investigation, we have verified the sequence-
based prediction of vicinal cysteine with structural 
homology modeling.

The functional implications of SNP modified 
polypeptides of KLK7 warrant further investigation. 
Our text mining approach using the gene symbol 
GSTO1 as a search term in a collection of over 
100,000  sentences from over 16,000 PubMed 
abstracts retrieved publications that could guide 
further research on the impact of arsenic as well as 
SNP-induced polymorphism on KLK7 function. In 
the case of the two enzymes Glutathione S-transferase 
omega 1 and omega 2 (GSTO1 and GSTO2) that 
catalyze monomethyl arsenate reduction, variant 
allozymes have been shown to degrade more rapidly 
than their respective wild type allozymes.48 Similar 
protein degradation experiments for KLK7, could 
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Figure 3. Screenshot of predicted structural impact of nsSNP rs17855561 on human kallikrein-7 preproprotein (NP_005037). The nsSNP results in steric 
strain (over-packing) and breakage of a disulfide bond by changing Cysteine (C) residue in position 226 to a Tryptophan (W).
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unravel the impact of molecular differences result-
ing in susceptibility of arsenic-induced skin cancer 
in arsenicosis-endemic populations.

Conclusions
Single nucleotide polymorphisms (SNPs) can alter 
the physico-chemical properties of proteins. The 
susceptibility to arsenic-induced diseases as well 
as response to arsenic-based drugs has been linked 
to single nucleotide polymorphisms. Our analysis 
identified non-synonymous SNPs that could be 
used to evaluate responsiveness of a protein target 
to arsenic. Furthermore, an epidermal expressed 
serine protease KLK7 with crucial function in 
normal skin physiology was prioritized on the basis 

of abundance of vicinal cysteines to understand 
arsenic-induced keratinocyte carcinogenesis.
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