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Abstract. Epigenetic mechanisms such as DNA methylation have been implicated in a number of diseases including cancer,
heart disease, autoimmune disorders, and neurodegenerative diseases. While it is recognized that DNA methylation is tissue-
specific, a limitation for many studies is the ability to sample the tissue of interest, which is why there is a need for a proxy
tissue such as blood, that is reflective of the methylation state of the target tissue. In the last decade, DNA methylation has been
utilized in the design of epigenetic clocks, which aim to predict an individual’s biological age based on an algorithmically
defined set of CpGs. A number of studies have found associations between disease and/or disease risk with increased biological
age, adding weight to the theory of increased biological age being linked with disease processes. Hence, this review takes
a closer look at the utility of DNA methylation as a biomarker in aging and disease, with a particular focus on Alzheimer’s
disease.
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INTRODUCTION

Dementia is an umbrella term that encom-
passes a wide variety of neurodegenerative disorders
including vascular dementia, Lewy Body dementia,
frontotemporal dementia, and Alzheimer’s disease
(AD), which is the most common form and
accounts for 60-80% of all dementia cases [1].
AD is characterized by cortical atrophy [2] and
thinning [3], aggregation of hyperphosphorylated
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microtubule-associated tau protein (MAPT) resulting
in intracellular neurofibrillary tangles, and accumu-
lation of extracellular amyloid-� (A�) plaques [4].
Age is regarded as the most important risk factor for
neurodegenerative diseases, including AD [5], and
as the worldwide population ages, there will be an
increase in the prevalence of dementia and AD. In
addition to age, there are several accepted modifiable
and non-modifiable risk factors for AD [6, 7]. The
most common modifiable factors include physical
inactivity, smoking, excessive alcohol consumption,
air pollution, head injury, infrequent social contact,
lower educational attainment, obesity, hypertension,
diabetes, depression, and hearing impairment [8].
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Non-modifiable risk factors include sex, family his-
tory, and genetics, most notable being variation in
the Apolipoprotein E (APOE) gene [7]. Currently,
several biomarkers for dementia are available that
may aid in the diagnosis of possible/probable AD [9].
Cerebrospinal fluid (CSF) obtained via lumbar punc-
ture and brain imaging measures, such as positron
emission tomography (PET), computed tomography
(CT), and magnetic resonance imaging (MRI), have
been the focus in the search for robust and easily
accessible biomarkers for AD [10]. These methods
focus on the measurement of proteins important in
the disease process including tau and A�. Notably,
while CSF and brain imaging markers have shown
good predictive accuracy, particularly in preclinical
studies, they are not ideal for use as routine clinical
biomarkers due to their cost, level of invasiveness, and
need for interpretation of results by specialists [11].
Even though the aforementioned biomarkers are use-
ful in assisting in the diagnosis of AD, a definitive
diagnosis of AD can only be made on biopsy post-
mortem [2]. Currently, there is an urgent need for an
easily obtainable, less invasive, cost-effective routine
biomarker, that is specific and sensitive to predicting
disease progression.

EPIGENETICS AND DNA METHYLATION

Epigenetic modifications are heritable phenotypic
changes that do not alter the DNA sequence [12].
These modifications fall into one of three cat-
egories; histone modification, non-coding RNAs,
DNA hydroxymethylation, and DNA methylation
[12]. Epigenetic modifications regulate gene expres-
sion patterns by altering DNA accessibility and
chromatin structure [13]. Epigenetic processes are
a natural occurrence and have critical roles in
cellular processes such as gene regulation, chro-
mosome stability, X chromosome inactivation, and
genomic imprinting [14]. This review will focus
on the most well-studied epigenetic mechanism
[15], DNA methylation. Approximately 28 million
cytosine-phosphate-guanine (CpG) dinucleotides are
distributed unevenly throughout the mammalian
genome [16]. These CpG dinucleotides are the target
of an epigenetic modification known as DNA methy-
lation, which involves the transfer of a methyl group
from S-adenosyl-L-methionine (SAM) onto the 5’
position of a cytosine ring, resulting in the formation
of 5-methylcytosine (5mC). The covalent attachment
of the methyl group is catalyzed by one of several

members belonging to the enzyme family known
as DNA methyltransferases (DNMT). DNA methy-
lation is essential in several processes, including
silencing retroviral elements, regulation of tissue-
specific gene expression, genomic imprinting, and
X chromosome inactivation. It has also been found
that DNA methylation exerts different influences on
gene activities in different genomic regions depend-
ing on the underlying genetic sequence. Within
intergenic regions, one of the main functions of
DNA methylation is to repress the expression of
genetic elements that might be potentially unfavor-
able. These elements, when expressed, may have
harmful consequences, with their replication and
insertion potentially leading to gene disruption and
DNA mutation [17]. Varying degrees of methyla-
tion at genes and regulatory sequences can determine
the level and integrity of gene expression [16].
Importantly, unmethylated CpGs are not distributed
randomly throughout the genome, but are clustered
in formations called CpG islands (CGIs), usually
located in the promoter regions of genes [18]. CGIs
are usually unmethylated in normal cells regardless of
their expression levels and gene silencing is promoted
post-methylation [16]. Due to their location, they are
able to regulate gene expression through silencing of
transcription [19]. DNA transcription can be affected
in two ways; firstly, methylation of CGIs can impair
transcription factors binding and, secondly, methyl-
CpG-binding proteins bind to the methylated DNA
sequences [20].

Assessment of DNA methylation in
neurodegenerative diseases

As stated above, DNA methylation regulates
tissue-specific gene expression, complicating its
exploration in neurodegenerative diseases, due to the
requirement of brain tissue. Brain tissue is only avail-
able postmortem making it infeasible for large-scale
or longitudinal studies, where repeated measure-
ments are required. Additionally, the heterogeneity
of brain tissue poses a barrier in terms of analy-
sis as it is widely known that different cells possess
different patterns of methylation [21]. Importantly,
postmortem brain tissue only offers an insight into the
end stage of processes associated with AD and may
not reflect the processes involved in disease develop-
ment.

To address these concerns, proxy tissues such as
blood or saliva have been investigated to determine
if their level of DNA methylation is reflective of
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the methylation state of the tissue of interest, i.e.,
the brain. Specifically, are the changes observed in
the tissue of interest truly reflected in peripheral
tissues. Early studies sought to clarify this, with a
number demonstrating conservation of DNA methy-
lation across different tissues, using several different
methodologies for the assessment of DNA methyla-
tion, including the widely used Illumina 450k array,
which offered the most comprehensive coverage of
the methylome available at the time (now super-
seded by the Illumina EPIC 850k array). A study
by Horvath et al. [22] showed evidence for con-
servation of DNA methylation patterns across four
brain regions and blood tissue, with a correlation
of r = 0.85-0.91, using publicly available genome-
wide methylation data. This finding was supported
in a study assessing 80 matched blood and post-
mortem brain tissues, which found that subset of
probes on the Illumina 450K array were signifi-
cantly correlated across tissues [21]. Walton et al.
[23] have likewise published on the 450K array,
reporting that 7.9% of CpGs were strongly correlated
between tissues. Further, through the development
of the BECon (Blood-Brain Epigenetic Concor-
dance) tool, Edgar and colleagues [24] demonstrated
that 9.7% of CpGs from the Illumina 450K array
were correlated between tissues. When assessing
data from methylated DNA immunoprecipitation
sequencing (MeDIP-seq) a high correlation between
blood and the cortex and cerebellum (r = 0.82 and
0.77, respectively) was observed in three individ-
uals [25]. More recently, Braun [26] investigated
correlations between brain, saliva, blood, and buccal
samples obtained from patients undergoing neuro-
surgical resection for epilepsy, and found that DNA
methylation in the brain was most highly correlated
with saliva (r = 0.90), followed by blood (r = 0.86)
and buccal cells (r = 0.85).

While evidence exists for conservation of DNA
methylation between tissues, contradicting stud-
ies reporting no significant associations have been
published. Specifically, a recent study reported no
evidence of a correlation between DNA methy-
lation in peripheral blood CD4 + lymphocytes and
prefrontal cortex samples [27]. Currently, the evi-
dence is unclear, and the relationship between DNA
methylation in the brain and blood requires additional
characterization. However, it has been suggested that
a suitable peripheral biomarker does not necessarily
need to mirror disease-associated changes observed
in the brain and could independently reflect disease
responses in the periphery.

DNA METHYLATION AND
ALZHEIMER’S DISEASE

Global DNA methylation

DNA methylation can be classified as either global
or gene-specific. Global methylation refers to the
average percentage methylation across the entire
genome, whereas gene-specific DNA methylation
refers to the average percentage methylation within a
specific gene. Global methylation or overall methy-
lation of the entire genome provides an over-arching
picture of methylation status in a sample [28]. How-
ever, this measurement should be used with caution
as differences in global methylation can result from
disease state, tissue collection site, sex, and age [29].

In a 2009 twin study, monozygotic twins dis-
cordant for AD were found to have differences in
global methylation in the anterior temporal cortex
and the superior front gyrus, where the twin with
AD had significantly decreased levels of methyla-
tion in those two areas of the brain [30]. While both
twins had similar levels of education and worked in
similar fields, the twin diagnosed with AD worked
extensively with pesticides, suggesting this environ-
mental exposure may have contributed to epigenetic
changes and the development of AD [30]. Several
epidemiological studies have reported phenotypic
discordance in monozygotic twins, with the older
sibling typically reflecting more discordance for age-
related diseases [31, 32]. This is hypothesized to be
due to an increased rate of loss of epigenetic archi-
tecture, or epigenetic drift, which is described as
an increase in DNA methylation errors across the
genome during aging [33]. Similarly, several other
studies have demonstrated that older monozygotic
twins have greater global differences in DNA methy-
lation patterns when compared to younger twin pairs
[34–36].

Since it was recognized that DNA methylation
could be cell and region-specific, researchers began
utilizing immunohistochemical methods to assess
brain regions typically affected by AD. In individ-
uals with AD, significant decreases in global DNA
methylation have been observed in regions of the
brain typically affected by AD, such as the entorhi-
nal cortex [37]. In contrast, within the cerebellum, a
region known to be spared in AD, differences in those
with AD were not observed [37]. However, in the
frontal cortex, a significant site of synaptic loss in AD
[38], individuals with AD have been reported to have
higher levels of DNA methylation when compared to
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those classified as cognitively unimpaired. Additional
studies have reported increased global DNA methy-
lation levels in the middle frontal gyrus and frontal
cortex, in individuals diagnosed with AD compared
to those without [39, 40].

The hippocampus is involved in memory forma-
tion and is one of the first regions of brain to display
atrophy in AD [41]. Similar to the results outlined
above, studies assessing DNA methylation in the hip-
pocampus have been inconclusive with higher [42]
and lower [43] levels of DNA methylation observed in
those diagnosed with AD. Further, DNA methylation
is reported to differ depending on the hippocam-
pal subregion and cell type [43]. Similarly, Phipps
et al. [44] demonstrated that pyramidal neurons, a
particularly vulnerable cell type in AD, but not calre-
tinin interneurons or microglia, have decreased DNA
methylation in AD cases compared to controls.

As well as interrogating DNA methylation within
brain regions, peripheral blood cells are becoming
more common due to the ease of sample access.
In 2015, Di Francesco et al. [45] evaluated global
DNA methylation in peripheral blood mononuclear
cells in AD patients and cognitively unimpaired con-
trols, finding a significant increase in the global
methylation levels of AD patients [45]. Addition-
ally, higher global DNA methylation was observed
in the presence of the APOE �4 allele, highlighting
the importance of combining epigenetic and genetic
markers of AD [45]. In a study by Bjornsson et
al. [46], peripheral blood was sampled from com-
munity cohorts to assess time-dependent changes in
global DNA methylation over 11-16 years. Changes
in DNA methylation over time varied between indi-
viduals, with both increases and decreases observed
[46]. These findings are consistent with those pub-
lished in studies of cancer, where hypomethylation
(decreased levels of methylation) and hypermethyla-
tion (increased levels of methylation) work in tandem
to activate and suppress oncogenes and tumor sup-
pressor genes, respectively and concurrently [47]. It
is possible that a similar interplay of gene-specific
hypo- and hyper-methylation may be employed dur-
ing AD progression.

Gene-specific DNA methylation

Initially, studies of gene-specific DNA methylation
in AD focused on genes that encode the key proteins
implicated in AD pathology, such as A� precursor
protein (APP), presenilin 1 (PSEN1), microtubule
associated protein (MAPT), and apolipoprotein E

(APOE). The APOE �4 allele is the strongest genetic
risk factor for AD. The ApoE protein functions as
the primary cholesterol carrier for the maintenance,
growth and repair of neurons and is typically highly
expressed in the central nervous system [48]. Wang et
al. [49] reported hypermethylation of the APOE pro-
moter region in the prefrontal cortex of AD patients,
which is in line with observations of lower levels
of circulating ApoE in AD patients [50]. Similarly,
Karlsson [51] found an association between demen-
tia and AD, and increased methylation levels at the
APOE promoter. However, a number of studies have
reported no significant difference in the methylation
of APOE as a result of AD [52–55].

The analysis of DNA methylation in genes encod-
ing other important proteins in AD pathogenesis
(APP, PSEN1, BACE1, and MAPT), has likewise
returned varied results. The level of DNA methyla-
tion of these genes within brain [52, 56] and blood
[55, 57, 58] samples, was observed in several studies
to be associated with AD diagnosis [52, 55, 58], and
in other studies not associated [52, 56, 57]. Another
commonly targeted gene is BDNF, which encodes the
brain-derived neurotrophic factor (BDNF), a protein
that is commonly found in decreased levels in AD
and is involved in neuronal differentiation, plastic-
ity, and survival [59]. Significantly higher levels of
DNA methylation in the BDNF promoter in periph-
eral samples have been reported in patients with
AD [60–62]. However, studies of peripheral blood
samples have also found no significant differences
in the methylation of BDNF between AD and con-
trols [55, 63]. Neuroinflammation is known to occur
during the development of AD [64], and as such
the methylation of genes involved in this biological
process have been investigated with regard to AD.
Nicolia et al. [65] found evidence of hypomethyla-
tion of the promoter region of Interleukin-1� (IL-1�)
in the early stages of AD, which increased in later
stages of the disease, matching the DNA methylation
of control participants. Conversely, the same study
observed decreasing levels of Interleukin-6 (IL-6)
DNA methylation with the progression of the dis-
ease [65]. Neuroplasticity and memory formation are
also known to be compromised in AD, and a gene
thought to be involved in these processes, Sorbin
and SH3 Domain Containing 3 (SORBS3), has been
found to be hypermethylated in the brains of AD
patients [66] and mouse models of AD [67]. Finally,
the assessment of genes involved in the process of
DNA methylation (DNMT1, DNMT3A, DNMT3B,
MTHFR) has revealed associations with AD diagno-
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sis [49]; however, this finding was not replicated in a
subsequent study [57].

The development of large-scale DNA methylation
arrays has allowed for the unbiased assess-
ment of site-specific DNA methylation across the
epigenome. An epigenome-wide association analysis
of longitudinal peripheral blood samples identified
differentially methylated genetic loci, near known
AD risk genes including BDNF, BIN1, and APOC1,
to be associated with the diagnosis of mild cogni-
tive impairment and AD in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort [62]. More
recently, an additional study in the ADNI cohort iden-
tified a CpG site cg00386386, mapped to MED22, as
associated with cognitive decline as measured by the
Pre-Alzheimer’s Cognitive Composite (PACC) [68].

DNA METHYLATION DYNAMICS
DURING AGING

Epigenetic factors, when compared to genetic fac-
tors, could be more appropriate in explaining the
observed anomalies in LOAD, as DNA methylation
patterns are altered during development. In partic-
ular, the epigenome is susceptible to deregulation
during early embryonal and neonatal development,
puberty and most notably, old age [69], the greatest
risk factor for AD. Numerous studies have aimed to
categorize the cellular and molecular characteristics
of aging [70]. Epigenetic alterations represent one
of the most crucial mechanisms driving the deterio-
ration of cellular functions, which can be observed
during aging and age-related diseases [71]. Specifi-
cally, changes in the methylome have been observed
to occur over time and are thought to be one of the
driving factors for the development of age-related dis-
eases [72]. Epigenetic changes either occur randomly
or are driven by internal and external influences [71].
This may explain why aging patterns can be vastly
different between genetically identical individuals,
such as identical twins, or between animals with simi-
lar genetic makeups [34, 73]. Studies in mammals and
single cellular models (e.g., Saccharomyces cerve-
visiae) reveal that the epigenome suffers a progressive
loss of architecture during aging, resulting in changes
in chromosomal architecture, genomic integrity, and
gene expression patterns [71].

Epigenetic drift

DNA methylation changes with age, regardless of
the input of maintenance DNA methyltransferases.

It has been hypothesized that a complex interplay
of genetic, environmental (diet and lifestyle), and
stochastic factors (defects in the transmission of
epigenetic information through cell division) result
in epigenetic drift over time, with the contribution
of these factors increasing with age [74]. Epige-
netic drift is non-directional, with both hyper- and
hypomethylation being observed. Further, it is non-
uniform across the genome and variable within
individuals of the same age [75]. While epigenetic
drift is known to result in unpredictable differences
between the methylomes of aging individuals, some
changes involve specific genetic regions and are
age-associated. This indicates that DNA methylation
changes are not purely random but have a role in the
aging process.

Age-associated differentially methylated
positions/regions

The development of high throughput arrays,
such as the Illumina 27k, 450k, and EPIC arrays,
has provided an impetus to studying age-specific
DNA methylation patterns. These investigations
reveal that epigenetic drift appears to be restricted
to specific sites in the genome (referred to
as age-associated differentially methylated posi-
tions/regions; a-DMPs/a-DMRs) and is not purely
random [74]. Specific age-related regulatory mech-
anisms are thought to be involved in age-associated
hyper- and hypomethylation of sites detected in
a number of epigenome-wide association studies
(EWAS) [74]. A study by Bormann et al., in
human skin, found that methylation deteriorated
with age, with hypermethylated and hypomethy-
lated sites trending towards an intermediate (50%)
level of methylation, with a smaller dynamic range
[76]. While age-associated, tissue-specific changes in
DNA methylation have been identified [77, 78], con-
sistent tissue-type independent a-DMPs have been
reported in multiple tissues and cell types [22, 79],
and in stem cells [77]. Notably, the causes and
functional consequences of age-related changes in
DNA methylation, and their relationship to aging,
longevity, and disease, are yet undermined [79]. It
has been speculated that the identification of age-
associated DNA methylation differences between
diverse groups of individuals could aid in determin-
ing the epigenetic basis of aging and age-related
health disparities [80]. Recently, these age-associated
changes have been leveraged to aid in the develop-
ment of DNA methylation clocks.
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EPIGENETIC AGE AND DNA
METHYLATION CLOCKS

There is great potential for the use of DNA methy-
lation clocks as biomarkers for disease risk and
predictors of life expectancy, morbidity, and mor-
tality. Biological aging, like chronological aging,
is associated with disease, morbidity and mortality,
health, and cognitive and physical decline. Indeed,
the varied progression in biological age may allow
for the prediction of the aspects of aging outlined
above. Measures of biological aging are in develop-
ment for use in the prediction of disease onset, risk,
and progression [81]. Several potential biomarkers
of aging, including telomere length, metabolomic,
transcriptomic and proteomic markers, and of interest
here, DNA methylation, have been proposed [70, 82].
While many biomarkers only capture certain aspects
of aging, an increasing body of literature suggests
that manifestations of aging are due to epigenetic
processes [83]. The “epigenetic clock” is a DNA
methylation-based estimate of biological age and has
been strongly correlated with chronological age. A
measure of age acceleration can be calculated based
on the difference between an individual’s biological
age (estimated) and chronological age (actual) [84].
Accelerated aging has been linked to an increase in
the pathological hallmarks of AD, reduced cogni-
tive and physical fitness and an increase in all-cause
mortality.

Approximately 28 million CpG sites exist within
the human genome, usually located in clusters of
hundreds or thousands, known as CpG islands.
Epigenetic clocks have been developed using a
select number of these CpG sites, widely distributed
throughout the genome. An epigenetic clock, or a
DNA methylation clock, is built from DNA methyla-
tion markers strongly correlated with chronological
age (r ≥ 0.8) [82]. The process of building a DNA
methylation clock utilizes supervised machine learn-
ing methods such as lasso (least absolute shrinkage
and selection operator), elastic net or ridge and train-
ing against chronological age. During this process,
an informative and predictive set of CpGs is iden-
tified [81]. Newer generation epigenetic clocks are
specifically trained on age-related biological and
health-related measures.

Broadly, epigenetic clocks have been classified
as first-generation chronological DNA methylation
(DNAm) clocks or second-generation biological
DNAm clocks. Chronological DNAm clocks reflect
age-related DNAm changes that are common among

individuals and reflect the intrinsic aging process. In a
pioneering study, Bocklandt et al. [85] demonstrated
that DNA methylation levels from saliva could gener-
ate an accurate age prediction. Since then, numerous
DNAm clocks have been developed that accurately
estimate the chronological age of a sample based on
DNA methylation levels within the blood and other
tissue and cell types (Table 1) [83]. The DNAm clocks
developed by Horvath [83] and Hannum [100] were
built using similar regression models, are correlated
with age and have the ability to predict all-cause
mortality. The most well validated of the DNAm
clocks is the Horvath clock, which is predictive in
all cell types, and encompasses 353 CpGs all weakly
correlated with age but when combined are highly
predictive of chronological age [83]. The Hannum
clock is also well correlated with age, comprising
of 71 CpGs sites; however, while works in blood, it
requires further calibration for use in other tissues.
More recently, the Zhang DNAm clock was devel-
oped correcting for cellular composition so it can be
accurately used in blood and non-blood samples [86].
Currently there is a movement towards the develop-
ment of clocks encompassing a smaller number of
CpG sites to minimize cost/increase time efficiency
[87]. However, these estimations have been demon-
strated to be unreliable when used for multiple tissues
[82], and have high average errors in their age predic-
tions when compared to clocks with a greater number
of CpG sites [74, 88–90].

Biological DNAm clocks, considered “second gen-
eration” clocks, are reflective of DNAm changes
that vary between individuals and may highlight
age-related phenotypes and external factors that
may influence age-related DNAm [91]. Specifically,
these clocks have been developed against age-related
biological processes such as mitotic activity (e.g.,
epiTOC [92]; MiAge [93]), clinical measures of
phenotypic aging (PhenoAge [94]), telomere length
(DNAmTL [95]), plasma biomarkers and physiolog-
ical and stress factors (GrimAge [96]), and all-cause
mortality (Zhang [97]). Finally, the Dunedin Pace of
Ageing clock, has incorporated the rate of change of
18 blood chemistry and organ system function mea-
surements into the calculation of its score to improve
predictive utility [98].

Age acceleration and health and disease

As outlined above, and summarized in Table 1,
DNAm clocks have been developed using several dif-
ferent training models and as such reflect different
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Table 1
Summary of DNA methylation clocks

Clock Gen. No. of
CpGs

Age
Range

Platform/Array Method Tissue n Model Outcome Ref.

DNAm-age First 3 18-70 Illumina Infinium
HumanMethyla-
tion
27K

Bisulphite
conversion (EZ
DNA Methylation
Kit; Zymo)

Saliva 68 Lasso penalized
regression

Association with
chronological age

[85]

Epigenetic
aging
signature

First 19 16-72 Illumina Infinium
HumanMethyla-
tion
27K

Used publicly
available data -
mixed

Mixed 130 Linear regression
model

Association with
chronological age

[88]

Passage
Number

First 6 - Illumina Infinium
HumanMethyla-
tion
27K

Bisulphite
conversion (EZ
DNA Methylation
Kit; Zymo)

Dermal fibroblasts
& mesenchymal
stem cells

51 Pavlidis Template
Matching

Track passage number in
fibroblast cell culture

[88]

EVOLV2
epigenetic
marker of age

First 1 9-99 Illumina Infinium
HumanMethyla-
tion
450K

Bisulphite
conversion (EZ
DNA Methylation
Gold Kit; Zymo)

Blood 501 Spearman
correlation

Association with
chronological age

[147]

Florath age
predictor

First 17 50-75 Illumina Infinium
HumanMethyla-
tion
450K

Bisulphite
conversion (EZ
DNA Methylation
Kit; Zymo)

Blood 400 Linear regression
model

Association with
chronological age

[148]

DNAm-age First 353 0-101 Illumina Infinium
HumanMethyla-
tion 27K &
450K

Used publicly
available data -
mixed

Mixed 8,000 Elastic Net
regression

Association with
chronological age,
age-related disease, all-cause
mortality, cancer,
neurodegenerative
phenotypes

[83]

DNAm-age First 71 19-101 Illumina Infinium
HumanMethyla-
tion
450K

Bisulphite
conversion

Blood 656 Elastic Net
(combination of
Lasso and ridge
regression)

Association with
chronological age and
all-cause mortality

[101]

DNAm-age First 3 0-78 Illumina Infinium
HumanMethyla-
tion 27K &
450K

EpiTect Bisulphite
Kit; QIAGEN

Blood 575 Multivariate linear
model

Association with
chronological age,
clinical/lifestyle factors,
telomere length, related
disease phenotypes

[149]

(Continued)
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Table 1
(Continued)

Clock Gen. No. of
CpGs

Age
Range

Platform/Array Method Tissue n Model Outcome Ref.

DNAm-age First 99 19-101 Illumina Infinium
HumanMethyla-
tion 27K &
450K

EpiTect Bisulphite
Kit; QIAGEN

Blood 656 Multivariate linear
model

Association with
chronological age,
clinical/lifestyle factors,
telomere length, related
disease phenotypes

[149]

DNAm-age First 102 0-78 Illumina Infinium
HumanMethyla-
tion 27K &
450K

EpiTect Bisulphite
Kit; QIAGEN

Blood 575 Multivariate linear
model

Association with
chronological age,
clinical/lifestyle factors,
telomere length, related
disease phenotypes

[149]

Huang age
predictor

First 5 9-75 Pyrosequencing EpiTect Bisulphite
Kit; QIAGEN

Blood 89 Linear regression
model

Association with
chronological age – for
forensic use

[90]

Zbiec-
Piekarska age
predictor

First 5 2-75 Pyrosequencing EpiTect Bisulphite
Kit; QIAGEN

Blood 420 Multivariate linear
model

Association with
chronological age – for
forensic use

[89]

Buccal Cell
Signature

First 5 1-85 Pyrosequencing Bisulphite
conversion (EZ
DNA Methylation
Kit; Zymo)

Buccal Cells 55 Multivariate linear
model

Epigenetic age predictor [150]

Cho Model 2 First 5 20-74 Pyrosequencing Bisulphite
Conversion (EZ
DNA Methylation
- Lightning ™
Kit; Zymo)

Blood 100 Multivariate linear
model

Association with
chronological age

[151]

DNAm-age
from Saliva

First 7 18-65 Illumina Infinium
HumanMethyla-
tion 450K &
SNaPshot

Bisulfite
Conversion

Saliva 54 Linear regression
model

Enabled age prediction in
saliva with high accuracy

[152]

Skin and
Blood

First 391 0-94 Illumina Infinium
HumanMethyla-
tion 450K &
EPIC

Used publicly
available data -
mixed

Mixed 896 Elastic Net
regression

Prediction of age [153]

Zhang age
predictor

First 514 2-104 Illumina Infinium
HumanMethyla-
tion 450K &
EPIC

Used publicly
available data -
mixed

Blood and Saliva 13,661 Elastic Net Association with
chronological age

[86]
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Zhang age
predictor

First 319,607 2-104 Illumina Infinium
HumanMethyla-
tion 450K &
EPIC

Used publicly
available data -
mixed

Blood and Saliva 13,661 Best Linear
Unbiased
Prediction

Association with
chronological age

[86]

PedBE Clock First 94 0-20 Illumina Infinium
HumanMethyla-
tion 450K &
EPIC

Used publicly
available data

Buccal epithelial
cells

1,721 Elastic Net Tool for measuring biological
age in children

[154]

DNAm-age First 5 19-70 SNaPShot Bisulphite
conversion
(Imprint™ DNA
Modification Kitl
Sigma-Aldrich)

Blood, saliva, and
buccal cells

448 Linear Regression Age prediction [155]

DNAm-age First 5 24-86 Bisulphite PCR Bisulphite
conversion (EZ
DNA Methylation
Gold Kit; Zymo)

Blood 51 Linear Regression Age prediction for forensic
use in deceased individuals

[156]

Blood-Bone-
Tooth Age
Prediction
Model

First 43 1-94 Sanger
Sequencing

Bisulphite
conversion (EZ
DNA Methylation
Gold Kit; Zymo)

Blood, bone, and
tooth

185 Multivariate linear
model

Age prediction for forensic
use in alive and deceased
individuals

[157]

PC Horvath 1
PC Horvath 2
PC Hannum
PC PhenoAge
PC GrimAge
PC DNAmTL

Second PCs
trained
on
78,464
CpGs

0-105
-0.3-
101
19-101
21-100
24-92
24-92

Illumina Infinium
HumanMethyla-
tion 450K & EPIC
& Elysium custom
array

Used publicly
available data -
mixed

Mixed 4,297
895
656
4,505
2,754
2,754

Principle
components and
elastic net
regression

PC clocks show reduced
technical noise allowing for
improved detection of clock
associations, intervention
effects and reliable
longitudinal tracking

[158]

Cortical
DNAm Clock

Second 347 1–104 Illumina Infinium
HumanMethyla-
tion 450K
array

Used publicly
available data -
mixed

Human cortex 1,397 Elastic Net
regression

Clock outperforms previously
reported clocks

[138]

Boroni Skin Second 2,266 18–95 Illumina Infinium
HumanMethyla-
tion EPIC
array

Used publicly
available data

Human skin 508 Elastic Net
regression

Skin specific DNAm age
predictor

[159]

epiTOC Second 385 19–101 Illumina Infinium
HumanMethyla-
tion 450K
array

Used publicly
available data

Blood 656 Linear regression
model

Association with mitotic age,
cancer

[92]

(Continued)
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Table 1
(Continued)

Clock Gen. No. of
CpGs

Age
Range

Platform/Array Method Tissue n Model Outcome Ref.

Epigenetic age
predictor

First 99 0–78 Illumin Infinium
HumanMethyla-
tion 27k
array

Lothian Birth
Cohorts 1921 and
1936

Blood 575 Cox linear
regression

Association with life
expectancy

[160]

Biological age
predictor

First 8 – Methylation-
sensitive
single-nucleotide
primer extension
(MS-SNuPE)

Used publicly
available data -
mixed

Blood 390 Multiple linear
regression

Simplified assay for
epigenetic age estimation

[161]

All-cause
mortality

Second 10 31–82 Illumina Infinium
HumanMethyla-
tion 450K
array

Bisulphite
conversion

Blood 1,000 Lasso penalized
regression

Association with all-cause
CVD, cancer, smoking
behavior

[97]

MiAge Second 286 – Illumina Infinium
HumanMethyla-
tion 450K
array

Used publicly
available data -
mixed

8 Cancer cell
types

4,020 Linear regression
model

Association with mitotic age,
cancer outcome and survival
prediction

[93]

DNAm
PhenoAge

Second 513 >20 Illumina Infinium
HumanMethyla-
tion 27K, 450K &
EPIC array

Used publicly
available data -
mixed

Blood 9,926 Cox penalized
regression

Association with all cause
and cause specific mortality,
telomere length, survival,
smoking status

[94]

DNAm
GrimAge

Second 1,030 - Illumina Infinium
HumanMethyla-
tion 450K & EPIC
array

Used publicly
available data -
mixed

Blood 1,731 Elastic Net, Cox
regression

Association with morbidity
and mortality, survival,
cognitive decline, telomere
length

[96]

DNAmTL Second 140 22-93 Illumina Infinium
HumanMethyla-
tion 450K & EPIC
array

Used publicly
available data -
mixed

Blood 2,256 Multiple
regression models

Association with
chronological age, telomere
length, morbidity and
mortality, physical function

[95]
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DunedinPoAm Second 140 - Illumina Infinium
HumanMethyla-
tion 450K & EPIC
array

Used publicly
available data -
mixed

Blood 1,037 Elastic Net Blood DNAm measure
sensitive to variation in pace
of biological aging in
individuals of same age

[98]

epiTOC2 Second 163 19-101 Illumina Inifinium
HumanMethyla-
tion 450K, Whole
genome bisulfite
sequencing,
RNA-SeqV2

Used publicly
available data -
mixed

Mixed >2,000 Formal dynamic
model

Prediction of increased
mitotic rate in cancer

[162]

Hypoclock Second - - Whole genome
bisulfite
sequencing,
Illumina Inifinium
HumanMethyla-
tion
450K

Used publicly
available data -
mixed

Mixed - Gaussian mixture
model

DNA methylation loss in
late-replicating domains
linked to mitotic cell division

[163]

DunedinPACE Second 173 Illumina Infinium
HumanMethyla-
tion 450K & EPIC
array

The Dunedin
Study, the
Understanding
Society Study, the
Normative Ageing
Study, the
Framingham
Heart Study & the
Environmental
Risk Longitudinal
Twin Study

Mixed 1,037 Elastic Net
regression

Associated with morbidity,
mortality, and disability.
Novel blood biomarker of the
age of pacing for gerontology
and geroscience.

[164]

GrimAge 2 Second 1,030 Illumina Infinium
HumanMethyla-
tion 450K & EPIC
array

Used publicly
available data -
mixed

Mixed 13,399 Elastic Net, Cox
regression

GrimAge 2 outperforms
GrimAge and is an epigenetic
biomarker of mortality and
morbidity risk

[165]
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aspects of disease and the aging process. It has been
hypothesized that DNA methylation age (DNAm age)
measures the cumulative effect of an epigenetic main-
tenance system [83]. Studies have demonstrated that
DNAm age of blood predicts all-cause mortality in
later life, which suggests that methylation age is a
process that reflects aging [99]. However, it is more
probable that the epigenetic clock is a result of the
emergent properties of the epigenome [83]. Several
studies have proven the usefulness of using age accel-
eration as a measure for healthy biological aging. For
example, semi-supercentenarians and their offspring
have a lower biological age compared to chrono-
logical age, or age deceleration, when compared to
age-matched controls [100]. Similarly, women have
shown to have less significant age acceleration com-
pared to men, which is in line with their representative
longer lifespans [101, 102].

Moreover, a number of studies have demonstrated
the utility of age acceleration as a predictor of disease
risk and mortality. A study assessing four longitudinal
cohorts identified an association between all-cause
mortality and increased epigenetic age in blood [103].
Further, a number of genetic syndromes have been
reported to accelerate biological aging, such as Down
syndrome [104] and Werner’s syndrome [105]. There
is ample evidence of premature biological aging in
those with viral infections such as HIV [106, 107],
individuals with decreased mental and physical fit-
ness [108], body mass index and metabolic disease
[109], non-alcoholic steatohepatitis [110], obesity
[111], insomnia [112], and extreme stress [113].
Additionally, individuals with neurodegenerative dis-
eases such as Parkinson’s disease [114], Huntington’s
disease [115], and AD [116] show accelerated biolog-
ical aging.

METHYLATION AGE AND AD
PHENOTYPES

The limited research which has been undertaken to
explore the relationship between DNAm age and AD
related phenotypes has yielded inconsistent findings.
The association between DNAm age and AD pheno-
types has primarily been characterized by measures
of DNA methylation within the blood [108, 117–
125], while only one study investigated brain samples
[116].

Further, research has focused largely on “first
generation” estimates of DNAm age, specifically
the Horvath and Hannum clocks, which have been

trained to approximate chronological age. Age accel-
eration, as estimated using the Horvath DNAm age
clock in blood, has been associated with lower
cognition cross-sectionally [108, 116], longitudinal
cognitive decline [122, 123], and reduced white mat-
ter integrity. Additionally, Horvath age acceleration
in prefrontal cortex samples has been associated with
diffuse and neuritic A� plaques and higher global
A� burden [116]. Despite these findings, a number
of studies have also reported no significant associ-
ation between Horvath DNAm age acceleration and
cognitive functioning or brain volume, both cross-
sectionally [117, 121] and longitudinally [108, 121].
Likewise, inconsistent findings have been reported
when assessing DNAm age using the Hannum esti-
mation. Hannum age acceleration has been associated
with smaller hippocampal volume [125], but con-
versely, increased brain connectivity and decreased
mean diffusivity (improved axonal integrity) in MRI
quantified studies [117]. Additionally, several stud-
ies have failed to identify any significant associations
between Hannum age acceleration and cognitive
functioning [117, 121] or longitudinal cognitive
decline [121, 124].

The association between “second generation” bio-
logical DNAm age estimates and AD phenotypes has
also been explored, although less broadly. GrimAge
acceleration has been associated with lower cognitive
ability, accelerated cognitive decline, lower intelli-
gence test scores, lower white matter and grey matter
volumes, total brain volume, and higher volume of
white matter hyperintensities [119]. However, both
DNAm telomere length and the Pace of Ageing score
were not associated with cognitive decline [120].
Inconsistency in the current literature underscores the
need for further investigation of DNA methylation
before it can be considered as a robust biomarker for
aging-related disease such as AD.

CONSIDERATIONS WHEN UTILIZING
DNA METHYLATION

The “tissue issue”

The studies outlined above, and summarized in
Table 2, have presented DNA methylation findings
from a range of tissue and cell types. As is evident
in Table 2, there has been a trend towards large-scale
discovery studies (EWAS) using peripheral blood and
a shift away from studies exploring global methyla-
tion. When exploring these findings, it is important to
consider that DNA methylation levels at specific CpG
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Table 2
Summary of DNA methylation studies in AD

Phenotype Tissue Sample size Age range /
mean age

Platform Gene/s Outcome Ref.

AD Frontal cortex 1 case - Southern blot Targeted Hypomethylation of APP gene in AD [166]
AD Brain tissue 72 (48 case, 24

control)
52-93 Immunohistochemistry Targeted genes Methylation levels of PP2AC decreased

in AD-affected brain regions
[167]

AD Brain tissue 125 17 weeks-104 MethyLight PCR Targeted genes AD-associated differences in SORBS3
and S100A2, DNA methylation
dynamically regulated throughout life
span

[66]

AD Prefrontal cortex
and lymphocytes

34 brain (24 AD,
10 control); 10
lymphocytes (6
AD, 4 control)

AD 81, control
80

MALDI-TOF mass
spectrometry

Targeted genes Age-specific epigenetic drift in AD,
significant interindividual epigenetic
variability in PSEN1, APOE, MTHFR,
DNMT1

[49]

AD Temporal
neocortex

2 (1 case, 1
control)

Case 76, control
79

Immunohistochemistry Global Reduced levels of DNA methylation in
the temporal neocortex of the AD twin

[30]

AD Frontal cortex &
hippocampus

66 (43 case, 26
control)

46-93 MALDI-TOF Targeted genes No differences in percentage methylation
between cases and controls

[56]

AD Entorhinal cortex
layer II

40 (20 case, 20
control)

60-97 Immunohistochemistry Global DNA methylation status in entorhinal
cortex layer II neurons is highly
diminished in AD

[37]

AD Brain tissue 6 - Bisulfite sequencing Targeted genes No associations of APP with AD [168]
AD Peripheral blood 83 (43 case, 38

control)
55-87 Quantitative

bisulfite-PCR
pyrosequencing

Targeted
repetitive
elements

LINE-1 methylation increased in AD
compared to controls

[169]

AD Frontal cortex 20 (10 case, 10
control)

Case 70.60,
control 70.20

RT-PCR Targeted genes
& global
methylation

Hypomethylation of COX-2 and NF-κB
promoter in AD, hypermethylation of
BDNF and CREB, increased global
methylation in AD

[40]

AD Frontal cortex 50 discovery (12
case, 12 control);
26 validation (13
case, 13 control)

Case 78.2,
control 78.3

Illumina Infinium
HumanMethylation
27K array

EWAS Hypomethylation of TMEM59 in AD [170]

AD Peripheral blood
mononuclear cells

66 (33 case, 33
control)

Case 79.47,
control 79.98

Methylation-specific
primer RT-PCR

Targeted genes Decreased DNA methylation at FAAH
gene promoter

[171]

AD Peripheral blood
mononuclear cells

60 (32 case, 28
control)

- Methylation-specific
primer RT-PCR

Targeted genes Promoter methylation of PIN1 in AD
increased compared to controls

[172]

(Continued)
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Table 2
(Continued)

Phenotype Tissue Sample size Age range /
mean age

Platform Gene/s Outcome Ref.

AD Entorhinal,
auditory cortices,
hippocampus, and
blood

99 (44 case, 55
control)

Case blood
75.47, case brain
80.1, control
blood 72.09,
control brain
78.5

Mass spectrometry Targeted genes No AD-associated differences in
SNAP25 promotor DNA methylation

[173]

AD Entorhinal,
auditory cortices,
hippocampus, and
blood

22 brain (12 case,
10 control);
84 blood (36 case,
48 control)

Case blood 75.4,
case brain 81,
control blood
72.1, control
brain 78.5

MALDI-TOF mass
spectrometry

Targeted genes Brain SORL1 DNA methylation was
significantly higher in brain than in blood
in both cases and controls

[174]

AD Brain and blood 57 blood (34 case,
23 control); 22
brain (12 case, 10
control)

Blood – case
75.47, control
72.09; Brain –
case 81, control
78.50

Mass spectrometry Targeted genes No differences in DNA methylation
between cases and controls

[175]

AD Brain tissue 391 (170 cases,
221 control)

Case 78.68,
control 76.59

Pyrosequencing Targeted genes Hypermethylation in APP, MAPT and
GSK3B in sporadic AD, which is more
prominent in APOE �4

[52]

AD Hippocampus 20 (10 case, 10
control)

Case 75.36,
control 77.91

Immunohistochemistry Global Decreased global DNA methylation in
the hippocampus of AD

[43]

Preclinical
AD/AD

Hippocampus/
parahippocampus
and cerebellum

17 (12 case, 5
control)

Preclinical 89.4,
AD 77.4, control
84.6

Immunohistochemistry Global Altered DNA methylation patterns in
vulnerable brain regions prior to onset of
clinical symptoms

[42]

AD Entorhinal,
auditory cortices,
hippocampus

22 (12 case, 10
control)

Case 81, control
78.5-

Mass spectrometry Targeted genes No AD-associated differences in
promoter methylation

[176]

AD Peripheral blood 55 (27 case, 28
control)

Case 79.47,
control 79.98

Fluorescence-based
RT-PCR

Targeted genes Decreased DNA methylation at the
5-LOX gene promoter in AD compared
to controls

[177]

AD Gray matter 58 (26 case, 26
control)

51-98 High content analysis
method

Global
methylation

Increase in global 5mC and 5hmC levels
in AD

[39]

AD Brain tissue and
peripheral blood

166 (122 brain
discovery, 57
blood; 144 brain
replication)

67-105 Illumina Infinium
HumanMethylation
450K array

Targeted genes ANK1 differentially methylated and
associated with neuropathology in the
entorhinal cortex

[54]
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AD Brain tissue 825 (708
discovery, 117
test)

>53 Illumina Infinium
HumanMethylation
450K array

EWAS 71 CpGs associated with AD pathology,
11 validated in independent cohort

[53]

AD Middle frontal
gyrus and middle
temporal gyrus

58 (29 case, 29
control)

54-98 Immunohistochemistry Global Global hypermethylation in AD
compared to controls

[39]

AD Peripheral blood 58 (28 case, 30
control)

Case 77.4,
control 74.9

Methylation-sensitive
high-resolution
melting quantitative
assay

Global No differences in LINE-1 methylation
between AD and controls

[178]

AD Hippocampus 20 (discovery 15
case, 5 control;
validation – 25
case, 25 control)

Discovery – case
82.4, control
82.4; Validation
case 79.1,
control 64.2

Illumina Infinium
HumanMethylation
27K array

EWAS AD-associated hypermethylation of
promoter region of DUSP22

[179]

AD Dorsolateral
pre-frontal cortex

740 Mean age at
death 88

Illumina Infinium
HumanMethylation
450K array

Targeted genes 16 CpGs associated with neuritic
amyloid plaques from 11 AD
susceptibility gene regions

[180]

AD Dorsolateral
prefrontal cortex

740 66-108.3 Illumina Infinium
HumanMethylation
450K array

Targeted genes Brain DNA methylation in 5 AD-risk
loci is associated with pathological AD

[181]

AD Entorhinal cortex
and cerebellum

26 (14 case, 12
control)

38-99 Immunohistochemistry
& ELISA

Global No differences in global methylation
between AD and controls

[182]

AD Hippocampus 42 (30 case, 12
control)

19-98 Bisulfite cloning
sequencing further
measured by 5hmC

Targeted genes TREM2 methylation was significantly
higher in AD compared to controls

[183]

AD Peripheral blood 260 (80 case, 160
control)

65-96 Melting Curve
Analysis-Methylation
Assay (MCA-Meth)

Targeted genes UQCRC1 was highly methylated in AD,
UQCRC1 was significantly associated
with gene expression of NRD1, DDT,
CTSB and CTSD

[184]

AD Superior temporal
gyrus

390 Cohort 1 – case
85.4, control
77.6; Cohort 2 –
case 88.0,
control 82.1;
Cohort 3 – case
78.4, control
84.1

Illumina Infinium
HumanMethylation
450K array &
pyrosequencing

Targeted genes AD-associated hypermethylation in CpG
site 289bp upstream of TREM2 in 3
independent cohorts

[185]

(Continued)
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Table 2
(Continued)

Phenotype Tissue Sample size Age range /
mean age

Platform Gene/s Outcome Ref.

AD Superior temporal
gyrus

68 (34 case, 34
control)

66–92 Illumina Infinium
HumanMethylation
450K array

EWAS Identified 479 DMRs, with the majority
being hypermethylated

[186]

AD Inferior temporal
gyrus

20 (15 case, 5
control)

58–91 Immunohistochemistry Targeted Epigenetic dysregulation occurs in
astrocytes and neurofilament-positive
pyramidal neurons in AD

[44]

MCI Peripheral blood 96 (48 MCI, 48
control)

– Bisulfite
Pyrosequencing, Dual
Luciferase Assays

Targeted genes Hypermethylation of OPRK1 in females,
OPRM1 differential methylation
associated with MCI

[187]

AD Discovery -
Prefrontal cortex
& superior
temporal gyrus;
test - mixed

1004 (147
discovery, 857
test)

64–95 Illumina Infinium
HumanMethylation
450K array

Targeted genes Increased DNA methylation associated
with AD neuropathology

[188]

AD Frontal cortex,
temporal cortex,
& occipital cortex

159 (91 case, 68
control)

18–97 Illumina Infinium
HumanMethylation
450k array

EWAS Identified numerous genes with
cell-type-specific methylation signatures

[189]

AD Peripheral blood 84 (45 case, 39
control)

AD 73.56,
control 75.33

Illumina Infinium
HumanMethylation
EPIC array

EWAS Hypomethylation of B3GALT4 and
ZADH2 associated with the level of A�
and tau in CSF

[190]

AD Cortical pyramidal
layer

32 (18 case, 14
control)

AD 77.22,
control 70.29

Illumina Infinium
HumanMethylation
450k array

EWAS Differential hypermethylation in several
genomic regions, including HOXA3,
GSTP1, CXXC1-3 & BIN1

[191]

AD Brain tissue 51 (40 case, 11
control)

41–99 Illumina Infinium
HumanMethylation
450k array & whole
genome bisulfite
sequencing

EWAS Hypomethylation of KIAA0566
associated with age and presence of NFT
pathology

[192]

AD Prefrontal cortex 101 54–105 Bisulfite padlock
probe technique

EWAS 1224 differentially methylated enhancer
regions identified, enhancement in the
DCSAML1 gene which targets BACE1

[193]

AD Hippocampus,
entorhinal cortex,
dorsolateral
pre-frontal cortex
and cerebellum

73 (24 case, 48
control)

53–80 Illumina Infinium
HumanMethylation
450k array

EWAS 858 differentially methylated sites,
annotated to 772 genes, some novel.
Sites were overrepresented in AD
genetic risk loci

[194]
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AD Brain tissue 60 Mean age
entorhinal cortex
77.7, superior
temporal gyrus
77.6, cerebellum
78.4

Bisulfite
pyrosequencing

Targeted genes DNA hypermethylation in the entorhinal
cortex

[195]

AD Middle temporal
gyrus and
peripheral blood

80 brain tissue (45
case, 35 control);
96 peripheral
blood (54 AD
converters and 42
non-converters)

– Illumina Infinium
HumanMethylation
450K array

Targeted genes Differential methylation in OXT
promoter in brain of AD, same region in
blood associated with converters

[196]

AD Brain tissue 296 (96 discovery,
104 validation
cohort 1, 96
validation 2)

Discovery 81.2;
Validation 1
84.9; Validation
2 85

Illumina Infinium
HumanMethylation
450K array

EWAS WNT5B differentially methylated; two
differentially methylated regions in
ANK1 & ARID5B;

[197]

AD Brain Tissue 706 88 (mean age) Illumina Infinium
HumanMethylation
450K array

Targeted genes 249 & 115 variably methylated probes
associated with Amyloid-� &
Neurofibrillary tangles – most not
overlapping with DMPs

[198]

AD Hippocampus 38 (26 case, 12
control)

19-98 Illumina Infinium
HumanMethylation
450K array

Targeted genes 118 differentially methylated positions
identified in AD hippocampus

[199]

AD Dorsolateral
pre-frontal cortex
&

1221 41-104 Illumina Infinium
HumanMethylation
EPIC array

EWAS 334 DMPs associated with AD pathology [200]

MCI/AD Peripheral blood 284 (AD 86, MCI
109, control 89)

AD 76.8, MCI
75.1, Control
73.8

Illumina Infinium
HumanMethylation
EPIC array and
pyrosequencing

EWAS 12 AD-associated hypermethylated
probes identified in HOXB6 and
validated by pyrosequencing

[201]

AD Peripheral blood 653 AD 77.19, MCI
72.58, 76.23

Illumina Infinium
HumanMethylation
EPIC array

EWAS Identified differentially methylated loci
were near brain/neurodegeneration
related genes

[62]

AD Brain tissue 134 (72 case, 62
control)

AD 81.00,
Control 80.50

Illumina Infinium
HumanMethylation
EPIC array

EWAS 22 DMPs and 30 DMRs associated with
pathology, novel DMPs and DMRs
discovered, replicated in independent
cohort

[202]

(Continued)
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Table 2
(Continued)

Phenotype Tissue Sample size Age range /
mean age

Platform Gene/s Outcome Ref.

AD Peripheral blood 96 test & 96
replication (48
case, 48 control),
95 non-AD
dementia

Test - AD 72.7,
control 71.9;
Replication –
AD 70.5, control
70.2

Sanger Sequencing Targeted genes CR1, CLU & PICALM methylation
significantly lower in AD

[203]

AD Prefrontal cortex,
entorhinal cortex,
and superior
temporal gyrus

37 (29 case, 18
control)

AD 84.2, control
88.4

Illumina Infinium
HumanMethylation
450k array

EWAS Psychosis-associated epigenetic changes
in a number of loci, genes enriched in
schizophrenia-associated genetic and
epigenetic variants

[204]

AD Peripheral blood
and brain tissue

50636 (7540 case,
43096 control)

– Illumina Infinium
HumanMethylation
450k array

Summary-
based
EWAS

152 CpGs AD-associated genes
corresponding to 113 genes. 10 genes
had significant probes in both blood and
AD-specific analyses

[205]

AD Peripheral blood 452 56–80 Illumina Infinium
HumanMethylation
450K array

EWAS 238 gene network identified, including
APP and several novel candidate genes

[206]

AD Brain tissue 2116 (1455
discovery, 661
replication)

>65 Illumina Infinium
HumanMethylation
450K array

Meta-analysis
of six EWAS

220 CpGs associated with
neuropathology, annotated to 121 genes,
84 novel

[207]

AD Middle temporal
gyrus

296 (198 case, 98
control)

AD 83.8, control
82.2

Illumina Infinium
HumanMethylation
450K array

EWAS 5246 CpGs and 832 DMRs, some overlap
with previous EWAS, some novel

[208]



L. Milicic et al. / DNA Methylation as an AD Biomarker 493

Table 3
Advantages and Disadvantages of commonly used cell types

Advantages Disadvantages

Organ of interest
(e.g., brain)

Desired organ/tissue/cell directly
targeted

Need for highly trained professionals,
Relatively expensive compared to other methods,
Difficult/not feasible to obtain samples in some instances, e.g.,
brain tissue,
Heterogenous in cellular makeup,
Cell numbers change in disease

Whole blood Minimally invasive, cost-effective, Heterogenous in cellular makeup,
Minimally trained professionals required, Some special training required i.e., phlebotomy,
Repeated sampling possible (longitudinal
disease/intervention/treatment tracking
possible)

Potentially peripheral to target of interest

Buccal cells Non-invasive, Potential to be low in cellular material,
Cost-effective, Contamination from food, beverages, kissing, etc.,
Easily obtained – no specially trained
professionals required

Heterogenous in cellular makeup,
Potentially peripheral to target of interest

Mixed Ability to pool multiple publicly
available sources of data for increased
sample size and analytical power

Heterogenous cell types makes interpretation of results difficult
– can only draw general conclusions.
Methods of sample collection/sample handling/bisulfite
conversion/data collection may differ between datasets –
increased variance due to large number of uncontrollable
variables

Saliva Non-invasive and convenient sampling,
repeated sampling possible, easy
collection without the need for special
training

Potential to be low in cellular material, contamination from
food, beverages, etc.,
Heterogenous in cellular makeup,
Potentially peripheral to target of interest

Skin Relatively non-invasive in some
instances, i.e., skin scrapings,
Experiments can be replicated in vitro
with high fidelity

Potentially invasive, i.e., in the instance of skin biopsies,
Heterogenous in cellular makeup,
Skin is very exposed to environmental stimuli such as the sun
(UV exposure) and pollution

Stem Cells Embryonic stem cells (ESCs) can be
cultured indefinitely without
compromising pluripotency,
Can be differentiated into different cell
types in vitro,
Homogenous

Induced pluripotent stem cell (iPSCs) reprogramming is long,
complex and inefficient,
Non-CpG methylation needs to be considered when using
ESCs,
Low passage human iPSCs retain ‘epigenetic memory’, which
biases characteristics of tissue of origin,
Non-physiological methylation patterns introduced in vitro

sites typically cannot be compared across different
tissue types and DNA methylation at many CpG sites
is only weakly correlated across tissue types such
as the brain (cortex and cerebellum) and blood [21].
Tissue specificity is one of the most common uncer-
tainties that arise when using peripheral tissues in
association studies of DNA methylation. When con-
sidering the utility of DNA methylation markers in
either the target organ, the brain, or the periphery, the
blood, it is important to be aware of the challenges
posed by sample types (Table 3).

When assessing brain tissues in epigenetic clock
analysis of neurodegenerative or neuropsychiatric
disorders, limited information is available regard-
ing the specific brain regions and cell types present,
which has been reflected in differences in epige-

netic patterns and gene function [25]. However, with
regard to cell-type specific methylation, computa-
tional methods, such as the Houseman [126] (cellular
proportion estimates in blood) and Guintivano [127]
(neuronal and non-neuronal proportion estimates)
methods have been developed to address the issues
resulting from varying cell-type proportions between
individuals [127, 128]. The gold standard for con-
trolling for cell proportions is using sorted cell
populations such as laser capture microdissection or
fluorescence-activated cell sorting; however, these
are relatively expensive options and hard to achieve
logistically in large scale studies. Importantly, brain
tissue is typically obtained postmortem, which needs
to be considered when interpreting data [129]. Specif-
ically, are epigenetic patterns observed post-mortem
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consequence of the disease process itself, rather
than causal? Additionally, detected epigenetic sig-
nals could be due to the cause of death, tissue pH
and the premortem agonal state [130]. Careful study
design via targeted validation employing cell sorting
within the tissue of interest can help isolate cell type-
specific changes, resulting in a clearer explanation
of observed biological effects, such as which epige-
netic markers mediate risk for disease or associate
with a phenotype. Characterizing and exploring the
effects of cellular heterogeneity is a crucial step in the
analytical pathway of methylome-wide DNAm data
in heterogenous tissues, especially peripheral blood,
thus we recommend that it not be overlooked. Moving
forward, more research focus needs to be placed on
cross-tissue study designs to identify DMPs/DMRs
common across two or more cell types such as brain
tissue and peripheral blood to uncover common cor-
relations. If the aforementioned limitations can be
overcome, the next major issue is sample availability
and the capacity to undertake appropriately pow-
ered studies to detect associations, which may be
subtle.

Conversely, sampling of peripheral tissue offers
many advantages over target tissues, such as ease of
access, large sample sizes, replication opportunities
and longitudinal sampling, both prior to disease onset
and during treatments and/or interventions. However,
as with brain samples, several limitations need to be
considered when performing and interpreting analy-
ses utilizing DNA methylation results from peripheral
blood. In addition to tissue specificity, cellular het-
erogeneity is a significant potential confounder of
quantifying DNA methylation levels in the blood
and should be considered when interpreting results.
Whole blood is composed of many different cell
types, including neutrophils, lymphocytes, mono-
cytes, eosinophils and others, and the proportions of
these cell types can be influenced by numerous factors
such as bacterial or viral infections, inflammation,
diet, stress, medication, and environmental exposures
[131]. There is an increasing number of studies utiliz-
ing peripheral DNA methylation; however, very few
take into consideration the proportions of different
cell types, and thus do not control for them in analy-
ses, which likely drives some observed associations
or masks potential differences between groups [132].

There is currently little evidence to suggest that
AD-related epigenetic modifications in the brain
are reflected in the periphery [133]. Several studies
have measured DNA methylation in specific brain
regions and in blood; however, only a few studies

reported changes in both tissues, which are spec-
ulated to be driven by underlying genetic repeats
within the C9orf72 gene [134–136]. While a periph-
eral biomarker, such as one identifiable in blood,
has been proposed as a useful surrogate marker to
monitor disease status in major organs or systems, it
could independently reflect disease processes in the
periphery and be important in disease tracking and
prognosis.

Underestimation of age in epigenetic clocks

Several studies have now reported an underestima-
tion of age [137–140], with deviations in biological
age from chronological age particularly noticeable
in the higher age brackets. This observation is likely
due to several contributing factors. One hypothesized
factor contributing to an underestimation of age is the
saturation of methylation sites, where large propor-
tions of sites are approaching the lower (0%) and
upper (100%) limits of methylation, caused by epi-
genetic drift in aging individuals [141]. Dhingra et
al. [139] speculate that differences in results between
epigenetic clocks within the same cohort are likely
caused by missing probes between arrays, irrespec-
tive of probe imputation procedures leading to an
underestimation of age. Additionally, survivorship
bias, a type of selection bias, may be driving the
underestimation of age, particularly in cohorts with
relatively high mean age. Individuals with a negative
age acceleration are maintained within the sample,
and those with a positive age acceleration, are not
present within the sample, leading to a skewed cohort.
The underlying populations on which the clocks are
trained are also an important factor to consider when
interpreting results. For example, the Hannum and
Horvath clocks were trained on chronological age and
given their overall high accuracy in estimating age,
they are likely not ideal estimators of biological age.
A clock that is capable of predicting chronological
age perfectly would contain no information on varia-
tion in biological age at an individual level [16]. For
this reason, clocks such as the PhenoAge clock, which
were trained on age-related and disease phenotypes
in combination with chronological age, are preferred
when investigating biological age more directly. Fur-
ther, DNAm age estimates may be susceptible to a
ceiling effect, where a plateau is observable. The
Horvath clock requires an age transformation past a
certain age threshold, indicating that the relationship
between chronological age and estimated age is not
linear and, past a certain age, estimates need to be
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treated differently [83]. Recently machine learning
and deep learning approaches have been employed
in an attempt to mitigate shortfalls such as the ones
mentioned here, and have observed more accurate
age predictions for older individuals than the original
clocks [142].

CONCLUSION

DNA methylation has been implicated in a num-
ber of diseases in the last decade including, cancer
[143], heart disease [144], autoimmune disorders
[145], and neurodegenerative diseases [146]. Many
studies, leveraging both global and site specific CpG
DNA methylation, have provided evidence for age-
associated changes in DNA methylation. However,
more recently, clusters of CpG sites whose DNA
methylation status provide an accurate measure of
chronological age have been identified. Together
these sites provide the foundation for epigenetic
clocks. Although initially, the clock’s main purpose
was to serve as a biomarker of chronological age,
there is growing evidence suggesting that epigenetic
clocks may have value as biomarkers of biological
age. Emerging research supports the idea that age
and age-associated diseases or phenotypes are char-
acterized by increased age acceleration in comparison
to healthy individuals. Consequently, research focus
has been placed on epigenetic clocks as biomarkers to
detect aging and aging-associated diseases. The util-
ity of peripheral blood as a biomarker of diseases in
specific organs is often questioned, given cells in the
periphery may not accurately capture and reflect more
central disease processes. However, a good peripheral
biomarker does not have to mirror disease-associated
changes in the brain. Rather, it could represent a co-
occurring peripheral response to central pathology.
Despite its limitations, peripheral blood remains the
most obvious surrogate tissue for epigenetic studies.
DNA methylation is a highly promising biomarker
for AD disease-associated pathology. Further inves-
tigation of its association with disease trajectories
will be essential in identifying individuals at risk of
age-related diseases, thus optimizing treatment and
intervention strategies.
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Almgren M, Almqvist C, McRae AF, Marioni RE, Ingels-
son E, Visscher PM, Deary IJ, Lind L, Morris T, Beck
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Larsen MJ, Schwämmle V, Christensen K, Christiansen L,
Tan Q (2020) A genome-wide integrative association study
of DNA methylation and gene expression data and later
life cognitive functioning in monozygotic twins. Front
Neurosci 14, 233.

[207] Smith RG, Pishva E, Shireby G, Smith AR, Roubroeks
JAY, Hannon E, Wheildon G, Mastroeni D, Gasparoni
G, Riemenschneider M, Giese A, Sharp AJ, Schalkwyk
L, Haroutunian V, Viechtbauer W, van den Hove DLA,
Weedon M, Brokaw D, Francis PT, Thomas AJ, Love
S, Morgan K, Walter J, Coleman PD, Bennett DA, De
Jager PL, Mill J, Lunnon K (2021) A meta-analysis of
epigenome-wide association studies in Alzheimer’s dis-
ease highlights novel differentially methylated loci across
cortex. Nat Commun 12, 3517.

[208] Piras IS, Brokaw D, Kong Y, Weisenberger DJ, Krate J,
Delvaux E, Mahurkar S, Blattler A, Siegmund KD, Sue
L, Serrano GE, Beach TG, Laird PW, Huentelman MJ,
Coleman PD (2023) Integrated DNA methylation/RNA
profiling in middle temporal gyrus of Alzheimer’s disease.
Cell Mol Neurobiol, doi: 10.1007/s10571-022-01307-3.


