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Abstract

Background

Clostridium difficile infection (CDI) is a significant nosocomial infection worldwide, that

recurs in as many as 35% of infections. Risk of CDI recurrence varies by ribotype, which

also vary in sporulation and germination rates. Whether sporulation/germination mediate

risk of recurrence and effectiveness of treatment of recurring CDI remains unclear. We aim

to assess the role of sporulation/germination patterns on risk of recurrence, and the relative

effectiveness of the recommended tapered/pulsing regimens using an in silico model.

Methods

We created a compartmental in-host mathematical model of CDI, composed of vegetative

cells, toxins, and spores, to explore whether sporulation and germination have an impact on

recurrence rates. We also simulated the effectiveness of three tapered/pulsed vancomycin

regimens by ribotype.

Results

Simulations underscored the importance of sporulation/germination patterns in determining

pathogenicity and transmission. All recommended regimens for recurring CDI tested were

effective in reducing risk of an additional recurrence. Most modified regimens were still

effective even after reducing the duration or dosage of vancomycin. However, the effective-

ness of treatment varied by ribotype.

Conclusion

Current CDI vancomycin regimen for treating recurrent cases should be studied further to

better balance associated risks and benefits.
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Introduction

Clostridium difficile is an anaerobic, spore-forming, Gram-positive bacillus associated with the

toxin-mediated intestinal disease known as C. difficile infection (CDI)[1, 2]. Over the last two

decades, CDI morbidity and mortality has increased in all five continents [3]. CDI treatment

mostly involves a course of oral metronidazole or vancomycin [4, 5]. Recurrence, defined as a

subsequent CDI within 8 weeks following resolution of the initial episode [6], occurs in 5–35%

of patients following appropriate treatment [7–9].

C. difficile spores are resistant to therapy, so those remaining after treatment can germinate

and lead to recurrence [10]. Ribotypes with higher sporulation rates, for example ribotype 027,

are associated with higher rates of recurrence [11, 12]. Similarly, strains with high germination

efficiency are associated with severe and recurrent CDI [13, 14].

In order to encourage spores to germinate and become vulnerable to therapy, tapering or

pulsing of oral vancomycin is recommended for treating recurrent—particularly repeated

recurrent—CDI [4]. The regimen also allows the microbiota to recover [15, 16]. Although clin-

ical trials show tapered/pulsed vancomycin treatments are more effective at reducing CDI

recurrence than the standard longer and higher doses [16], no controlled data exist evaluating

the relative effectiveness of specific tapering and pulsing regimens [17].

Mathematical models provide a method for comparing the relative effectiveness of different

regimens in the absence of a controlled trial. We present a mathematical model to simulate the

levels of spores and vegetative cells within the CDI host by the four most common ribotypes in

the U.S. [18]. Using this in silico model, we compared the importance of C. difficile sporulation/

germination patterns in selected ribotypes, and estimated the contribution of sporulation/germi-

nation patterns to observed differences in CDI recurrence rates. In addition, we evaluated the

effectiveness of current tapered/pulsed vancomycin regimens for recurring CDI by ribotype.

Methods

Deterministic ordinary differential equation (ODE) model

We developed a compartmental in-host mathematical model for CDI patients, composed of

the major parts of the bacteria’s life cycle within the human host. As our purpose was to evalu-

ate CDI recurrence, our model simulated and measured: number of vegetative cells (C), germi-

nating spores (Spl), non-germinating spores (Spd), and toxin (T) per mL of gut contents per

day. We note that under optimal circumstances almost all spores may germinate and hence

are not technically ‘non-germinating,’ but for ease of presentation we use ‘non-germinating’ to

designate spores that do not germinate under the gut conditions simulated here.

Our model is described with the following equations:

dC
dt
¼ kC 1 �

C3

Cap3

� �

þ kgerSpl � ktxtCV � ðkExC þ kspÞC

dSpd
dt
¼ ð1 � SpVÞðkspCÞ � ðkExSpdSpdÞ

dSpl
dt
¼ SpVðkspCÞ � ðkExSpl þ kgerÞSpl

dT1

dt
¼ ktoxC � kExTT

dT2

dt
¼ kExTðT1 � T2Þ

dV
dt
¼ uðtÞ � kV V; where uðtÞ ¼ vancomycin input
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Vegetative cell and vancomycin equations. Our first equation represents C.difficile
vegetative cells (C). Vegetative cells are able to proliferate in the colon if conditions permit;

however, a protective microbiota and other processes may inhibit colonization [7]. When

modeling the growth of C. difficile vegetative cells (C), we first considered the bacteria’s growth

rate (k) limited by their carrying capacity within the human gut (Cap). For the logistic growth

term, we tested several exponents and chose the lowest integer value that yielded a visually

good fit (cubic power). In addition, we considered the formation of new cells due to the germi-

nation of available spores (kger). We also subtracted the loss of cells (kLC), either because they

sporulated (ksp) or they were shed into the environment through defecation (kExC).

Finally, we considered the loss or inactivation of cells due to vancomycin treatment (ktxt). To

better represent the vancomycin pharmacokinetics, we added an extra equation to our model.

When using the standard regimen of 125mg/L four times a day, oral vancomycin is poorly

absorbed, so stool concentrations significantly exceed the MIC90 of most C. difficile isolates [4,

19]. The vancomycin concentration (V) was first fitted to vancomycin data [20] using sum of

least of squares, then its parameter (kv) was fixed for the remainder of the parameter fitting.

Spores/toxin equations. During its life cycle, C. difficile vegetative cells produce endo-

spores [4]. Spores are highly resistant to the immune system, antibiotics, and harsh environ-

mental conditions [1, 21]. If ingested, spores survive the stomach’s acid environment and

germinate into vegetative cells in the small intestine when stimulated by bile salts [1, 21]. Vege-

tative cells of toxigenic strains produce several toxins. Toxin A and toxin B are most com-

monly associated with C. difficile associated disease [1].

In order to account for different degrees of sporulation varibility across ribotypes, we sepa-

rated spores into two compartments: germinating (Spl) and non-germinating (Spd). SpV rep-

resents the fraction of germinating spores produced by ribotype. We further accounted for the

C. difficile sporulation rate (ksp) and the loss of spores (kLS) either because they are shed into

the environment through feces (kExSpl/kExSpd) or they germinate into vegetative cells (kger).

Similarly, in the toxin compartment, we accounted for the toxin production rate by vegeta-

tive cells (ktox) and exit of toxin (kExT), either because it was used up, lost through feces, or

decayed. We also incorporated a toxin delay, by a series of stages (n) through which the toxin

had to pass before exiting the toxin compartment. The latter allowed us to account for the slow

decay of the toxin in the gut/feces [22]. We chose the smallest number of compartments that

yielded the best fit, which resulted in n = 2.

Parameter estimation and sensitivity analysis. To streamline model development and

parameter estimation, we used a forcing function approach (similar to that developed in [23]

and commonly used in glucose-insulin models and other physiological models[24, 25]) in

which the overall model was broken into two submodels (S1 and S2 Figs) to generate initial

‘ballpark’ parameter estimates, and then recombined for final parameter estimation using the

complete model. This approach allowed us to separately evaluate the level of simplification

needed for the model structure in our initial model explorations. Parameters were estimated

using C. difficile ribotype 027 data from a gut laboratory model reported by Baines et al. 2009

[20], using least squares. We then evaluated the parameter uncertainty using Fisher informa-

tion-based confidence intervals (using the Cramér-Rao bound), which we report as percent

coefficient of variation (%CV), defined as 100 times the standard deviation (SD) of the param-

eter, divided by the parameter estimate [23, 26, 27]. Further details of the forcing function

approach used and the sensitivity analysis performed can be found in the online supplement

(S1 File). All model simulations and parameter estimation was performed in MATLAB

(2015b), with parameter estimation via least squares using fminsearch.

In addition, although the human host is not an explicit set of compartments or variables in our

model, we have defined it as an in-host mathematical model, as the host is implicit in the data
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used for fitting, the parameter values chosen, and the simulated treatment regimes (as described

below). However, we are unable to distinguish in our model between different hosts, as we do not

account for intra-host variability. Our complete in-host mathematical model is graphically repre-

sented in Fig 1 and S3 Fig. Parameter details for ribotype 027 can be found in Table 1.

Stochastic model

An ODE model can only provide an average of recurrence by ribotype, and stochasticity may

play an important role during extinction or recurrence of an infection. Thus, we created a

Fig 1. Graphical representation of the overall in-host compartmental CDI model within its human

host.

https://doi.org/10.1371/journal.pone.0182815.g001

Table 1. Final overall model parameters for ribotype 027, as fitted to data from Baines et al. 2009 [20]*.

Model Parameter Description Value %CV**

N Number of toxin delay compartments 2 –

K C. difficile growth rate (cells/day) 1.1953 2.9

Cap Carriage capacity (cells/day) 1.2241x106 0.94

ksp Sporulation rate (1/day) 0.0072 2.4

SpV Fraction of germinating spores (1/day) 0.534050 92.8

kger Germination rate(1/day) 0.0006 105.7

ktox Toxin production rate (1/day) 0.0043 9.6

kExC Exit rate of vegetative cells (1/day) 0.0352 97.0

kExSpd Exit rate of non-germinating spores (1/day) 0.3577 36.8

kExSpl Exit rate of germinating spores (1/day) 0.3197 30.2

KExT Exit rate of toxin (1/day) 0.9491 7.5

Ktxt Treatment killing rate (vc killed/day) 1.5811 78.8

kv Exit rate of vancomycin (1/day) 1.3116 120.7

u(t) Vancomycin input Simulation dependent –

*These parameters were used to feed our simulations for all ribotypes, the sporulation rates (ksp) and fraction of germinating spores (SpV) were the only

parameters that were modified based on the ribotype across our model simulations.

**For the fitted parameters, the percent coefficient of variation is given (%CV = 100 x SD/parameter value).

https://doi.org/10.1371/journal.pone.0182815.t001
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stochastic model based on our ODE model to estimate the probability of recurrence by ribo-

type. We focused on three compartments of the ODE model for stochastic simulation: 1)

vegetative cells, 2) non-germinating spores, and 3) germinating spores. As vancomycin con-

centrations are continuous values and unlikely to be stochastic at the scale we are considering,

we used the same ODE representation for vancomycin treatment as in the deterministic

model. We simulated the vancomycin concentration by treatment regimen ahead of time

using a simple model, which only included the vancomycin equation. The resulting datasets

were used to feed our stochastic model.

Due to the large number of vegetative cells and spores that made up our system, we simu-

lated our model using the Tau-leaping method [28]. This method determines the probability

of each event to happen over each pre-specified interval of time, in our case every 2.4 hours

(10 times a day). The model simulated the probability of occurrence of 5 specific events: 1) veg-

etative cell growth, 2) germination of spores, 3) exit or death of vegetative cells, 4) sporulation

of vegetative cells, and 5) exit of germinating and non-germinating spores. After each evalua-

tion, the model added or subtracted vegetative cells or spores from their specific compartment

as needed. At the end of the simulation, we compiled the total number of vegetative cells and

spores.

Simulations

Effect of sporulation rates and viability of spores on CDI recurrence. We based our

simulations on the most prevalent ribotypes currently circulating in the US: ribotypes 027,

002, 014–020, and 106 [18]. Using data from the literature (Table 2) and the fitted parameters

of our overall model of ribotype 027 (Table 1), we estimated an average rate of sporulation and

a fraction of germinating spores for each ribotype. For example, using in vitro data from the lit-

erature, we estimated an average number of spores produced per day per mL of 40,295 for

ribotype 002, while for 027 we estimated 109,054 spores per day per mL. As we knew the spor-

ulation rate of 027 from our model fit, we were able to solve for an approximate sporulation

rate of ribotype 002 (ksp002 = ksp027/(109,054/40,295). Similarly, we solved for the ksp of the

other ribotypes. The fractions of germinating spores per ribotype were averaged from the liter-

ature [13, 29–34]. The parameters are described in Table 2.

We ran both of our models for a total of 200 days. All model parameters remained the same

as in Table 1, except for sporulation rates and spore viability, which we modified by ribotype

(Table 2). On day 13, we added the regular vancomycin treatment (125mg/L four times a day

for 10 or 14 days) to our simulation. The literature suggests a 13 day-period provides the

Table 2. Sporulation rates, spore germinability, and data source by selected ribotypes used to inform the in-host model of Clostridium difficile

infection.

Simulation Parameters

Sporulation rates by ribotype Spores/day per mL Sporulation rate ((spores/day)/mL) Sources used

027-based parameters 109,054 [29, 31, 32, 34, 35]

002- based parameters 40,295 0.002665654 [31, 32]

106- based parameters 184,555 0.012208954 [31, 32]

014–020 based parameters 2,773 0.000183444 [29]

Spore germinability by ribotype Fraction of spore viability Sources used

027- based parameters 0.5341 [13, 29, 33]

002- based parameters 0.4700 [33]

106- based parameters 0.4151 [13]

014–020 based parameters 0.6276 [29, 33]

https://doi.org/10.1371/journal.pone.0182815.t002
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necessary time for the pathogen’s vegetative cells, spores, and toxin to reach the required levels

to initiate symptoms within the host [20]. The stochastic model was run 500 times for each

ribotype.

Vancomycin tapered/pulsed-treatment effectiveness on CDI recurrence. On day 13, we

simulated three commonly used tapered/pulsed vancomycin treatments (Fig 2). The Infectious

Diseases Society of America/ Society for Healthcare Epidemiology of America (IDSA/SHEA)

2010 recommendations for recurrent CDI include oral vancomycin 125mg/L four times daily

Fig 2. Graphical representation of the simulated tapered/pulsed oral vancomycin regimens. (A)

Recommended tapered/pulsed oral vancomycin regimens. (B) Modified recommended regimens. We tested

three specific regimens: one recommended by The Society for Healthcare Epidemiology of America (IDSA/

SHEA), another by the American College of Gastroenterology (ACG), and the third one is an alternate

regimen based on expert opinion [5]. The gray-colored blocks represent optional steps, and the dotted-lined

blocks in panel (B) represent the steps that were eliminated or modified for the purposes of this study.

Abbreviations: w = week, hr = h.

https://doi.org/10.1371/journal.pone.0182815.g002
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for 10–14 days (we simulated 14 days instead of 10, in order to be more conservative), followed

by vancomycin twice a day for a week, then vancomycin once daily for one week, concluding

with vancomycin every 48–72 hours for 2–8 weeks [4]. Similarly, the College of Gastroenterol-

ogy (ACG) recommends 125 mg/L 4 times a day for 10 days followed by every 72 hours for ten

doses [17]. Finally, a recent published review recommends (based on expert opinion) an alter-

nate regimen described as follows: 125mg/L four times daily for 1–2 weeks, then 125mg/L

three times a day for 1 week, followed by 125mg/L twice a day for 1 week, then 125mg/L once

daily for 1 week, next 125mg/L every 48 hours for 1 week, and concluding with 125mg/L every

72 hours for 1 week [5].

In addition, we further tested modifications on these commonly used regimens. We tested

the SHEA/IDSA recommended regimens omitting the initial regular treatment (125 mg/L

four times a day for 14 days). Similarly, we experimented with the alternate regimen removing

the initial regular treatment of oral vancomycin four times a day for 1–2 weeks. We further

tested a modified ACG regimen by 1) reducing the number of pulsed doses and 2) reducing

the vancomycin dose from 125mg/L 4 times a day to twice a day (Fig 2).

For the ODE model, due to the lack of stochasticity, any amount of cell or spore material

(even if much less than a single cell) will eventually “recur”, even though this would be unrealistic

in real-world settings. Thus, for these simulations we also modified our ODE models to indicate

a minimal threshold of 0.01% of one cell/spore for the vegetative cell or spore compartments for

recurrence. The stochastic model was run 500 times for each ribotype per regimen.

Results

Our in-host mathematical model simulates the pathogenicity and transmission patterns of C.

difficile within its human host (Fig 1 and S4 Fig). The final model parameters are described in

Tables 1 and 2. The germination and vancomycin exit rates had %CVs> 100% (105.7% and

120.7% respectively) indicating relatively large uncertainty, but all parameters were identifiable

[36].

Simulations

Effect of sporulation rates and viability of spores on CDI recurrence. As expected,

sporulation rates and viability of spores affected the pathogenicity and transmission patterns

in our simulation. Using the deterministic model, all ribotypes but 014–020 recurred after 10

days of 125 mg/L four times a day. Ribotype 014–020 was able to cause a first CDI episode, but

initial treatment was sufficient to avoid recurrence. By contrast, ribotypes (027, 106, 002)

recurred approximately 30–55 days after initial CDI treatment. However, when we extended

the regular treatment to 14 days, ribotype 002 also did not recur (Fig 3).

In our stochastic model, all of the ribotypes recurred in at least one simulation after 10 days

of treatment. However, the probability of recurrence varied by ribotype: ribotype 106 (18.8%),

ribotype 027 (12.2%), ribotype 002 (6.8%), and 014–020 (1.0%). This matches the more binary

results seen in the deterministic model, with a more nuanced outcome. Similarly, when we

extended treatment 4 extra days (14 days total), the probability of recurrence was reduced even

further: ribotype 106 (4.0%), ribotype 027 (4.0%), ribotype 002 (1.2%), and 014–020 (0%) (Fig

3).

Vancomycin tapered/pulsed-treatment effectiveness on CDI recurrence. For all ribo-

types, all recommended vancomycin tapered/pulsed regimens were effective in avoiding recur-

rence following repeated infection. (Table 3). When we completely eliminated the initial

regular treatment (125mg/L four times a day for 14 days) from the SHEA/IDSA regimen, this

regimen remained effective for all ribotypes after only four weeks of pulsed doses. When
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further modified to only two weeks of pulsing every 48 hours, the SHEA/IDSA regimen

remained effective for all ribotypes but 027 (027 recurred 0.2% of the time). Interestingly, if we

pulsed every 72 hours for 2 weeks, both ribotype 027 and ribotype 106 recurred but at low lev-

els (0.2–0.6%). Similarly, when we eliminated the 2 initial weeks of 125mg/L of oral vancomy-

cin four times daily from the alternate regimen, we did not observe any recurrences for any of

the ribotypes. When we reduced the ACG pulsed doses to 7 (every 72 hours), the regimen

remained effective at avoiding recurrence from all ribotypes. Furthermore, when we reduced

the dose to 125mg/L twice a day for 10 days followed by pulses every 72 hours for 10 doses; the

treatment remained effective, with only ribotype 27 recurring, but at a very low rate (0.2%

recurrence) (Table 3).

Sensitivity analysis. As discussed in the supplement, the vancomycin killing rate parame-

ter is somewhat uncertain due to the doses used in the experimental data (which are signifi-

cantly greater than the MIC90 for C. difficile). To assess the sensitivity of the results to the

vancomycin treatment parameter, we re-ran the same simulations modifying the vancomycin

killing rate across a range of values that yielded approximately the same fit to the data (de-

scribed in the supplement). This yielded nearly identical results (recurrence rates with the

alternate values were all within 2.5% of the recurrence rates using the fitted value of ktxt).

Fig 3. Simulated recurrence rate by ribotype: Differences on sporulation rates and fraction of

germinating spores per ribotype are reflected on differences on recurrence rates. (A)Simulates

ribotype 106 based parameters (4.0–18.8% recurrence). (B) Simulates ribotype 027 based parameters (4.0–

12.2% recurrence).(C) Simulates ribotype 002 based parameters (1.2–6.8% recurrence). (D) Simulates

ribotype 014–020 based parameters (0–1.0% recurrence). On day 13 post exposure, we added to the model

the regular vancomycin CDI treatment: 125mg/L four times a day for 10 days (left) or 125mg/L four times a

day for 14 days (right). The black solid lines represent each of the 500 runs of the stochastic model, and the

white slashed-line represents the results of our deterministic model.

https://doi.org/10.1371/journal.pone.0182815.g003
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Discussion

We used a compartmental in-host mathematical model for CDI patients to simulate in vivo
toxin and spore rates for the most prevalent C. difficile ribotypes and evaluate whether ribo-

type-specific sporulation/germination patterns affect CDI recurrence and effectiveness of

treatment regimens for reducing risk of repeated CDI. All recommended treatment regimens

were effective in reducing risk of an additional recurrence. Furthermore, reducing the dura-

tion or dosage of most of the assessed regimens for tapered/pulsed vancomycin treatment did

not change effectiveness.

Our simulations also support previous evidence that differences in sporulation/germination

patterns across C. difficile ribotypes are risk factors for recurrence [12–14]. Ribotype 014–020

has higher spore viability but lower sporulation rates than the other ribotypes evaluated, and

recurred up to 1.0% of the time following initial CDI treatment with vancomycin, much less

frequently than other ribotypes. Indeed, although this ribotype does recur, it accounts for only

5% of CDI recurrences in North America [37]. Moreover, these results suggest that the CDI

recurrence rate can be at least partially explained by differences in sporulation and germina-

tion patterns by ribotype, which also validates the model’s predictive ability. In addition, our

model highlights the benefit of a longer regular CDI treatment, 14 days instead of 10 days, in

order to reduce the likelihood of an initial CDI recurrence.

Using the reported distribution of ribotypes found in hospital and community-associated

CDI cases [18] and our recurrence rates, ribotypes 027, 002, 014–020, and 106 would lead to a

combined recurrence rate of 3–11% (depending on the duration of regular or initial treat-

ment), which overlaps with the recurrence range of 5–35% reported in the literature [7–9].

Note that the 5–35% range includes both relapses and reinfections by the same or different

strains, and our estimate includes only relapses from the same strain. Relapses reportedly

account for 25 to 87.5% of all recurrences [14] (i.e. there is a ~1–31% rate of relapse among ini-

tial CDI cases), which is also consistent with our results.

Table 3. Recurrence rate by ribotype after receiving recommended or modified oral vancomycin

tapered/pulsed regimens.

Regimen Ribotypes

106 027 002 014–

020

Commonly used regimens

SHEA/IDSA: pulses every 48h for 2 weeks 0% 0% 0% 0%

SHEA/IDSA: pulses every 72hr for 2 weeks 0% 0% 0% 0%

Alternate regimen: only 1 week of 125 mg/L four times a day 0% 0% 0% 0%

ACG: Full regimen 0% 0% 0% 0%

Modifications

SHEA/IDSA: no initial regular txt (125 mg/L four times a day for 14 days) + 72

hr pulses for 2 weeks

0.6% 0.2% 0% 0%

SHEA/IDSA: no initial regular txt (125 mg/L four times a day for 14 days) + 48

hr pulses for 2 weeks

0% 0.2% 0% 0%

SHEA/IDSA: no initial regular txt (125 mg/L four times a day for 14 days) + 72

hr pulses for 4 weeks

0% 0% 0% 0%

SHEA/IDSA: no initial regular txt (125 mg/L four times a day for 14 days) + 48

hr pulses for 4 weeks

0% 0% 0% 0%

Alternate regimen: no initial regular treatment (125 mg/L four times a day for 2

weeks)

0% 0% 0% 0%

ACG: 125mg/L twice a day for 10 days + 10 pulsed doses 0% 0.2% 0% 0%

ACG: 125 mg/L 4 times a day for 10 days + only 7 pulsed doses 0% 0% 0% 0%

https://doi.org/10.1371/journal.pone.0182815.t003
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In our models, all recommended treatment regimens for repeated CDI recurrence were

highly effective in avoiding an additional recurrence, which is validated by the fact that only

up to 6% of CDI cases recurred 2 or more times [38]. Our models also suggest that there is no

significant difference in treatment efficacy between pulsing periods of 48 or 72 hours when

applied to the regimens as they are currently recommended. However, the regimens could be

reduced in duration or in dosage and still be highly effective.

This finding has potentially important clinical implications, as vancomycin therapy is not

without risk. Vancomycin treatment suppresses Bacteriodes spp., a marker of normal gut

microbiota [39], and a healthy gut microbiota prevents the introduction or colonization of

pathogens, including the reemergence of C. difficile [40]. Furthermore, vancomycin and simi-

lar anti-anaerobic therapy can promote the selection and spread of vancomycin-resistant

enterococcus colonization [40, 41]. Our results suggest that vancomycin regimens might be

further modified to a level that better protects gut microbiota while preventing CDI recur-

rence, although this can only be definitely answered using appropriate controlled clinical trials.

In addition, studies examining the role of probiotics in conjunction with tapered/pulsed

vancomycin may uncover potential regimens to further reduce vancomycin dosage and

duration.

Although it is not current clinical practice to report C.difficile ribotype when CDI is diag-

nosed in the laboratory, this information could provide valuable additional information. Our

model results support the potential of tailoring the initial regular CDI treatment based on the

causative C. difficile ribotype. Patients diagnosed as having CDI due to ribotype 027 are more

susceptible to recur; thus, physicians may decide to follow these patients more closely to iden-

tify early CDI recurrences. Moreover, these patients may benefit from an initial tapered/pulse

oral vancomycin treatment instead of the standard, high dose, initial CDI treatment.

As with any simulation study, our model is limited by the current state of knowledge and

the data available to inform the model. C. difficile vegetative cells, spores and even toxin are

found among asymptomatic individuals [42]; thus our model could not distinguish between C.

difficile colonization and symptomatic CDI recurrence. In addition, there is strong evidence

supporting the importance of host factors—including gut microbiota and immune system—

on CDI development and recovery. However, there is limited in vivo human data on the direct

effects of these host factors on C. difficile sporulation and toxin production; because of this, we

did not include these factors in the model influencing our simulations towards the pathogen’

side. Due to the negative impact of antibiotic treatment on the gut microbiota diversity and

recovery, this limitation may lead to an underestimation of recurrence rates and overestima-

tion of the effectiveness of the treatment [43, 44]. Similarly, our model does not account for

biofilm formation within the human gut, which could potentially decrease CDI treatment

effectiveness and increase CDI recurrence [45]. Furthermore, the lack of standardization

across the methods currently used to measure sporulation/germination rates by ribotype limits

our ability to characterize these patterns for each common ribotype. In addition, our model

does not account for inter-strain variation of sporulation and germination patterns across

ribotypes [20, 31–33, 46, 47]. Inter-host variability is also not taken into account in our model.

Finally, our simulations did not include other potential recommended treatments for recur-

rent CDI, such as fidaxomicin[5].

In conclusion, we developed a compartmental in-host mathematical model of CDI. To our

knowledge, this is the first modeling study to examine treatment effects particularly within-

host; other published models have examined C. difficile transmission, pathogenesis, or treat-

ment effectiveness from a different perspective [48–52]. Our results highlight the importance

of sporulation/germination patterns across C. difficile ribotypes on CDI pathogenicity and

transmission, which directly affects CDI treatment and infection control. Current CDI
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vancomycin regimens particularly for treating recurrent cases should be further studied to bet-

ter balance their associated risks and benefits.
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S3 Fig. Graphical representation of the overall in-host compartmental CDI model within
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