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Identification and validation
of a 17-gene signature to
improve the survival
prediction of gliomas

Shiao Tong1†, Minqi Xia2†, Yang Xu1, Qian Sun1, Liguo Ye1,
Jiayang Cai1, Zhang Ye1 and Daofeng Tian1*

1Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China, 2Department
of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
Gliomas are one of themost frequent types of nervous system tumours and have

significant morbidity and mortality rates. As a result, it is critical to fully

comprehend the molecular mechanism of glioma to predict prognosis and

target gene therapy. The goal of this research was to discover the hub genes of

glioma and investigate their prognostic and diagnostic usefulness. In this study,

we collected mRNA expression profiles and clinical information from glioma

patients in the TCGA, GTEx, GSE68848, and GSE4920 databases. WGCNA and

differential expression analysis identified 170 DEGs in the collected datasets. GO

and KEGG pathway analyses revealed that DEGs were mainly enriched in

gliogenesis and extracellular matrix. LASSO was performed to construct

prognostic signatures in the TCGA cohort, and 17 genes were used to build

riskmodels and were validated in the CGGA database. The ROC curve confirmed

the accuracy of the prognostic signature. Univariate and multivariate Cox

regression analyses showed that all independent risk factors for glioma except

gender. Next, we performed ssGSEA to demonstrate a high correlation between

risk score and immunity. Subsequently, 7 hub genes were identified by the PPI

network and found to have great drug targeting potential. Finally, RPL39, as one

of the hub genes, was found to be closely related to the prognosis of glioma

patients. Knockdown of RPL39 in vitro significantly inhibited the proliferation and

migration of glioma cells, whereas overexpression of RPL39 had the opposite

effect. And we found that knockdown of RPL39 inhibited the polarization and

infiltration of M2 phenotype macrophages. In conclusion, our new prognosis-

related model provides more potential therapeutic strategies for glioma patients.
Abbreviations: TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; CGGA, The

Chinese Glioma Genome Atlas; DEGs, Differentially Expressed genes; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular

Function; ROC, Receiver Operating Characteristic; AUC, Area Under the Curve; WHO, World Health

Organization; OS, Overall Survival; KM, Kaplan−Meier; MCODE, Molecular Complex Detection; EMT,

Epithelial-Mesenchymal Transition; ssGSEA, Single-sample Gene Set Enrichment Analysis; PMA, Phorbol

12-myristate 13-acetate.
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Introduction

Gliomas are the most common primary intracranial

malignancies. According to the WHO, gliomas are classified

into four grades, which define grades II and III as low-grade

gliomas and grade IV as glioblastomas (1). Glioma treatment is

standardized and includes intraoperative maximum resection

and postoperative chemoradiotherapy (2). Although glioma

therapy options have advanced significantly in recent decades,

the treatment impact of glioma is far below expectations and

faces significant obstacles because of its high heterogeneity and

recurrence (3). As a result, there is an urgent need to investigate

novel therapy techniques for glioma.

In studies of glioma genome analysis, it was demonstrated

that genetic alterations in genes can play a crucial role in

gliomagenesis by modifying essential signals and altering

pathways for basic intracellular functions such as tumour cell

development, proliferation, metastasis, and invasion (4). A large

number of molecular biomarkers have been employed for the

pathological diagnosis and prognostic evaluation of tumours.

For example, the WHO classification of tumours of the central

nervous system integrates isocitrate-mutated dehydrogenase

(IDH) and codeletion of the short arm of chromosomes 1 and

19 of the long arm (1p/19q) (5). The new WHO classification

guidelines make the diagnosis of glioma more accurate and the

prognosis more relevant. Drugs targeting specific molecular

biomarkers of glioma are also undergoing extensive clinical

research. Terameprocol is a global transcriptional inhibitor

that induces cell cycle arrest by selectively inhibiting specific

protein 1 (Sp1), and it has been studied in stages I and II of

recurrent high-grade glioma (6). In recurrent high-grade glioma,

a phase II trial of nintedanib, a triple tyrosine kinase receptor

inhibitor, is being conducted to overcome resistance to VEGF

treatment (7). However, due to the high invasiveness and drug

resistance of gliomas, most targeted drugs ultimately fail. As a

result, the development of novel and effective biomarkers and

their therapeutic targets is critical not only for glioma diagnosis

and prognosis prediction but also for drug screening (8).

With the development of science and technology,

microarray technology and bioinformatics have been widely

used in tumour gene expression research, making molecular

targeted therapy more precise and individualized (9). In this

study, we used WCGA and differential expression analysis to

identify DEGs in gliomas in public databases and then analysed

their biological roles and enriched pathways. Then, we identified

a 17-gene signature that provided the best prediction of overall
02
survival. Finally, we selected the hub gene RPL39 for further in

vitro experiments. Our results suggest that the development of a

differentially expressed 17-gene-based risk score has potential

value in predicting the prognosis of glioma patients.
Data and methods

Data collection

In this study, we collected a total of 4 public cohorts. Among

them, the mRNA expression data and clinical information of

glioma patients were obtained from the TCGA database (https://

portal.gdc.cancer.gov/). The CGGA database (http://www.cgga.

org.cn/) was used to validate the prognostic model. In addition,

mRNA data from normal brain tissue were collected from GTEx

(https://xenabrowser.net/datapages/). The GSE68848 (28

controls vs. 228 cancers) and GSE4920 (23 controls vs. 153

cancers) datasets in our study were downloaded from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/). As shown in

Table S1, clinical information of all glioma patients was

downloaded from the database. All data were searchable

online. Finally, we used the R package “limma” of the

“normalizeBetweenArrays” function to reduce batch effects

that may exist between or within the four cohorts (10).
Patient samples

This study was approved by the Ethics Committee of the

Renmin Hospital of Wuhan University [approval number:

2012LKSZ (010) H]. None of the patients received

radiotherapy or chemotherapy before surgery, and informed

consent was obtained. Among the 37 clinical samples, 32 glioma

samples included 17 low-grade gliomas and 15 high-grade

gliomas, and 5 normal brain tissues were derived from

patients with severe brain injury.
Weighted correlation network analysis

We used the “WGCNA” package in R software to cluster

genes with similar expression patterns in the TCGA+GTEx

database. We set a minimum threshold and built a dendrogram.

In the clustering results, genes with similar characteristics were

assigned to the same module.
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Construction and validation of the
risk signature

According to the survival status, survival time, and expression

levels of related genes of glioma patients, least absolute shrinkage

and selection operator (LASSO) regression analysis using the

“glmnet” package was used to avoid overfitting. Then, the genes

and their regression coefficients were obtained according to the

most suitable l value. Finally, we calculated each patient’s risk

score according to the following model formula: Risk Score =

on
i=1coefðiÞ�x(i), where n was the number of prognostic genes,

Coef(i) was the regression coefficient, and x(i) was the expression

level of the gene. All cases were classified into low- and high-risk

groups based on the median risk score. The KM curve was used

for survival analysis, the logrank test and Cox regression

algorithm were used to assess the significance of differences in

survival probability between the clinical features. The R package

“survivalROC” was used to visualize time-dependent ROC curves

and calculate AUC values to evaluate the prediction accuracy of

the 17-gene signature. All heatmaps were visualized by the R

package “pheatmap”.
Analysis of tumour immunity
and mutation

The XCELL, TIMER, QUANTISEQ, MCPCOUNTER,

CIBERSORT, CIBERSORT-ABS, and EPIC algorithms were

used to estimate immune infiltration in the low- and high-risk

groups. Then, differential analyses of the stromal, immune,

ESTIMATE scores, and immune cells were performed by the

R software packages “estimate” and “ssGSEA” (11). The TIDE

score for each glioma patient was determined by the online

website (http://tide.dfci.harvard.edu/login/) (12). Finally, to

assess the potential impact of risk score on the response to

immunotherapy, we analysed associations between low- and

high-risk groups with immune checkpoints and chemokines

(13). Tumour mutational burden (TMB) was downloaded

from the TCGA database and was defined as the numbers of

insertions/deletions and substitution mutations per million

bases, and the mutation profiles of low- and high-risk groups

were analyzed by the R package “maftools” (14).
Enrichment analysis of GO, KEGG,
and GSEA

We used the R package “clusterProfile” to perform the GO,

KEGG and GSEA enrichment analysis (30407594). For the GO

and KEGG enrichment analysis, p value< 0.05 and FDR< 0.05

were defined as significantly different and the R package

“ggplot2” was used to visualized the results. We obtained a
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subset of c5.go.V7.5.1.symbols.gmt from GSEA database (http://

www.gsea-msigdb.org/gsea/downloads.jsp). Based on gene

expression profiles and risk score, with a minimum gene set of

5 and a maximum gene set of 5000, p value< 0.05 and FDR< 0.25

were considered statistically significant.
Protein−protein interaction network

In the STRING database (https://string-db.org/), a protein

−protein interaction (PPI) network was constructed with a

confidence level of 0.15. Cytoscape software (v3.7.2) was used

to visualize the network (15). Finally, the plug-in MCODE of the

Cytohhuba plugin was used to identify hub genes.
Immunohistochemistry

Paraffin-embedded tissue sections were deparaffinized with

xylene and rehydrated through a graded alcohol series. Heat-

induced antigen retrieval was performed by immersing tissue

sections in 10 mM citrate buffer (pH 6.0) for 10 min at 98°C.

Subsequently, sections were blocked with serum for 30 min and

incubated with primary antibody overnight at 4°C. The next day,

sections were incubated with HRP-conjugated secondary

antibody (Servicebio, China) for 1 h at room temperature.

Sections were then stained with a DAB kit and counterstained

with haematoxylin. Images were finally obtained by an Olympus

BX51 microscope (Olympus, Japan), and tissue sections were

independently investigated and scored by two researchers.
Western blot analysis

RIPA lysate (Servicebio, China) was used to extract total

protein from pretreated cells. Protein samples were

electrophoresed on SDS-polyacrylamide gels and transferred to

PVDF membranes. After blocking with skim milk for 1 h, the

membrane was incubated with the corresponding primary

antibody overnight at 4°C. RPL39 (14990-1-AP, 1:1000),

CD206 (18704-1-AP, 1:1000), Arg1 (16001-1-AP, 1:1000) was

purchased from Proteintech and tubulin (M20005, 1:3000) was

purchased from Abmart. The membrane was then incubated

with horseradish peroxidase (HRP)-conjugated secondary

antibody for 1 h at room temperature and the ECL detection

system (BIO RAD, USA) was used for visualization.
Cell culture and induction
and transfection

Human glioma cell lines (U251 and U87) and acute monocyte

leukemia cell line (THP-1) were purchased from the Shanghai
frontiersin.org
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Institute of Biochemistry and Cell Biology (Shanghai, China).

Glioma cells were cultured in DMEM (Dulbecco’s Modified

Eagle’s Medium) supplemented with 10% foetal bovine serum

(FBS) and THP-1 was grown in RPMI 1640 containing 15% FBS.

These cells were cultured at 37°C and 5% CO2. For the induction of

THP-1 cells, we first incubated THP-1 cells with 320 nM of

PMA (Mce, China) for 24 h to induce M0 phenotype

macrophages, and then added 20 ng/ml IL-4 and 20 ng/ml IL-13

for 24 h to obtain M2 phenotype macrophages. U87 cells

were seeded in the lower chamber of a non-contact transwell

and M2 macrophages were seeded in the upper chamber

for 24 hours of co-culture. RPL39 siRNA and Flag

plasmid were designed and purchased from RiboBio

(Guangzhou, China). The sequences of siRNA for RPL39

were GUCACGAUCAUGUUACCAUTT (sense) and

AUGGUAACAUGAU-CGUGACTT (antisense). Transient

transfection with 2.0 µg plasmid per well in 6-well plates was

performed with Lipofectamine 3000 (Invitrogen, USA) according to

the manufacturer’s protocol. After 12-24 hours, these cells were

collected for the following experiments.
Cell proliferation assay

Cell Counting Kit-8 (CCK-8) assay: The cell suspension with

a density of 5,000 cells was seeded in a 96-well plate for 24 h, and

then CCK-8 solution was added to the corresponding wells at 0,

24, 48, and 72 h, respectively. The cells were incubated at 37°C

for 1 hour, and finally, the optical density (OD) was read at

450 nm.

Colony formation: After transfection for 24 h, 500 cells were

seeded into 6-well plates and cultured in complete medium for

two weeks. When cell colonies were visible to the naked eye, the

cells were fixed with paraformaldehyde for 20 minutes and

stained with crystal violet. Finally, the cell colonies were

imaged and counted.

Edu assay: The transfected cells were seeded on sterile glass

slides in 6-well plates and cultured for 24 h. Following the

manufacturer’s instructions, after incubating the cells with EdU

reagent (C10310–1, RiboBio, Guangzhou, China) at 37°C for 1 h,

the cells were fixed with 4% paraformaldehyde, and the nuclei

were stained with DAPI. Photographs were finally captured

under a fluorescence microscope.
Wound healing and transwell assay

Transfected cells were seeded in 6-well plates. When the cell

density reached 90%, a 200-µl sterile pipette tip was used to draw

a scratch on the cell monolayer. After the cells were cultured in

serum-free medium for 24 h, photographs were captured at the

same position with an inverted microscope. In the Transwell

assay, Transwell chambers (Corning, USA) precoated with
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Matrigel (R&D, USA) were used to analyse the invasive ability

of cells. The transfected cells were seeded in serum-free medium

in the upper chamber, and serum-containing medium was

added to the lower chamber. After incubation at 37°C for

24 h, the cells were fixed and stained with crystal violet.

Finally, the cells were counted under a microscope.
RNA isolation and RT-PCR

Total cellular RNA was extracted using TRIzol reagent

(Invitrogen, USA). PrimeScript RT kit (Takara, Japan) was

used to synthesize cDNA and SYBR Green II Mixture kit

(Takara, Japan) was used to perform qRT-PCR reactions on

the ABI StepOne real-time PCR system (Applied Biosystems,

USA) according to the reagent manufacturer’s instructions. The

relative expression of mRNA was normalized by GAPDH and

calculated by relative quantification (2−DDCt). All primers were

purchased from Sangon Biotech (Shanghai) and primer

sequences were listed as follows: GAPDH primer (forward

primer, GGGGCTCTCCAGAACATC; reverse primer,

TGACACGTTGGCAGTGG); TNF-a primer (forward primer,

CCCTCCTTCAGACACCCT; reverse primer, GGTT

GCCAGCACTTCACT); iNOS primer (forward primer,

CCTGGAAAACCCATGTCTG; reverse primer, GGGAC

GCCATTGTCTTG); CD206 primer (forward primer,

G AAGCCAAGGTCCAGAAA ; r e v e r s e p r i m e r ,

TGTTGAAAGC-GTATGTCCA); Arg1 primer (forward

primer, GGAAGTGAACCCATCCCT; reverse primer, GATTA

CCCTCCCGAGCA).
Statistical analysis

All data were analysed by R studio (version 4.2.0) and

GraphPad Prism 9.0.0. Student’s t test was used to analyse the

differences between the two groups. One-way analysis of

variance (ANOVA) was used for comparisons between three

or more groups. p< 0.05 was considered statistically significant.
Results

Identification of DEGs in
collected datasets

The flow chart of the study was shown in Figure 1. To

investigate the gene expression profiles in gliomas, we collected

4 datasets and merged the TCGA and GTEx datasets to

evaluate the gene expression differences between glioma and

normal tissues. First, we performed differential expression

analysis on the collected datasets. Under the conditions we

set (abs of logFC>1 and adj. p value< 0.05), the TCGA+GTEx
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dataset included 1077 DEGs (Figure 2A), the GSE

68848 dataset included 7647 DEGs (Figure 2B) and the GSE

4920 dataset included 8033 DEGs (Figure 2C). Then, the

WGCNA package in R was used to construct a coexpression

network in the TCGA+GTEx dataset. Based on two evaluation

criteria (scale independence and mean connectivity), the soft

threshold was set at 8 (Figures 2D, E), and genes were divided

into 13 modules. As shown in Figure 2F, the turquoise module

had the highest correlation with gene characteristics and

included 4063 genes. Then, we constructed Venn diagrams to

identify 170 intersecting genes in the 4 screened gene sets

(Figure 2G). Finally, GO and KEGG enrichment analysis

indicated that these 170 genes were mainly related to cell

development and extracellular matrix (Figure S1A, B). In

short, these 170 genes may play important roles in glioma

diagnosis and prognosis.
Frontiers in Immunology 05
Construction and verification of a 17-
gene risk signature

To build a more efficient model to analyse clinical features

and predict prognosis, LASSO regression analysis was

performed on 170 DEGs, and 17 candidate genes with the

most powerful predictive features were identified (U2AF1,

SKP1, RAP1B, IRF9, RPL39, CBS, SH3BP5, BDH1, ANAPC15,

CCND2, ATP6V0C, FOLR2, RAPGEF3, ST8SIA3, PCP4,

MGST1, and CSRP1) (Figures 3A, B). Risk score were

calculated based on the expression levels and matching

coefficients of these 17 genes (risk score = U2AF1*(-0.2693) +

SKP1*(-2.1119) + RAP1B*(-0.5732) + IRF9*(-0.9094) + RPL39*

(0.51087) + CBS*(-0.3459) + SH3BP5*(-0.37226) + BDH1*

(0.6100) + ANAPC15*(0.4592) + CCND2*(-0.3396) +

ATP6V0C*(-3.1010) + FOLR2*(-1.0969) + RAPGEF3*
FIGURE 1

The flowchart of the study.
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(-1.4154) + ST8SIA3*(-1.6129) + PCP4*(0.3333) + MGST1*

(-0.4300) + CSRP1*(0.3475)), and glioma patients were

divided into low- and high-risk groups. The KM curve showed

that the survival time of glioma patients in the high-risk group

was significantly shorter than that in the low-risk group

(Figure 3C). For the TCGA training set and the CGGA

validation set, the risk score, survival status, and risk genes of

glioma patients are shown in Figures 3D–I. In conclusion, a risk

score based on the 17-gene signature was the most effective in

predicting the prognosis of glioma patients.
Frontiers in Immunology 06
The risk score could be an independent
factor for predicting the overall survival
of glioma patients

Univariate and multivariate Cox regression analyses indicated

that a 17-gene signature-based risk score might serve as an

independent predictor for glioma patients (Figures 4A, B). Next,

the ROC curve showed that our risk score had the highest AUC value

(0.876) when compared to other clinical features, showing the best

predictive potential (Figure 4C). The AUC values for time-dependent
A B

D E

F

G

C

FIGURE 2

Identification of DEGs in the collected datasets. (A–C) Volcano diagrams of the TCGA+GTEx, GSE 68848, and GSE 4920 datasets. Red
represents upregulated genes, black represents genes with no significant difference, and blue represents downregulated genes. (D, E) The
selection of soft-thresholding power and construction of a scale-free network. (E) Cluster dendrogram in which similar genes are grouped into
the same module. (F) Module-trait relationships, where the turquoise module has the highest correlation (cor = 0.96 and p = 0). (G) Venn
diagram screening 170 DEGs in 4 glioma cohorts.
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OS at 1, 3, and 5 years were 0.876, 0.920, and 0.866, respectively

(Figure 4D). In addition, to accurately predict the prognosis of glioma

patients, we constructed a nomogram based on clinical features and

risk score, as shown in Figure 4E, with the risk score being the most

prominent factor and the model overall C-index value was 0.859

(95% CI: 0.839-0.878). Finally, we validated these results in the

CGGA cohort (Figures 4F, G). The risk score had a higher AUC

value (0.582) (Figure 4H), and the AUC values for time-dependent

OS at 1, 3, and 5 years were 0.582, 0.602, and 0.624, respectively

(Figure 4I). As shown in Figure 4J, we also constructed nomograms

of risk score combined with other important parameters in the

CGGA validation cohort (C-index = 0.782, 95% CI: 0.752-0.812).
Frontiers in Immunology 07
Tumour-infiltrating immune cell profiles

We assessed the association between risk score and

immunity. First, we compared the correlation of risk score

with different immune cells based on 7 algorithms, and the

results showed that macrophages, cancer-associated

fibroblasts, and CD4+ T cells were significantly positively

correlated with risk score (Figure 5A). The ssGSEA algorithm

was then used to analyse the infiltration statuses of 16 immune

cell types in gliomas and their related functions in the low- and

high-risk groups, and the box plots showed that the proportion

of immune cells in the high-risk group was significantly higher
A B

D

E

F

G

I

H

C

FIGURE 3

Construction and verification of a 17-gene risk signature. (A) LASSO coefficient profiles of the 170 DEGs. (B) Cross-validation for optimal parameter
selection in the LASSO regression model. (C) Overall survival analysis between the low- and high-risk groups. (D–F) The risk score , survival status,
and risk genes in the TCGA training set. (G–I) The risk score, survival status, and risk genes in the CGGA validation set.
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than that in the low-risk group (Figures 5B, C). As shown in

Figure 5D, the stromal, immune and ESTIMATE scores were

significantly higher in the high-risk group than in the low-risk

group. Finally, TIDE results showed no significant difference in

immune escape between the low- and high-risk groups

(Figure 5E). In conclusion, there was more immune cell

infiltration in the high-risk group.
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Analysis of immune checkpoints,
immune chemokines and
immunotherapy

Immune checkpoints and chemokines play an important

role in the regulation of immune cell function and are

considered to be key factors affecting tumour immunotherapy.
A B

D E

F G

IH J

C

FIGURE 4

The risk score could be an independent factor for predicting the overall survival of glioma patients. (A) Univariate Cox analysis in the TCGA
training cohort. (B) Multivariate Cox analysis in the TCGA training cohort. (C) ROC curve for the risk score in the TCGA training cohort.
(D) Time-dependent ROC curves at 1, 3, and 5 years in the TCGA training cohort. (E) Nomograms were based on clinical features and risk score
in the TCGA training cohort. (F) Univariate Cox analysis in the CGGA validation cohort. (G) Multivariate Cox analysis in the CGGA validation
cohort. (H) ROC curve for the risk score in the CGGA validation cohort. (I) Time-dependent ROC curves at 1, 3, and 5 years in the CGGA
validation cohort. (J) Nomograms were based on clinical features and risk score in CGGA validation cohort.
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We explored whether immune checkpoints and chemokines

differed between the low- and high-risk groups. The results

showed that TNFRSF14, PDCD1LG2, CD44, and CD276 were

significantly increased in the high-risk group in immune

checkpoints (Figures 6A, B), while CXCL8, CXCL10, CCL2,

and CXCR4 were significantly increased in the high-risk group

in chemokines (Figures 6C, D). As shown in Figure 6E, we

analyzed the association of risk score with drug sensitivity in the

PRISM database (16). The results showed that 6 potential drugs

(10−deacetylbaccatin, KW−2478, tosedostat, BMS−191011,

oncrasin−1, miltefosine) were highly correlated with the risk
Frontiers in Immunology 09
score. In conclusion, the high-risk group might be more

beneficial for immunotherapy.
The association of risk score with
mutational status

Numerous studies have shown that tumour mutational

burden (TMB) is another important factor affecting tumour

immunotherapy (17). Here, we first compared TMB levels in

the low- and high-risk groups, and as shown in Figures 7A, B,
A B

D E

C

FIGURE 5

Tumour-infiltrating immune cell profiles. (A) Correlation between risk score and immune cells. (B) The analysis of 16 immune infiltrating cells
between the low- and high-risk groups. (C) The analysis of immune functions between the low- and high-risk groups. (D) Comparison of the
stromal, immune, and ESTIMATE scores between the low- and high-risk groups. (E) TIDE scores for low- and high-risk groups. ns, no
significance, *P< 0.05, **P< 0.01, ***P< 0.001.
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TMB was significantly elevated in the high-risk group and

positively correlated with risk score. Then, the R package

“survminer” was used to identify the best cut-off value to

separate the patients into two clusters. K-M curve analysis

showed that patients with high TMB had a shorter survival

time than patients with low TMB (Figure 7C). Additionally,

based on the link between TMB and risk score, we found that

patients with high TMB and risk score had the worst prognosis

(Figure 7D). Finally, the “maftools” R package was used to

analyse and visualize somatic variation in risk subgroups. As

shown in Figures 7E, F, the top 15 mutated genes were the same

in the low- and high-risk groups, and TTN and MUC16 gene

mutations were the most common. Taken together, the TMB
Frontiers in Immunology 10
and somatic variant rates were highly related to the prognostic-

relevant risk score we constructed.
Functional enrichment analyses

To elucidate the potential biological functions and

pathways associated with these 17-gene signature. GSEA

enrichment analysis showed that the high-risk group was

mainly enriched in immune response and extracellular

matrix, and the enrichment function of the low-risk group

mainly included protein modification and pegulation of

clathrin dependent endocytusis (Figure 8A). We identified
A B
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C

FIGURE 6

Analysis of immune checkpoints, immune chemokines and immunotherapy. (A) Volcano plot of the distribution of immune checkpoint-related
genes in low- and high-risk groups. (B) Correlations between risk score and immune checkpoints in gliomas. (C) Volcano plot of the distribution
of immune chemokines-related genes in low- and high-risk groups. (D) Correlations between risk score and immune chemokines in gliomas.
(E) Correlation between risk score and drug sensitivity.
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345 DEGs based on the expression data of the low- and high-

risk groups (|Log2FC|>1 and p<0.05). Then, we performed a

GO enrichment analysis, these 345 DEGs were mainly enriched

in the extracellular matrix and cell migration (Figure 8B). As

shown in Figure 8C, KEGG enrichment analysis indicated that

these 345 DEGs were mainly related to the p53 signaling

pathway and ECM-receptor interaction. Taken together, the

17-gene signature was mainly associated with immune

response and the extracellular matrix.
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Drug sensitivity analysis of hub genes

In our study, the PPI network was used to analyse the

interactions of 17 genes, including 17 nodes and 20 edges

(Figure 9A). Meanwhile, the Cytohhuba plugin identified the top

7 core genes in the PPI network: CCND2, PCP4, SKP1, RPL39,

CBSL, ANAPC15, and FOLR2 (Figure 9B). Next, the Cell Miner

database was used to analyse the drug sensitivity of core genes. As

shown in Figure 9C, the expression profiles of hub genes other than
frontiersin.org
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FIGURE 7

The association of risk score with mutational status. (A) Boxplots showing differences in TMB between the low- and high-risk groups.
(B) Spearman’s correlation analysis showed a positive and significant correlation between TMB and risk score (R=0.5; P<0.001). (C) KM curve for
low- and high-risk groups in the TCGA database. (D) KM curve of TMB combined with risk score. (E) Waterfall plot showing the top 15 highly
mutated genes in the low-risk group. (F) Waterfall plot showing the top 15 highly mutated genes in the high-risk group.
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the CBS gene were positively correlated with drug sensitivity, which

may be related to tumour resistance.
RPL39 expression was upregulated in
gliomas and predicted a worse prognosis
for glioma patients

To further explore the validity of the 17-gene signature, we

selected one of the hub genes, RPL39, for in vitro validation. In

the TCGA database, we found that the expression level of RPL39

in glioma tissue was significantly higher than that in normal

brain tissue (Figure 10A). RPL39 was shown to be highly

expressed in IDH wild-type glioma patients (Figure 10B), and

its expression increased with glioma grade (Figure 10C). The

results were consistent with the IHC staining of the clinical

samples we collected (Figures 10D, E). In conclusion, RPL39 was

overexpressed in gliomas and positively correlated with tumour

aggressiveness. Next, the TCGA database was used to explore the

effect of RPL39 on the survival of glioma patients, and the KM

curve showed that the survival time of glioma patients with high

RPL39 expression was significantly shorter than that of glioma

patients with low RPL39 expression (Figure 10F). Furthermore,

the expression of RPL39 was significantly associated with the

prognosis of glioma patients with different clinical features (IDH
Frontiers in Immunology 12
status and WHO grade) (Figures 10G, H). In short, RPL39 is a

novel prognostic marker in glioma.
RPL39 promoted proliferation in
glioma cells

Our study indicates that RPL39, as one of the hub genes

related to cell development and extracellular matrix, is a

potential oncogene. To explore the function of RPL39 in

glioma, siRPL39 and Flag-RPL39 plasmids were used to

specifically knock down and overexpress RPL39, respectively,

and western blotting was performed to assess the efficacy of the

plasmids (Figure 11A). First, the CCK8 test was performed to

detect the viability of glioma cells, and the results showed that

RPL39 knockdown significantly reduced the viability of U251

and U87 cells, while RPL39 overexpression increased cell

viability (Figure 11B). Cell colony formation experiments

showed that RPL39 knockdown greatly reduced the number of

colonies in U251 and U87 cells, but RPL39 overexpression had

the reverse effect (Figures 11C, D). Finally, an EdU assay was

used to evaluate the proliferation ability of U251 and U87 cells,

and EdU positivity indicated that the cells were in the division

phase. The results showed that the number of positive cells in the

RPL39 knockdown group was lower than that in the normal
A

B C

FIGURE 8

Functional enrichment analyses. (A) GSEA enrichment analysis of low- and high-risk groups. (B) GO functional enrichment analysis of DEGs
between low- and high-risk groups. (C) KEGG pathway enrichment analysis of DEGs between low- and high-risk groups.
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group, while the number of positive cells in the RPL39

overexpression group was higher than that in the normal

group (Figures 11E–H). In conclusion, RPL39 could promote

the proliferation of glioma cells.
RPL39 promoted EMT in glioma cells

In tumour research, disruption of the extracellular matrix is

essential for tumour migration and invasion; therefore, we speculate

that RPL39 may affect EMT progression in glioma cells. First, we

tested the migratory ability of glioma cells by wound healing assay.

As shown in Figures 12A–C, compared with the control group, the

wounds in the RPL39 knockdown group healed slowly, while

the spacing in the RPL39 overexpression group was

significantly narrowed. Meanwhile, the Transwell assay showed

that knockdown of RPL39 reduced the invasive ability
Frontiers in Immunology 13
of U251 and U87 cells (Figures 12D, E). Finally, to further

explore the relationship between RPL39 and EMT, cellular

immunofluorescence was used to detect the expression of key

proteins in EMT. The results showed that N-cadherin expression

was reduced in the RPL39 knockdown group, while Vimentin

expression was increased in the RPL39 overexpression group

(Figures 12F, G and Figures S2A, B). These results demonstrated

that RPL39 promotes glioma cell migration and invasion.
RPL39 induced M2 phenotype
macrophages polarization and infiltration

To further elucidate the correlation between RPL39 and tumor

immunity. First, we collected conditioned medium of si-RPL39-

transfected U87 cells and incubated with M0 macrophages for 24 h.

The results of PCR showed that there was no significant change in
A B

C

FIGURE 9

Drug sensitivity analysis of hub genes. (A) PPI network of the 17 genes. (B) Top 7 hub genes in the PPI network; greater scores in the network
are represented by darker colours. (C) Drug sensitivity of the hub genes in the Cell Miner database.
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the expression ofM1 phenotypemacrophages markers (TNF-a and

iNOS), while the expression of M2 phenotype macrophages

markers (CD206 and Arg1) decreased significantly (Figure 13A).

At the same time, Western blot analysis showed that the protein

levels of CD206 and Arg1 also decreased (Figure 13B). These results

suggested that knockdown of RPL39 inhibited the polarization of

M2 phenotype macrophages but had no effect on M1 phenotype

macrophages. Next, we confirmed the positive correlation of RPL39

with the expression of CD206 and Arg1 in collected clinical samples

and in public databases (Figures 13C, D). Finally, as shown in

Figure 13E, we co-cultured U87 cells with M2 phenotype

macrophages, and the results of transwell showed that

knockdown of RPL39 significantly reduced the infiltration of M2

phenotype macrophages (Figure 13F). Briefly, RPL39 induced

polarization and infiltration of M2 phenotype macrophages.
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Discussion

Gliomas are the most frequent malignant central nervous

system tumours, accounting for more than 80% of all primary

brain tumours (18). Because of glioma’s high heterogeneity and

invasiveness, the 5-year survival rate of glioma patients remains

very low (19), prompting people to aggressively investigate the

pathophysiology and molecular targeted therapy of glioma. With

the advent of the era of precision medicine and the development

of bioinformatics, an increasing amount of research has focused

on identifying markers or models that can accurately predict

prognosis and provide individualized treatment for patients (20,

21). For example, Ma J et al. identified 5 prognosis-related

markers in triple-negative breast cancer and provided potential

therapeutic targets through multiomics and bioinformatics (22).
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FIGURE 10

RPL39 expression was upregulated in gliomas and predicted a worse prognosis for glioma patients. (A) TCGA database analysis indicated that RPL39
mRNA expression is increased in glioma. (B) Correlations between RPL39 mRNA expression and IDH status. (C) Correlations between RPL39 mRNA
expression and WHO grade. (D, E) Immunohistochemical staining of RPL39 in clinical samples, statistical analyses were shown on the right. (F) KM
survival analysis for overall survival for glioma patients in TCGA database. (G) KM survival analysis of RPL39 mRNA expression compared with IDH
status. (H) KM survival analysis of RPL39 mRNA expression compared with WHO grade. ns, no significance, *P< 0.05, **P< 0.01, ***P< 0.001.
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Zhou L et al. developed an 8-gene signature to predict overall

survival in colon cancer patients (23). However, similar research

in gliomas was significantly less common than in other tumours,

implying that more comprehensive and in-depth studies of

gliomas are urgently needed.

In this study, we used multiple public datasets to investigate

the predictive role of novel biomarkers in glioma. WGCNA and

differential expression analysis were performed to identify 170

DEGs between glioma and normal tissues, and GO function and

KEGG pathway enrichment analyses found that these genes were

mainly associated with glioma progression and migration. LASSO
Frontiers in Immunology 15
regression and Cox regression analyses identified the best 17-gene

signature, and the risk score of the 17-gene signature accurately

predicted overall survival in glioma patients and could be

considered an independent prognostic model. At the same time,

the AUC value of the risk score reached 0.876 and the C-index

value of the model was 0.859, which was much greater than the

prognostic model constructed by the previous study, indicating

that our 17-gene signature was more advantageous in precision

(24–26). Aside from prognostic value, we found that the 17-gene

signature was also related to tumour immunity and gene

mutation. A growing number of studies have shown that
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FIGURE 11

RPL39 promoted proliferation in glioma cells. (A) Western blot confirming successful plasmid construction. (B) A CCK8 assay was used to
measure the viability of U251 and U87 cells. (C, D) Knockdown of RPL39 reduced colony numbers in U251 and U87 cells, whereas
overexpression of RPL39 resulted in the opposite; statistics are shown on the right. (E-H) EdU assays were performed to assess cell proliferation.
Red represents EdU-positive cells; blue represents nuclei. The percentage of EdU-positive cells was determined by counting erythrocytes/blue
cells. *P< 0.05, **P< 0.01, ***P< 0.001.
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tumour immunity is crucial for tumorigenesis and therapeutic

response (27, 28). Yu M et al. found that high PARG expression

was associated with poor prognosis in hepatocellular carcinoma,

and knockdown of PARG enhanced the efficacy of immune

checkpoint therapy (29). Abdelfattah N et al. identified S100A4

as an immunotherapy target and an independent prognostic

factor in glioma patients by single-cell sequencing (30).
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In previous studies, most of the 17 genes that constitute

prognostic features have been shown to be associated with

cancer progression, displaying a favourable or unfavourable

prognostic significance in various tumours. S-phase kinase-

associated protein 1 (SKP1) is a component of the SCF (SKP1/

cullin-1/F-box) ubiquitin ligase complex. SCF complexes play

important roles in cell division and cancer progression by
frontiersin.org
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FIGURE 12

RPL39 promoted EMT in glioma cells. (A-C) Wound healing assays were performed to evaluate cell migration capacity. (D, E) Transwell assays
were performed to evaluate cell invasion capacity. (F, G) Immunofluorescence was used to compare intracellular protein expression. **P< 0.01,
***P< 0.001.
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degrading specific protein substrates through ubiquitination (31,

32). In colorectal cancer, SKP1 is highly expressed and is associated

with poor patient prognosis (33). Purkinje cell protein 4 (PCP4), an

anti-apoptotic peptide that binds calmodulin, has been shown to

promote the migration and invasion of human breast cells (34) and

to benefit the prognosis of lung adenocarcinoma patients (35).

Folate receptor beta 2 (FOLR2) is one of the prognostic genes

associated with the breast cancer tumour microenvironment (36),

and patients with high FLOR2 expression in lung adenocarcinoma

have longer overall survival (37). Ribosomal protein L39 (RPL39) is
Frontiers in Immunology 17
a component of the 60S ribosome on the X chromosome (XQ24)

(38). In pancreatic cancer, knockdown of RPL39 inhibited cell

proliferation and enhanced cell apoptosis (39). In metaplastic

breast cancer, patients with high expression of RPL39 had lower

overall survival, and RPL39 increased cell proliferation and

migration by inducing nitric oxide synthase (INO)-mediated NO

production (40). RPL39 has not been studied in glioma, and we

further explored the function of RPL39 in glioma. As previously

described, our in vitro results showed that RPL39 was highly

expressed in gliomas and was associated with a worse prognosis.
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FIGURE 13

RPL39 induced M2 macrophages polarization and infiltration. (A) Marker mRNA expression levels in M1 phenotype macrophages and M2
phenotype macrophages. (B) Western blot analysis further analyzed the expression of M2 phenotype macrophage markers. (C)
Immunohistochemical staining showed that RPL39 was positively correlated with the expression of CD206 and Arg1, statistical analyses were
shown on the right. (D) RPL39 expression positively correlated with infiltration of M2 phenotype macrophages. (E) Schematic representation of
co-culture of U87 cell and M2 phenotype macrophages. (F) Knockdown of RPL39 inhibited infiltration of M2 phenotype macrophages. ns, no
significance, **P< 0.01, ***P< 0.001.
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RPL39 promoted the proliferation of glioma cells and changed the

EMT status of glioma cells; these results were consistent with those

of previous studies.

In conclusion, we effectively constructed a predictive

prognostic risk model based on a 17-gene signature using

bioinformatics approaches such as WGCNA and LASSO

regression. The model displayed strong predictive efficacy in

both the training and validation cohorts, and clinical samples

and in vitro studies confirmed the feasibility of the model.

Despite meticulous planning, this experiment has some

limitations, animal model experiments and potential

mechanisms of action need to be further investigated.
Conclusion

We comprehensively analysed the gene expression of

glioma, and a novel 17-gene signature was constructed to

maximize the prognostic assessment and molecular targeted

therapy of glioma.
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