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Abstract: Celangulin V (CV), one of dihydroagarofuran sesquiterpene polyesters isolated from
Chinese bittersweet (Celastrus angulatus Maxim), is famous natural botanical insecticide. Decades of
research suggests that is displays excellent insecticidal activity against some insects, such as
Mythimna separata Walker. Recently, it has been validated that the H subunit of V-ATPase is one of
the target proteins of the insecticidal dihydroagarofuran sesquiterpene polyesters. As a continuation
of the development of new pesticides from these natural products, a series of β-dihydroagarofuran
derivatives have been designed and synthesized. The compound JW-3, an insecticidal derivative of CV
with a p-fluorobenzyl group, exhibits higher insecticidal activity than CV. In this study, the potential
inhibitory effect aused by the interaction of JW-3 with the H subunit of V-ATPase c was verified
by confirmatory experiments at the molecular level. Both spectroscopic techniques and isothermal
titration calorimetry measurements showed the binding of JW-3 to the subunit H of V-ATPase was
specific and spontaneous. In addition, the possible mechanism of action of the compound was
discussed. Docking results indicated compound JW-3 could bind well in ‘the interdomain cleft’ of the
V-ATPase subunit H by the hydrogen bonding and make conformation of the ligand–protein complex
become more stable. All results are the further validations of the hypothesis, that the target protein of
insecticidal dihydroagarofuran sesquiterpene polyesters and their β-dihydroagarofuran derivatives
is the subunit H of V-ATPase. The results also provide new ideas for developing pesticides acting on
V-ATPase of insects.

Keywords: β-dihydroagarofuran; V-ATPase; subunit H of V-ATPase; isothermal titration calorimetry;
ITC; fluorescence spectroscopy; molecule docking

1. Introduction

Chinese bittersweet (Celastrus angulatus Maxim), which belongs to the family Celastraceae,
has long been known for its medicinal and insecticidal properties, and lots of dihydroagarofuran
sesquiterpene polyol esters extracted from this plant display excellent insecticidal activity [1–7].
These insecticidal compounds mainly affect the digestive system of pests, which after oral
administration present a series of symptoms, such as excitement, twitching, emesis, and loss of
body fluid [8]. Transmission electron microscopy (TEM) analysis show that celangulin V (CV) could
induce time-dependent cytotoxicity in the midgut epithelial cells of Mythimna separata Walker larvae,
such as visible vacuolization of cytoplasm, serious disruption of microvilli, fragmentation of RER
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cisternae, and rupture of plasma membrane. Subsequently, these morphological changes induce
leakage of cytoplasm contents into the midgut lumen, resulting in the appearance of numerous
lysosome-like vacuoles and secretion [8]. And as a continuation of the development of new pesticides
from these natural products, we have previously reported the design and synthesis of a series of
β-dihydroagarofuran derivatives, which gave a good number of hit compounds through screening
against the larvae of Mythimna separata Walker [9,10]. Moreover, selected lead compounds from these
hits were found to exhibit excellent LD50 values in the range of 21.1–85.1 µg/g (Figure 1). Specifically,
compound JW-3, an insecticidal derivative of CV with a p-fluorobenzyl group, could be used as
a fluorescent probe for measurement of the interaction of β-dihydroagarofuran derivatives with their
target biomacromolecule.
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Figure 1. The chemical structure of Celangulin-V and some reviously reported insecticidal
β-dihydroagarofuran derivatives.

The discovery of novel targets and new mechanisms of action is of vital significance to the
development of pesticides as the discovery of novel targets may result in a series of new pesticides.
Moreover, in the development of pesticides, natural products and synthetic naturally derived
agrochemicals are useful probes in providing new targets [11,12]. Recently, Wu et al. have validated the
subunit H of V-ATPase is one of the target proteins of the insecticidal dihydroagarofuran sesquiterpene
polyesters by affinity chromatography, enzyme-inhibiting activity and microscale thermophoresis
(MST) using celangulin or its derivatives [11,13]. Nevertheless, the current knowledge about the
insecticidal mechanisms of celangulin V and its derivatives is still severely lacking. In addition, to the
best of our knowledge, there are no studies that focus on elucidating the biological activity of the
β-dihydroagarofuran derivatives of CV on the H subunit of V-ATPase at a molecular level.

Given the considerations above, in the present study, the potential insecticidal interaction of
compound JW-3 with the H subunit of V-ATPase was investigated by spectroscopic techniques,
isothermal titration calorimetry measurements and molecular modeling. The potential inhibitory
effects caused by the interaction of JW-3 with the H subunit of V-ATPase was verified by confirmatory
experiments. The binding mechanism as well as the relevant parameters, including the number
of binding sites, binding constants, and binding forces were identified. Moreover, the interaction
behaviors were further elucidated by a molecular docking simulation.

2. Results

2.1. Synchronous Fluorescence Spectra Studies and Quenching Mechanism Analysis

In this study, the H subunit of V-ATPase was expressed and purified as described in the
Materials and Methods section. In consideration of the fact compound JW-3 contains a fluorescent
p-fluorobenzyl group, we first recorded the fluorescence spectra of JW-3 and the H subunit of V-ATPase
by synchronous scanning at a constant offset value ∆λ = 15 nm and 60 nm. The fluorescence signal
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of JW-3 in the synchronous spectra was confined in a Gaussian shape with numerous narrow peaks
around 260 nm at a ∆λ = 15 nm, while the fluorescence maximum of the H subunit appears above
290 nm (as shown in Figure 2). The results meant there was very low spectral overlap between
the compound and protein. This observation also indicated that synchronous fluorescence spectra
may provide a simple way of estimating the binding interaction between JW-3 and the H subunit
of V-ATPase. It was worth mentioning here that the fluorescence signal of JW-3 was very weak by
synchronous scanning at a ∆λ = 60 nm, so for the rest of this work, we chose a ∆λ = 15 nm.
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The synchronous fluorescence spectra of JW-3 following addition of different concentrations of
the H subunit of V-ATPase are shown in Figure 3. To gain insights into the nature of the interactions
between JW-3 and the protein, the fluorescence quenching profile of JW-3 was modeled with the
following Stern-Volmer equation [14]:

F0

F
= 1 + Ksv[Q] (1)

where F0 and F are the steady-state fluorescence intensities in the absence and presence of a quencher,
respectively; [Q] is the concentration of the quencher; Ksv is the Stern-Volmer dynamic quenching rate
constant. Based on the linear fit plot of F0/F versus [Q], the Ksv values and Stern-Volmer curves of
JW-3—the subunit H system could be obtained.

It is well known that fluorescence quenching is the decrease of the fluorescence quantum
yield from a fluorophore induced by a variety of molecular interactions, such as excited-state
reactions, energy transfer, ground-state complex formation, and collisional quenching. The quenching
mechanisms are usually classified as dynamic quenching and static quenching, which can be
distinguished by their different dependence on temperature and viscosity. In dynamic quenching,
increasing the temperature results in faster diffusion and, hence, increased collision, thereby raising the
quenching constant. In contrast, in static quenching, increasing the temperature weakens the stability
of the formed complex and, hence, reduces the quenching constant. Thus, additional experiments
were conducted.
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Figure 3. The fluorescence quenching spectra of JW-3 by the subunit H of V-ATPase at 298 K and pH 6.8.
(A) In the absence of JW-3; (B) In the constant concentration of JW-3 (6.578 × 10−5 M). The concentration
of the protein changed from a to v (10−7 M): 0, 0.67, 2.00, 3.32, 4.62, 5.90, 7.17, 8.42, 9.66, 10.88, 12.08,
13.27, 14.45, 15.61, 16.75, 17.89, 19.00, 20.11, 21.20, 22.29, 23.35, 24.41.

The Stern-Volmer plots at different temperatures are shown in Figure 4, and the Ksv values derived
from Equation (1) at the three temperatures were presented in Table 1. It was found that the Ksv value
decreased when the temperature rose from 288 K to 303 K, which indicated that the probable binding
interaction of JW-3 with the H subunit of V-ATPase was static quenching by complex formation, rather
than dynamic collision.
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Figure 4. Stern-Volmer plots describing JW-3 quenching caused by the subunit H of V-ATPase at three
different temperatures.

Table 1. The Stern-Volmer quenching constant Ksv of JW-3-V-ATPase subunit H system at different
temperatures were deduced from Figure 4.

pH Temperature/K KSV (M−1) R2

288 7.295 × 105 0.9935
6.8 298 5.070 × 105 0.9799

303 4.557 × 105 0.9662
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Additionally, the quenching process was further analyzed using the following modified
Stern-Volmer equation [15]:

F0

F0 − F
=

1
faKa

1
Q

+
1
fa

(2)

where, for our study, F0 and F are the fluorescence intensity in the absence and presence of the quencher,
respectively; Ka is the effective quenching constant for the accessible fluorophores, which is analogous
to the association binding constants (Ka) for the quencher-acceptor system; [Q] is the concentration
of the quencher; and f a is the fraction of accessible fluorescence. As shown in Figure 5, the curves
of F0/(F0 − F) versus [Q]−1 were linear when calculated according to quencher concentrations.
The corresponding parameters are presented in Table 2. Moreover, the decreasing trend of Ka indicated
that the binding of JW-3 to the V-ATPase subunit H was reduced as the temperature increased.
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V-ATPase as reported method [15]. The temperature is as indicated in the figure.

Table 2. Modified Stern-Volmer association constant (Ka) deduced from Figure 5.

pH Temperature/K Ka (M−1) R2

288 3.42 × 105 0.9974
6.8 298 2.58 × 105 0.9970

303 1.65 × 105 0.9840

2.2. Characterization of the Binding Interaction between JW-3 and the Subunit H of V-ATPase by Isothermal
Titration Calorimetry Measurements

The interactions between JW-3 and the H subunit of V-ATPase, as determined from spectral
data, prompted us to examine the thermodynamic basis and nature of the binding forces of such
interactions. To this end, we performed isothermal titration calorimetry measurements, which are
widely used to study the interactions of small molecules with biomolecules. A typical titration
experiment was shown in Figure 6A. After an initial exothermicity, the heats of interaction reached
a constant value. The heat flows were integrated to yield the heats of reaction (Figure 6B). The heat of
dilution towards the end of the system was subtracted before evaluating the data. The solid line in
Figure 6B corresponded to a binding model with a 1.413:1 stoichiometry and was fitted with the change
of enthalpy ∆H = −25 kcal/mol and entropy ∆S = −58.88 cal/mol·K. The equilibrium association
constant (Ka) between JW-3 and the H subunit of V-ATPase was also fitted and was 2.974 × 105 M−1.
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This result indicated that the binding was specific. The illustration in Figure 6B contained the enthalpic
and entropic components to the free energy change, ∆G. It was shown the spontaneous binding of JW-3
to the H subunit of V-ATPase was enthalpy-driven while the entropy was even counteracting binding.
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Figure 6. Calorimetric titration of the H subunit of V-ATPase with JW-3 at 298 K. (A) Heat flow as
a function of time; (B) Reaction enthalpy of JW-3 versus injection number. The solid line corresponds
to the theoretical independent model. The thermodynamic constants are presented in the pane.

2.3. Homology Modeling

The clustal analysis show that the V-ATPase subunit H from M. separata and yeast share
24.7% identity and 32% similarity (Figure S1 in the Supporting Information), which allows for
a rather straightforward sequence alignment and guarantees the quality of homology modeling.
Therefore, selecting the crystal structure of yeast V-ATPase subunit H (PDB entry code: 1ho8) as
template, a plausible homology model of the target protein was generated by using SWISSMODEL
server [16]. In order to reduce steric clashes and further obtain a rational modeling 3D conformation
of the model structure, the staged minimizations have been further performed by using SYBYL-X2.1
as our previous studies [17,18]. The quality of homology modeling was assessed by RAMPAG [19].
The results showed that 93.9% of residues were distributed in the favoured regions, 4.7% in the allowed
regions, and only 1.4% in the outlier regions, respectively (Figure S2 in the Supporting Information).
These results demonstrated that the 3D structure of the M. separata V-ATPase subunit H was available
for subsequent docking.

2.4. Molecular Docking

In order to understand the interaction of JW-3 with the H subunit of V-ATPase, docking
simulations of the interaction between the inhibitor and the protein carried out. Docking protocol was
followed with the model structure. Taking into account the high binding energy and the reasonable
binding conformation, the representative configuration in the highest populated cluster with the
lowest-energy was thereafter selected. As shown in Figure 7, compound JW-3 could well bind in
‘the interdomain cleft’ of the M. separata V-ATPase subunit H with the binding energy predicted to be
−6.07 kcal/mol. The five hydrogen bonds of the hydroxyl oxygen atom with the side chain of Ser-347,
the fluorine atom with the side chain of Lys-388, the three oxygen atoms on the rings with the side
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chain of Lys-248 and Cys-298 were reproduced (Figure 7B,C). Interestingly, the p-fluorobenzyl group
extended into the space between the side chains of Arg-349 and Lys-388, which suggested a special
electrostatic interaction. It is believed that these polar contacts were the major contributors to the
stabilization of the ligand binding.
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Figure 7. The binding model of JW-3 in the interdomain cleft of the M. separata V-ATPase subunit H
(A, global view; B, top view; C, front view). Compound JW-3 (C, cyan; O, red; F, silver) were shown in
sticks. The key amino acids forming the pocket were represented in sticks and lines with different color.
The hydrogen bonds were denoted by yellow dash lines.

3. Discussion

Synchronous fluorescence spectroscopy (SFS) through synchronous scanning of both excitation
and emission wavelengths is known to provide narrower and more symmetric spectra in a wider
spectral range. This scan functionality results in a higher spectral selectivity for the monitoring of
fluorescence sources [20,21]. By reducing spectral bleed through, SFS serves as a simple and useful
method for the simultaneous determination of fluorescent components in complex mixtures. Also, SFS
can be used to measure fluorescence quenching and provide information regarding the molecular
environment in the vicinity of the chromophore molecules, so synchronous fluorescence spectroscopy
usually plays an important role in studies on interaction between proteins and small molecules [20–23].
Traditionally, researchers focus on the fluorescence quenching of proteins induced by small ligands.
However, in this study, discernible changes of the fluorescence signal were not recorded as JW-3
was titrated into solutions of the H subunit of V-ATPase. There are two possible reasons for such
a phenomenon. Firstly, the emission spectrum of JW-3 and the excitation spectrum of the protein
are partially overlapped (seen Figure 2). This means the emitted light of JW-3 could excite intrinsic
fluorophores of the protein and the increased concentration of the compound will strengthen the
fluorescence of the protein. Secondly and most importantly, there are eight tryptophan (Trp), twelve
tyrosine (Tyr), and sixteen phenylalanine (Phe) residues in the protein. When it interacts with other
compounds, the microenvironment change of the individual intrinsic fluorophore (Trp, Tyr or Phe)
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with the ligand's concentration does not have an apparent effect on the whole fluorescence of the
protein. It is suggested that too many intrinsic fluorophores lead to fluorescence quenching of the
protein being difficult. In fact, fluorescence quenching of the protein by the compound JW-2 was not
observed, similar to that by JW-3, so the fluorescence spectra of displacement experiments for the
fluorescent compound JW-3 were measured at different concentrations of the protein. The fluorescence
quenching mechanism revealed the binding interaction of JW-3 with the H subunit of V-ATPase was
static quenching by complex formation, rather than dynamic collision.

The verification of the interaction between JW-3 and the H subunit of V-ATPase was further done
by isothermal titration calorimetry measurements and molecular docking studies. The association
constants determined (Ka) by ITC was 2.974 × 105 M−1 and a value of the same order of magnitude
was measured by fluorescence titration. The differences in Ka values between ITC and fluorescence
spectroscopy must be attributed to the different assay conditions. In addition, the ITC experiments
presented the binding of the inhibitor to the subunit H of V-ATPase was driven by enthalpy, but
the entropy term even counteracted the binding. It was another example of the enthalpy−entropy
compensation effect on the ligand−protein interaction. The interpretation of ∆H and T∆S in terms of
molecular structure was difficult, but it is common to associate ∆H with van-der-Waals and electrostatic
interactions [24]. However, as these were increased, the molecular structure of the ligand–protein
complex rigidified and the loss in conformational freedom produced a negative T∆S term which
reduced the gain in enthalpy [24].

Figure 8 shows the superposition of the X-ray crystallographic structures of yeast V-ATPase
subunit H (PDB entry code: 1ho8, 5vox, and 5d80) [25–27]. The three structures demonstrate the
N-terminal of the protein has a relatively stable conformation, but the conformation of the C-terminal is
very unstable. The C-terminal can easily transform into one of the other conformations under different
conditions. Between the N- and C-terminal, a cavity could be formed by the some residues from
N-terminal and the others from C-terminal, which is defined as the interdomain cleft.
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Bank (PDB entry code: 1ho8, 5vox, and 5d80). All proteins are shown in cartoon model. N-terminals of
all proteins are colored in cyan. C-terminals of the proteins are colored in yellow (1ho8), green (5vox),
and red (5d80) respectively.

Our docking results indicated compound JW-3 could well bind in ‘the interdomain cleft’ of
the M. separata V-ATPase subunit H. The compound JW-3, like two hands, pulled both terminals of
the protein and brought the loss in conformational freedom of the ligand–protein complex. In this
way, the combination of the H subunit and whole V-ATPase complex may be affected, and then the
function of V-ATPase complex may be destroyed. The binding model of JW-3 could well help us
to understand the reduction of entropy in ITC experiment. Moreover, the polar contacts (such as
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hydrogen bonding, Figure 7) contributed the change of enthalpy, ∆H, during the binding of JW-3 to
the protein. In all, both the results of isothermal titration calorimetry measurements and molecular
docking were consistent with each other, and verified the binding between JW-3 and the subunit H of
V-ATPase was specific.

4. Materials and Methods

4.1. Materials

E. coli BL21 (DE3) which can express the subunit H of V-ATPase of M. separata was provided by
Institute of Pesticide Science, NWAFU (Yangling, China). Compound JW-3 (purity > 98% according to
HPLC analysis (shimadzu corporation, Shanghai, China) was synthesized by our previously reported
method [11]. Ni-NAT agarose was purchased from GE Healthcare (Beijing, China). All the other
chemicals were of analytical grade, and were purchased from commercial suppliers. All solutions
were prepared with ultrapure water.

4.2. Expression and Purification of the Subunit H of V-ATPase

The expression and purification of the H subunit of V-ATPase were determined according to our
previous protocol with minor modifications [11]. The eluted proteins washed with the elution buffer
(20 mmol/L Tris-HCl, 300 mmol/L NaCl, 500 mmol/L imidazole, pH 8.0) were further washed with
wash buffer (20 mmol/L Tris-HCl, 300 mmol/L NaCl, pH 8.0) and concentrated using an Ultrafiltration
Cup with 10 kDa Ultrafiltration Membrane Discs (EMD Millipore Corporation, Billerica, MA, USA).
The final purity (>95%) of the sample was verified by SDS-PAGE electrophoresis and the concentrations
of purified proteins were determined by the Bradford method. The final purified protein was stored in
20% (v/v) glycerol at −22 ◦C.

4.3. Fluorescence and Synchronous Fluorescence Measurements

All fluorescent measurements were carried out on a LS55 Fluorescence Spectrometer (PerkinElmer
Inc., Waltham, MA, USA) equipped with a xenon lamp source and 1.0 cm path length quartz
fluorescence cuvette. Synchronous fluorescence spectrum was obtained by simultaneously scanning
the excitation and emission monochromators at a constant offset value ∆λ = λem – λex = 15 nm and
60 nm. It was recorded over a wavelength range of 200–650 nm in the absence and presence of various
concentrations of V-ATPase Subunit H in 67 mM phosphate buffer (pH 7.9, mixture of NaH2PO4·2H2O
and Na2HPO4·12H2O). The excitation and emission slit widths were set at 5 nm. The scan speed and
PMT voltage were 1000 nm/min and 650 V, respectively. The appropriate blank corresponding to the
buffer was subtracted to correct background of fluorescence.

4.4. Isothermal Titration Calorimetry (ITC) Experiment

Titration of JW-3 into the V-ATPase subunit H was performed with a Nano ITC(SV) instrument
(TA Instruments Ltd, Crawley, West Sussex, UK). All solutions were prepared in 20 mM Tris-Base
buffer adjusted to pH 7.8. The V-ATPase Subunit H solution (8.63 µM) was placed in the 950 µL
sample cell of the calorimeter, and 0.2 mM JW-3 solution with a final concentration of 0.1% DMSO was
loaded into the injection syringe. The JW-3 was titrated into the sample cell at 298 K as a sequence
of 25 injections of 10 µL. The time delay between injections was 300 s. The content of the sample cell
was stirred at a speed of 300 rpm/min throughout the experiment to ensure comprehensive mixing.
Control experiments included the titration of JW-3 solution into Tris-Base buffer.

4.5. Data Analysis

Raw data from the ITC instrument were obtained as plots of heat (µcal) against mole ratio and
exhibited a series of peaks for each injection. The raw data were transformed using NanoAnalyze
Data Analysis software (version 3.7.5., TA Instruments) to obtain a plot of observed enthalpy change
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per mole of injectant (∆H kcal/mol) against the molar JW-3/protein ratio [28]. The estimated binding
parameters were obtained from ITC data using the same NanoAnalyze Data Analysis software.
Data fits were obtained in an independent-model way.

4.6. Homology Modeling

A homology model structure of the V-ATPase subunit H of M. separata was built using the
SWISSMODEL server as described in our previous study [17,18]. Briefly, the query amino acid
sequence (accession No.: AHF70968) was entered as the input parameter. The X-ray crystallographic
structure of yeast V-ATPase subunit H (PDB entry code: 1ho8) was selected as template. The amino
acid sequence of the query was aligned with the template protein. The homology model was built by
inheriting the backbone conformation from the structural template and replacing non-identical side
chains while preventing the change of as many torsion variables as possible. Subsequently, all hydrogen
atoms were subsequently added to the unoccupied valence of heavy atoms of the model structure at
the neutral state by using the UCSF Chimera software [29].

4.7. Molecular Docking

Docking studies were performed by using the AutoDock 4.2 software as our previous studies [18].
The preparations relevant to Autodock docking were done using the Autodock Tools. The ligand
rigid roots were automatically set and all possible rotatable bonds and torsions were defined as active.
The grid box (40 × 40 × 40) was set according to the interdomain cleft. For random simulation, the grid
box was enlarged. The docking parameters consisted of setting the population size to 150, the number
of generations to 270,000, and the number of evaluations to 25,000,000 while the number of docking
runs was set to 20 with other default values during each docking run. Docking calculations were
carried with the Lamarkian Genetic Algorithm (LGA). Pymol and UCSF Chimera was used to display
the conformation and interaction [30].

5. Conclusions

The correlation analyses of the binding interaction between JW-3 and the H subunit of
V-ATPase showed the binding of JW-3 to the subunit H of V-ATPase was specific and spontaneous.
The association constant was about 2.974 × 105 M−1. The enthalpy change induced by the electrostatic
interaction drove the binding while the entropy was even counteracting binding. Our docking results
indicated compound JW-3 could well bind in ‘the interdomain cleft’ of the V-ATPase subunit H and
then make conformation of the ligand–protein complex become more stable. All results are the further
validations of the hypothesis, that the target protein of insecticidal dihydroagarofuran sesquiterpene
polyesters and their β-dihydroagarofuran derivatives is the subunit H of V-ATPase.
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