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Abstract: Src plays a crucial role in many signaling pathways and contributes to a variety
of cancers. Therefore, Src has long been considered an attractive drug target in oncology.
However, the development of Src inhibitors with selectivity and novelty has been challenging.
In the present study, pharmacophore-based virtual screening and molecular docking were carried out
to identify potential Src inhibitors. A total of 891 molecules were obtained after pharmacophore-based
virtual screening, and 10 molecules with high docking scores and strong interactions were selected
as potential active molecules for further study. Absorption, distribution, metabolism, elimination
and toxicity (ADMET) property evaluation was used to ascertain the drug-like properties of the
obtained molecules. The proposed inhibitor–protein complexes were further subjected to molecular
dynamics (MD) simulations involving root-mean-square deviation and root-mean-square fluctuation
to explore the binding mode stability inside active pockets. Finally, two molecules (ZINC3214460
and ZINC1380384) were obtained as potential lead compounds against Src kinase. All these analyses
provide a reference for the further development of novel Src inhibitors.

Keywords: Src inhibitors; pharmacophore model; virtual screening; molecular docking;
molecular dynamics simulations

1. Introduction

The Src family kinases (SFKs) are a family of non-receptor tyrosine kinases, which are involved in
a wide variety of essential functions to sustain cellular homeostasis, where they regulate cell cycle
progression, motility, proliferation, differentiation and survival, among other cellular processes [1].
As a prototypical member of the SFKs, Src contains Yes, Fyn, Lyn, Lck, Hck, Fgr, Yrk, Frk and Blk
kinases [2]. Src consists of four homology domains (SH1, SH2, SH3 and SH4) and a unique domain
(Figure 1). The SH1 domain (also called the catalytic domain) is composed of two subdomains
(generally termed N-terminal and C-terminal lobes) separated by a cleft. The N-terminal lobe contains
the highly conserved hinge region that is implicated in the interaction with the ATP-adenine ring
and to which most of the Src inhibitors anchor through hydrogen bonding. The C-terminal lobe is
larger, comprises an activation loop that contains a tyrosine residue that can be autophosphorylated
(Tyr419 in human c-Src) and is the positive regulatory site responsible for maximizing kinase activity.
The phosphorylation of this residue stabilizes the kinases in an active conformation accessible to ATP
and substrates. On the contrary, when another tyrosine residue located in the C-terminal lobe tail
(Tyr530 in human c-Src) is phosphorylated, a closed conformation is induced [3]. The SH2 and SH3
domains regulate the Src catalytic activity through both intramolecular and protein–protein interactions.

Molecules 2020, 25, 4094; doi:10.3390/molecules25184094 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-1331-2164
http://www.mdpi.com/1420-3049/25/18/4094?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25184094
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 4094 2 of 13

The SH4 domain is a 15-amino acid sequence whose myristoylation allows the binding of Src members
to the inner surface of the plasma membrane. The unique domain is included in the N-terminal
segment of the proteins, together with SH4, and is composed of 50–70 residues. Unlike the SH domains,
it displays the greatest divergence among the SFKs and thus probably contributes to the differentiation
of their biological functions [4]. Src is a central signaling hub that can be activated by many factors,
including immune-response receptors, integrins and other adhesion receptors, receptor protein tyrosine
kinases, G protein-coupled receptors and cytokine receptors [5]. In normal cells, Src is only transiently
activated during the multiple cellular events in which it is involved. Conversely, Src is overexpressed
and/or hyperactivated in a large variety of solid tumors and is probably a strong promoting factor for
the development of metastatic cancer phenotypes [6]. Src is responsible for many human cancers such
as lung [7], neuronal [8], ovarian [9], esophageal [10] and gastric cancers [11], as well as melanoma [12]
and Kaposi’s sarcoma [13]. Due to its involvement in many cellular processes related to cancer
development, Src has long been considered a potential drug target in oncology.
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Figure 1. The crystal structure of the Src kinase and schematic domain structure.

The Src inhibitors developed to date are generally categorized into three major classes: (1) tyrosine
kinase activity inhibitors (ATP-competitive inhibitors); (2) protein–protein interaction inhibitors
(SH2, SH3 or substrate-binding domain); (3) enzyme destabilizers that provide a correlation between
Src and its united molecular chaperone, i.e., heat shock protein 90 (Hsp90) [14,15]. The search for
small molecules with an inhibitory activity toward Src kinases constitutes a growing field of study.
Several compounds have entered clinical trials, with two compounds ultimately approved by the
FDA: dasatinib, approved in 2006, and bosutinib, approved in 2012 [16]. However, dasatinib is
known to inhibit over 40 kinases, while bosutinib inhibits over 45 kinases, making it impossible
to use these compounds as selective mechanistic probes for Src-dependent pharmacology [17,18].
Furthermore, most Src inhibitors reported share similar scaffolds such as pyrazolo [3,4-d] pyrimidine,
quinoline and quinazoline (Figure 2). To this end, it is meaningful to find more effective and selective
Src inhibitors with new chemical scaffolds.

In this work, we report an integrated screening method containing pharmacophore-based virtual
screening; molecular docking; absorption, distribution, metabolism, elimination and toxicity (ADMET)
prediction; and molecular dynamics (MD) simulations to find novel Src inhibitors.
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Figure 2. Chemical structures of previously reported Src inhibitors.

2. Results and Discussion

2.1. Preparation of Chemical Database

Prior to performing the virtual screening, the database needed to undergo several filtering and
preparation steps to reduce the enormous number of compounds [19]. All the selected ligands were
downloaded from the ZINC database (https://zinc.docking.org/) using filters such as “in-stock” and
“drug-like”, and the selection of ligands was performed based on Lipinski’s rule of five (molecular
weight limit of 300 to 600 Da, hydrogen-bond acceptor limit of 10, hydrogen-bond donor limit of 5,
rotatable-bond limit of 7, and log P limit of 5). To produce a more refined and precise set of chemical
data, some built-in functions such as the “partial charges” and “energy minimize” tools of the Molecular
Operating Environment software (MOE, Version 2015.10) were applied on the data set. The resulting
database comprised 1,033,419 molecules with lowest energy in 3D format.

2.2. Generation and Validation of Pharmacophore Model

The protein–ligand complex serves as the starting template for this modeling, wherein intermolecular
interactions are perceived as feature points for subsequent virtual screening. Most often, a single
protein–ligand complex is used as the template to align and score the database molecules, from which
the best-fitted molecules are prioritized as potential hits [20]. Based on the crystal structure of Src
kinase selected (PDB ID: 3F3V), five key pharmacophore features were generated, including one
hydrogen-bond donor (Don), two hydrogen-bond acceptors (Acc), one hydrophobic and aromatic
center (Hyd/Aro) and one aromatic center (Aro). As shown in Figure 3, the pharmacophore model
was designed in consideration of the binding poses of the original ligand (RL45, yellow sticks).
Three hydrogen-bond features were present for the ligand–protein complex: the hydrogen-bond
donor (F1, purple sphere) of RL45 interacted with Glu310; the hydrogen-bond acceptors (F2 and F3,
cyan sphere) of RL45 interacted with Asp404 and Met341, respectively. One hydrophobic and aromatic
center (F4, yellow sphere) and one aromatic center (F5, orange sphere) were also present for the ligand.

For the validation of generated pharmacophore model, a test database was built including 18 Src
reported inhibitors and 18 collected decoy molecules, which can be seen in the Supplementary Materials.
The test database was then subjected to screening against the pharmacophore model to validate its
precision. As a result, we obtained 14 active molecules as hits, and none of the inactive molecules was

https://zinc.docking.org/
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mapped to the pharmacophore model. The results from the test database revealed the precision of the
generated pharmacophore model.
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2.3. Pharmacophore-Based Virtual Screening

The pharmacophore-model-based screening of databases has been considered as an important
tool for computer-aided drug discovery techniques and provides information about geometric and
electronic features that are involved in interaction with receptors [21]. In this part, the chemical database
comprised 1,033,419 molecules with lowest energy in 3D format and was generated by applying various
filters. We utilized the protein–ligand complex reported for Src for pharmacophore model generation
and performed virtual screening of the prepared database to find out the best matches against the
model. As a result, 891 molecules were obtained as hits on the basis of pharmacophore features.

2.4. Molecular Docking

The hits obtained from the pharmacophore-based virtual screening were subjected to molecular
docking studies; the top 10 molecules with the highest docking scores were selected for the study of
binding modes (Table 1). Among these 10 molecules, ZINC23247639 and ZINC10479320 have been
reported as broad-spectrum kinase inhibitors that interacted with the highly conserved ATP-binding
sites of many human protein kinases [22–24]; thus, we filtered them out in this investigation. As we
know, hydrogen bonds established between receptor and ligand play a major role in the functionality
and stability of the complex. Hence, we observed the dominant hydrogen-bond interactions between
the groups of the other eight hit molecules and the residues of the active site, and then, ZINC3214460
and ZINC1380384 caught our attention.

Using the default GBVI/WSA dG as a docking function in the MOE software, ZINC3214460
and ZINC1380384′s docking scores were calculated as −9.6287 and −8.9096 kcal/mol, respectively.
The binding interactions of ZINC3214460 and ZINC1380384 were illustrated by the PyMOL [25]
software (Figure 4). As we can see, some key amino acid residues were involved in hydrogen-bonding
interactions with ZINC3214460; a carbonyl group accepted an H-bond from the Asp404, and an N
atom of the isoxazole formed an H-bond with Met341. The H-bond distances were 2.87 and 3.19 Å,
respectively, and hydrogen-bonding energy components contributed −4.6 kcal/mol to the binding.
Correspondingly, ZINC1380384 formed three H-bond interactions with the kinase. The amide fragment
formed two H-bonds with Asp404 and Glu310, respectively, and an N atom of the benzimidazole
accepted an H-bond from a Met341 residue. The hydrogen-bonding energy components contributed
−6.9 kcal/mol to the binding. On the basis of good binding energies and their pattern of binding
interaction with active pocket, two selected molecules showed strong interaction with the key amino
acid residues of Src kinase. Furthermore, these two molecules have not been reported as kinase
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inhibitors or related with cancer yet, so our attention is focused on ZINC3214460 and ZINC1380384,
which were further subjected to ADMET prediction and molecular dynamics simulations.

Table 1. The structures and docking results of molecules.

ZINC ID Structure Src Docking Score
(kcal/mol)

ZINC3214460
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Table 1. Cont.

ZINC ID Structure Src Docking Score
(kcal/mol)

ZINC23247639
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2.5. ADMET Prediction

The lead compounds in drug development were found to have favorable absorption, distribution,
metabolism, elimination and toxicity (ADMET) properties [26]. Pharmacokinetic properties predict
the drug-likeness of ligand molecules. Therefore, the ADMET properties of molecules are essential
for the development of an effective druggable molecule. In this section, ADMET characteristics such
as buffer solubility, blood–brain barrier penetration (BBB), Caco-2 permeability, human intestinal
absorption (HIA), plasma protein binding (PPB), cytochrome P450 2D6 (CYP2D6) modulation and
hERG inhibition were studied for ZINC3214460, ZINC1380384, dasatinib and bosutinib. The results
are summarized in Table 2. Solubility and human intestinal absorption are two key factors that affect
oral bioavailability. We found that ZINC3214460 and ZINC1380384 show extremely high values of
solubility. Low blood–brain barrier permeability was found, which served in reducing the side effects
and toxicity to the brain, and the values of all the compounds are less than 1 (C.brain/C.blood < 1),
suggesting that they are inactive in the CNS (central nervous system). Caco-2 permeability was used to
evaluate the suitability of compounds for oral dosing, and the proposed compounds have slightly worse
human intestinal permeability than two drugs approved by the FDA. In addition, the comparable
intestinal absorption (HIA) for dasatinib and bosutinib indicated that two proposed compounds
possess good bioavailability. The high plasma-protein binding of ZINC3214460 means a long half-life
and stable efficacy, which could maintain a durable potency and adequate stability of the compound.
The inhibition of CYP2D6 by a drug constitutes the majority of cases of drug–drug interaction. It was
found that none of the compounds may inhibit CYP2D6. The cardiotoxicity may be related with the
high risk of hERG inhibition, as shown in Table 2; ZINC3214460 has a low risk of inhibiting hERG,
meaning that it has little chance of causing cardiac problems. However, according to the high-risk level
of hERG inhibition, the potential cardiotoxicity of ZINC1380384 should be considered in the future.
More ADMET prediction data for these two proposed molecules can be found in the Supplementary
Materials (Figures S1 and S2).

Table 2. The absorption, distribution, metabolism, elimination and toxicity (ADMET) prediction for
the investigated compounds.

Compound Buffer
Solubility 1 BBB 2 Caco-2 3 HIA 4 PPB 5 CYP2D6

Inhibition
hERG

Inhibition

ZINC3214460 81.69 0.01036 18.87 97.41 100 None Low risk
ZINC1380384 3735.39 0.4491 26.62 92.11 34.90 None High risk

Dasatinib 0.3113 0.03504 32.01 93.59 70.29 None Medium risk
Bosutinib 5.500 0.06055 50.35 97.23 85.07 None Medium risk
1 Buffer solubility: water solubility in buffer system (SK atomic types, mg/L), 2 BBB: blood–brain barrier penetration
(C.brain/C.blood), 3 Caco-2: in vitro Caco-2 cell permeability (nm/sec), 4 HIA: human intestinal absorption (%),
5 PPB: plasma protein binding (%).

2.6. Molecular Dynamics Simulations

MD simulations were conducted to check the stability of the complexes predicted by molecular
docking. After 50 ns MD simulations, the root-mean-square deviation (RMSD) of the backbone
of Src kinase and the ligands at 300 K was plotted against time (ns). As can be seen in Figure 5,
the RMSDs of 3F3V-ZINC3214460 and 3F3V-ZINC1380384 were discovered to be relatively stable
at about 0.27 and 0.22 nm, respectively. There were some fluctuations in the beginning, and then,
the complexes gradually tended to equilibrium until the time reached 25 ns of simulation. The RMSD
values of RL45 and ZINC1380384 in the binding site of Src are similar; however, the 3F3V-ZINC3214460
complex has a larger RMSD value at around 0.30 nm. The root-mean-square fluctuation (RMSF) is an
important parameter that yields data about the structural adaptability of every residue in the system.
The RMSF values for all the residues in the 3F3V-ZINC3214460 and 3F3V-ZINC1380384 complexes
were calculated (Figure 6). In general, the Src inhibitors are settled to the highly conserved region of



Molecules 2020, 25, 4094 8 of 13

the protein (Glu339, Asp348 and Asp404 in the affinity pocket and Glu310 and Leu317 in the hinge
region) through hydrogen bonds, van der Waals forces and hydrophobic interaction, etc. We found
that the RMSF fluctuation values of the conserved amino acids (e.g., Glu310, Leu317 and Glu339) in
3F3V-ZINC3214460 and 3F3V-ZINC1380384 were lower than those in 3F3V-RL45, reflecting that the
two proposed molecules could form stronger interactions with these conserved residues. The proteins
showed distinct behavior with a varied magnitude of fluctuations at the loop region (e.g., Ser522 and
Tyr527), which could be used to discover more selective inhibitors of Src. Based on the above analysis,
we can conclude that these two selected molecules matched very well with the Src binding pocket,
suggesting reasonable binding modes.
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3. Materials and Methods

3.1. Generation and Validation of Pharmacophore Model

In this study, a protein–ligand complex-based pharmacophore model was generated by using
the pharmacophore query editor protocol of MOE. Binding interactions induce significant chemical
features, which were taken into account for the creation of the pharmacophore model [27]. To generate
a pharmacophore model with good quality, MOE utilizes an in-built set of pharmacophore features
including hydrogen-bond donor (Don), hydrogen-bond acceptor (Acc), aromatic center (Aro), Pi ring
center (PiR), aromatic ring or Pi ring normal (PiN), hydrophobic atom (HydA), anionic atom (Ani),
cationic atom (Cat) and so on. We summarized all the binding interactions of Src complexes in the
DFG-out state from the RCSB Protein Data Bank (PDB, https://www.rcsb.org/), and several common
features (e.g., hydrophobic interactions, hydrogen bonding modes and catalytic residues) were utilized
for generating the model. Finally, the crystal structure of Src kinase in complex with a substrate-based
inhibitor, 1-(4-((6-aminoquinazolin-4-yl) amino) phenyl)-3-(3-(tert-butyl)-1-(m-tolyl)-1H-pyrazol-5-yl)
urea (RL45) (PDB ID: 3F3V; resolution, 2.6 Å), was chosen for the creation of a complex-based
pharmacophore system. The inhibitor RL45 had strong interaction with key amino acid residues of Src
kinase (i.e., Asp404, Glu310 and Met341) and was further used as a reference in molecular docking
(Figure 7). The binding interactions of RL45 with the active pocket of Src are illustrated by the PyMOL
software (2.3.2).

The generated pharmacophore model was validated via a test database including 18 Src reported
inhibitors and 18 collected decoy molecules. The molecules of Src inhibitors were downloaded from
DrugBank (https://www.drugbank.ca/). The decoy molecules refer to those compounds with reported
activities not related to Src, whereas their physical properties, including molecular weight, number of
hydrogen-bond donors and acceptor, number of rotatable bonds, and Log P were similar to those of
known Src inhibitors. The test database can be seen in the Supplementary Materials.
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3.2. Pharmacophore-Based Virtual Screening

In Computer-Aided Drug Designing (CADD), virtual screening is one of the time-saving
methods for the discovery of novel, potent and drug-like compounds [28]. Pharmacophore models
have the advantage that they can be used not only to identify novel active compounds in
virtual screening but also for anti-target modeling to avoid side-effects resulting from off-target
activity [29]. Especially, when structural information about the target protein or the ligand’s active
conformation is available, pharmacophore-based models are superior to docking and quantitative
structure–activity relationship (QSAR) methods [30]. Based on the pharmacophore model generated
above, virtual screening was conducted by a pharmacophore search protocol in MOE with an
EHT scheme. MOE’s pharmacophore search is used to apply a query to a database of molecular
conformations and report those conformations as hits that satisfy the pharmacophore features. The hit
molecules were preferred and kept in a separate database for the further evaluation of interactions.

3.3. Molecular Docking

The crystal structure of Src kinase was obtained from the RCSB Protein Data Bank (PDB ID: 3F3V;
resolution, 2.6 Å). The protein was prepared for docking using the quickprep tool of MOE, including
correcting structural issues, protonating the structure, deleting unbound water molecules and
minimizing the structure to a specified gradient, to make the pocket available for the docking
of new molecules. The original ligand (RL45) was used to define the binding site of the Src active
pocket. For the docking parameters, we set the force field to MMFF94x and used the triangle matcher
placement algorithm [31], which returned thirty poses; we also used the Rigid Receptor refinement
method, which returned five poses. The London dG method was applied to score the poses in both
steps [32]. By studying the top-scored docking poses, only the molecular poses for which the binding
modes satisfied the pharmacophore features were retained. Each molecule with the highest docking
score was regarded as a docking result for further analysis.

3.4. ADMET Prediction

Owing to poor pharmacokinetic parameters, many drugs have not passed through clinical
trial stages [33]. Thus, it is necessary to predict the pharmacokinetics and toxicity of newly
obtained molecules, which were selected from the docking results for further analysis. In this
section, the Pre-ADMET server application (https://preadmet.bmdrc.kr) was used. The Pre-ADMET
approach is based on different classes of molecular parameters that are considered for generating
quantitative structure properties [34].

3.5. Molecular Dynamics Simulations

Based on the docking results, the best-posed complex was subjected to MD simulation studies using
the Groningen Machine for Chemicals Simulations (GROMACS) 5.0 package [35] with a CHARMM36
force field [36] under periodic boundary conditions for molecules. Ligand topology files were generated
using the CHARMM General Force Field [37]. The charge of the system was neutralized by the addition
of the ions. The energy was minimized using a steepest-gradient method to remove any close contacts.
The particle mesh Ewald (PME) method was employed for energy calculation and for electrostatic
and Van der Waals interactions. The systems were equilibrated in the NVT ensemble for 50,000 steps,
followed by equilibration in the NPT ensemble for an additional 50,000 steps. Finally, 50 ns molecular
dynamics simulations were performed at 300 K with a 2.0 fs time step, and coordinates were saved
every picosecond for analysis [38,39].

4. Conclusions

In this study, in order to find novel Src inhibitors, an integrated screening method was employed;
through pharmacophore-based virtual screening and molecular docking, the top 10 molecules with

https://preadmet.bmdrc.kr
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good binding scores were selected for the study of binding modes. ADMET prediction and molecular
dynamics simulations were used to predict the pharmacokinetic properties and stabilities of proposed
ligand–protein complexes. Finally, two molecules (ZINC3214460 and ZINC1380384) were selected
with excellent properties and stable binding modes. In addition, ZINC1380384, possessing a novel
benzo [d] imidazole scaffold, was valuable for further optimization and provides a reference for the
development of novel potent Src inhibitors.

Supplementary Materials: Figure S1: The ADMET prediction for ZINC3214460; Figure S2: The ADMET prediction
for ZINC1380384.
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