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Tatyana Ivanovska1*, René Laqua2, Lei Wang3, Volkmar Liebscher4,
Henry Völzke1, Katrin Hegenscheid2

1. Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany, 2. Institute of
Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany, 3.
Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany, 4. Institute of Mathematics and
Informatics, Ernst-Moritz-Arndt University, Greifswald, Germany

*tetyana.ivanovska@uni-greifswald.de

Abstract

Breast density is a risk factor associated with the development of breast cancer.

Usually, breast density is assessed on two dimensional (2D) mammograms using

the American College of Radiology (ACR) classification. Magnetic resonance

imaging (MRI) is a non-radiation based examination method, which offers a three

dimensional (3D) alternative to classical 2D mammograms. We propose a new

framework for automated breast density calculation on MRI data. Our framework

consists of three steps. First, a recently developed method for simultaneous

intensity inhomogeneity correction and breast tissue and parenchyma

segmentation is applied. Second, the obtained breast component is extracted, and

the breast-air and breast-body boundaries are refined. Finally, the fibroglandular/

parenchymal tissue volume is extracted from the breast volume. The framework

was tested on 37 randomly selected MR mammographies. All images were

acquired on a 1.5T MR scanner using an axial, T1-weighted time-resolved

angiography with stochastic trajectories sequence. The results were compared to

manually obtained groundtruth. Dice’s Similarity Coefficient (DSC) as well as

Bland-Altman plots were used as the main tools for evaluation of similarity between

automatic and manual segmentations. The average Dice’s Similarity Coefficient

values were 0:96+0:0172 and 0:83+0:0636 for breast and parenchymal volumes,

respectively. Bland-Altman plots showed the mean bias (%) + standard deviation

equal 5:36+3:9 for breast volumes and {6:9+13:14 for parenchyma volumes. The
automated framework produced sufficient results and has the potential to be
applied for the analysis of breast volume and breast density of numerous data in
clinical and research settings.
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Introduction

The mammographic breast density is defined as the area of dense tissue on a

mammogram divided by the total area of the imaged breast (percent

mammographic density). A systematic meta-analysis using data of more than 14

000 women with breast cancer and 226 000 women without breast cancer from 42

studies showed that increased breast density of more than 50% was consistently

associated with an increased risk of breast cancer [1]. Further, various case-

control studies within large, prospective cohort studies from Europe, the United

States and Canada showed a four to five times increase in breast cancer risk in

women with dense breasts [2–10]. Breast density is usually estimated using the

classification system of the Breast Imaging Reporting and Data System (BI-RADS)

by the American College of Radiology [11].

Commonly, breast density is evaluated on two dimensional (2D) X-ray

mammograms, which introduces substantial measurement errors, since the breast

is a three dimensional (3D) structure. Magnetic Resonance Imaging (MRI)

mammograms (MRM) have a non-ionizing nature and strong soft tissue contrast

between fibroglandular (parenchymal) and fatty tissue. Therefore, MRM provide

an alternative to the classical approach especially in research setting, where the

application of X-ray is not ethically justified. Moreover, the 3D breast density

evaluation should reduce the measurement errors, which appear in 2D case. The

quantitative 3D breast density evaluation, executed by the user manually, is a

laborious, observer-dependent, and extremely time-consuming process.

Therefore, full or partial automation of the 3D analysis of breast is required.

Recently, a few approaches for automated breast density evaluation have been

developed [12–18]. However, most of these methods consist of numerous

processing steps, which may serve as an additional source of errors, or require an

extensive user interaction (e.g., the methods of Klifa et al. [12], Nie et al. [14], Lin

et al. [13], and Wang et al. [15]). Some methods require training on a significant

number of manually segmented datasets (e.g., the atlas-based approaches of

Gubern-Merida et al. [16] and Gallego Ortiz and Martel [17]), or have been

developed for a specific data sequence (e.g., the approach designed for sagittal

breast images by Wu et al. [18]). Moreover, all these methods have been designed

for MRI sequences that do not have such strong inhomogeneities as the ones used

in our study.

Therefore, the objectives of this study are to develop an automated framework

for breast density estimation that a) does not extensively involve the user, b) is

suitable for data with strong intensity inhomogeneities, c) does not have

numerous processing and correction steps, since each step might introduce

additional errors. We propose a method that allows us to segment total breast

volume (BV), fibroglandular (parenchymal) tissue volume (PV), and correct bias

field in one pass. The main step is the recently proposed level set based method for

simultaneous intensity inhomogeneity correction and segmentation [19] followed

by a boundary refinement procedure. The approach requires only minimal user
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interaction, and the methods parameters are pre-selected for different ACR

groups.

Materials and Methods

Study population

This study was a subproject of the population-based Study of Health in

Pomerania (SHIP). SHIP is conducted in the Northeast German federal state of

Mecklenburg-Western Pomerania [20]. The general objective of the SHIP is to

estimate the prevalence and incidence of common diseases and corresponding risk

factors. A whole-body MRI including a contrast-enhanced 3D MRM is part of the

examination protocol of the previous examination waves SHIP-2 and SHIP-

Trend-0 [21]. One specific aim is to assess breast density on 3D MRM and to

associate it with several risk factors, clinical examination results, metabolic and

genome wide analysis. Between 2008 and 2012, a total of 3372 participants (mean

age 53 + 14 (standard deviation) years) underwent a standardized whole-body

MRI examination protocol. Of the 1 717 (50.9%) women 1 433 decided to

participate in a 3D MRM examination. The SHIP was conducted as approved by

the local Institutional Review Board at Greifswald University Hospital. Written

informed consent was obtained separately for study inclusion and MR imaging.

MR Image Acquisition

Breast MR imaging was performed at 1.5 Tesla on a whole-body MR imager

(Magnetom Avanto; Siemens Medical Solutions, Erlangen, Germany). The

woman was placed in prone position with the uncompressed breasts suspended in

a circularly polarized bilateral breast phased-array four-channel receiver coil

(Siemens Medical Solutions). The following images were acquired after obtaining

localizer images: an axial turbo-inversion recovery magnitude sequence (TIRM)

(5800/56 [repetition time msec/echo time msec]; 150˚ flip angle; 340 mm field of

view; 1:1|1:1|4:0 mm voxels), an axial T2-weighted non-fat-suppressed

sequence (4660/67 [repetition time msec/echo time msec]; 180˚ flip angle;

340 mm field of view; 0:9|0:9|4:0 mm voxels), a fat-suppressed, diffusion-

weighted echo-planar sequence (7900/91; 340 mm field of view; 1:8|1:8|4 mm

voxels; with b values of 50, 200, 500, 800, and 1,000 sec/mm2), and an

unenhanced non-fat-suppressed three-dimensional T1-weighted time-resolved

sequence with stochastic trajectories (TWIST) (8.86/4.51; 25˚ flip angle; 340 mm

field of view; 0:9|0:7|1:5 mm voxels) in the axial plane. For dynamic contrast-

enhanced MR mammography after acquisition of the first unenhanced TWIST

sequence, an intravenous gadobutrol bolus (Gadovist, Bayer Healthcare,

Leverkusen, Germany) was administered with a power injector at a dose of

0.1 mmol/kg body weight at a rate of 1.0 mL/s, followed by a saline flush (20 mL)

injected at the same rate. The TWIST sequence was repeated five times without

time gaps. Each sequence took 58.27 seconds. Image subtraction was performed
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automatically by the scanner system. An experienced radiologist (KH, with more

than eight years experience in MR mammography) read all MRMs for the

presence of breast lesions and classified breast density into four groups for all

examinations according to the BI-RADS classification system [11]. After exclusion

of 125 cases due to breast surgery/implants (N~12) or breast lesions (N~113) 37

cases were selected randomly from the four breast density groups. Four example

2D slices correspondent to four different subjects are shown in Figure 1.

MR Data Artefacts.

Our data exhibit quite strong intensity inhomogeneities, which come from

different sources. First, there is a clear gradient from the breast nipple in the

direction of the heart, which can be explained by increasing offset from the

receiving coil, located in the front of the chest. To demonstrate the intensity

gradient present in the image, we depict the intensity profile along a line in

Figure 2. The image starts from a rather low background values close to zero and,

then, a smooth intensity decrease appears. The intensities of the same tissue (for

example, the fatty tissue) near the nipple are much higher (SI<700) than in the

lower part near to chest (SI<100).

Second, there is a left-right gradient in breast tissue, which is caused by the

radiofrequency (B1) field [22]. In Figure 3, one can observe that the breast tissue

close to the breast-air boundary (inside the red rectangle) has slightly higher

intensity values than the ones in the middle of the breast. Such artefacts usually

represent a significant problem for intensity-based segmentation (such as region

growing, thresholding, region-based level sets), since such methods are sensitive to

Figure 1. Example slices from 4 different datasets (correspondent to 4 subjects). Each dataset belongs
to a different ACR group.

doi:10.1371/journal.pone.0112709.g001
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the spurious intensity variations and methods on inhomogeneity correction are

required [23].

Manual Breast Density Estimation

Manual breast density measurements were performed in a free DICOM-Viewer

(OsiriX version 3.8.1) by using a self designed plug-in. The manual measurements

Figure 2. Intensity profile along the line, marked red in the example slice. The intensities of the same tissue (for example, the fatty part) in the upper
slice part are about 700, and in the lower breast part they are close to 100.

doi:10.1371/journal.pone.0112709.g002

Figure 3. Another intensity inhomogeneity example. The intensities of the breast tissue close to the breast
air boundaries (marked by the red rectangle) have higher values than the intensities of the breast tissue
located in the middle of the breast.

doi:10.1371/journal.pone.0112709.g003
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were carried out slice-by-slice on the unenhanced non-fat-suppressed 3D T1-

weighted TWIST sequence. The steps of manual processing are shown in Figure 4.

First, an experienced radiologist created a region of interest (ROI) including both

breasts and separated the breast from the breast muscle and the background. The

physiological landmark for the breast-body cut was the posterior boundary of the

sternum. Second, all voxels within the ROI with a signal intensity (SIw60) were

collected in a brush-ROI automatically by the plug-in. Thereafter, both breasts

were manually processed to include all fibroglandular tissue in each breast.

Finally, black and white masks of the total breast as well as the parenchymal tissue

were created, the volumes were calculated slice-by-slice and saved into a database.

Our experienced radiologists required about an hour to manually delineate the

breast tissue in all slices of a single dataset. This procedure is rather

straightforward for the user, since the breast, as well as the boundaries, are clearly

visible. The segmentation of the fibroglandular tissue, which is a rather sparse

structure without any distinguishable pattern, is a challenge even for an

experienced reader. The manual delineation of the parenchyma in one dataset in

some cases took dozens of working hours.

Automated Breast Density Estimation

The automated processing is carried out on the unenhanced non-fat-suppressed

3D T1-weighted TWIST sequence. The framework for automated breast density

evaluation consists of three main procedures. A general overview of the

segmentation pipeline is shown in Figure 5. The user selects the start and end

slices for the processing to avoid irrelevant computations as well as pre-selects the

parameters for further processing steps. Usually, no intermediate parameter

triggering is required.

First, the recently developed algorithm for simultaneous segmentation and bias

field correction [19] is applied to the selected slices. In the algorithm, the classical

Figure 4. Steps of manual breast segmentation. In each slice, the user first marks the breast boundary and
then detects the parenchymal regions.

doi:10.1371/journal.pone.0112709.g004
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image model is used: a 2D image Im : V?R is defined on a continuous domain

V, such that Im~bJzn, where J is the true image, b is the slowly varying intensity

inhomogeneity component, and n is the additive zero-mean Gaussian noise.

Using this model and the assumptions about b, we formulated a clustering energy

and converted it to the variational two-phase level set functional, which is then

minimized with respect to its variables. The details of the procedure are given in

[19]. The algorithm processes each 2D slice and composes the results back into a

3D volume. For each slice, three result images are produced: a breast and

parenchyma segmented image, an inhomogeneities corrected image, and a bias

field image.

Second, a boundary refinement procedure is executed. Here, a 3D breast

connected component (as the biggest 3D connected component) is selected and

Figure 5. An overview of the automated breast density evaluation framework. The approach consists of
three main steps: segmentation and bias field correction, breast tissue delineation, and fibroglandular tissue
extraction. The results of the bias field correction (Step 1) are used both for breast tissue (Step 2) and
parenchyma (Step 3) extraction. In Step 3, the results of Steps 1 and 2 are utilized for parenchyma extraction.
The data flow is schematically explained by the lines, connecting the pipeline steps.

doi:10.1371/journal.pone.0112709.g005

Automated MRI Breast Density Evaluation

PLOS ONE | DOI:10.1371/journal.pone.0112709 November 25, 2014 7 / 19



extracted from the segmented image, obtained in the first step. Its intensity is set

255. The background intensity equals to 0. Thereafter, two characteristics of the

breast component are computed:

N the center of masses of the breast component is denoted as the point with

coordinates (xc,yc,zc);

N the minimal axis-aligned bounding box is defined by the upper left corner

point with coordinates (xs,ys,zs) and the lower right corner point with

coordinates (xe,ye,ze).

The slices, which presumably have a correctly segmented breast-pectoral muscle

boundary, are found. We look for slices, which do not differ significantly from

their closest neighbours in z direction. Starting from slice i~zc, we select every

consecutive triple of slices (i{1,i,iz1) in both directions, namely for

i~½zc, . . . ,ze{1� and i~½zc, . . . ,zsz1�. Let Bi, Biz1, and Bi{1 be the breast

components in slices i, iz1, and i{1, correspondingly. We compute and analyse

the 2D connected components ccB in two slices Bi\Bi{1 and Bi\Biz1, where the

symbol \ denotes set difference. The connected components ccB may have either

positive, or negative intensities. If the maximal size of jccBjƒC1, where C1 is a

constant parameter and j:j denotes the area, then the breast component in slice i is

similar to the breast components in slices i{1 and iz1. This slice is set as the

reference iref ~i. This procedure finishes, when at least one such slice is found.

Often, the slice iref ~zc is selected as the reference one for both directions.

Thereafter, the boundary separation procedure starts. The procedure is

described in pseudo-code:

for i:5iref to zs+1 do

begin

{

j 5 i-1;

evaluateComponents (i,j);

updateSlice (j);

}

end;

for i:5iref to ze-1 do

begin

{

j 5 i+1;

evaluateComponents (i,j);

updateSlice (j);

}

end;

The procedure evaluateComponents(i,j) consists of the following steps:

N In slice j 2D Distance Transformation [24] for the breast component is

computed. The distance map is then inverted.

N In slices j 2D Watershed [24] on the inverted distance map is computed.
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N Every connected component ccj, computed with the Watershed in slice j, is

overlaid with the breast connected component Bi in slice i, and the area of

overlap is computed.

N Only components with significant overlap (jBi
T

ccjj§60%jccjj) are kept.

The rest is discarded.

In the procedure updateSlice(j), the intensities of the collected connected

components and the boundaries between them are set to 255, the rest is set to 0.

With this procedure, the boundary from the slice iref is propagated to the other

slices, and the significant oversegmentations are excluded. Results of this

procedure are shown in Figure 6. In the left column the breast tissue, which leaked

into the pectoral muscle boundary, is presented. The correction result is depicted

in the right column. Additionally, minor holes are closed with the Hole Filling

filter [25], and the lower part of the breast image (the pixels that have y

coordinates in ½ye{0:3(ye{ys),ye�), which contains irrelevant structures (such as

lung parts), is automatically excluded.

Thereafter, the concavities in the 3D breast tissue are closed using

morphological operations, namely, with the Rolling Ball filter [24]. Here, several

filters with different radii are applied, dependent on the breast location. The top

of the breasts, where the concavities are usually defined by the nipple and areola

regions, the rolling ball filter with the kernel size 64|64|10 is applied. These

locations are found as the breast tissue pixels with y coordinates in ½ys,ysz100�.
Then, the breast regions that are adjacent the pectoral muscle boundary are

detected. These are the regions that have the lowest background component in the

neighbourhood r~50, and the y coordinates of these pixels are close to ye. Here,

the concavities are processed with the kernel size 30|30|10.

The rest of the breast (untouched by other filters), which includes the breast

sides and skin folds, is processed with the small kernel size 5|5|5.

The approximate position of the sternum is automatically computed. The

sternum detection procedure is based on the general breast geometry. The lowest

breast tissue point Br(xl,yl), which is located close to the slice center, denotes the

upper sternum boundary. The pixels with y coordinates that lie below ylz20,

which indicates the posterior boundary of the sternum, are removed from the

segmented image. The results are shown in Figure 7.

Third, the fibroglandular tissue regions are extracted from the segmented

images, which were previously computed. The image of the extracted 3D breast,

computed in the second processing step, is used as a mask. Let us denote 3D

extracted breast image as Breast. The segmented image is denoted as Isegm. The

mask operation My(x) removes all regions in x, where y~0. The fibroglandular

tissue region FB is defined as the difference between the masked segmented image

and the extracted 3D breast, i. e. FB~Breast\MBreast(Isegm).

Finally, the BV and PV values for the total dataset are computed from the

black-and-white mask images as the number of non-zero pixels in the breast and

fibroglandular tissue regions, correspondingly (BV~jBreastj and PV~jFBj).
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Statistical Analysis

Data are given as mean and standard deviation (SD). To compare the results of

the automated algorithm with the manual results produced by the radiology

experts the segmentation accuracy was measured by Dice’s Similarity Coefficient

(DSC) [26]. Additionally, we utilized delineation sensitivity and specificity metrics

[27]. Let Sa and Sm be two segmentation results, namely, the one provided by the

automatic method and the one provided by the expert manual readings,

correspondingly. The Dice coefficient is computed as follows:

DSC~
2jSa\Smj
jSajzjSmj

: ð1Þ

Udupa et al. [27] proposed to define the delineation sensitivity (or true positive

volume fraction, which indicates the fraction of the total amount of tissue in the

reference segmentation that was correctly identified by the automatic method)

and delineation specificity (or true negative volume fraction, which describes the

fraction of the total amount of tissue in the reference region IM that is truly not in

the object) as:

Figure 6. Intermediate steps of the postprocessing for breast tissue extraction. Left: a segmentation
result with the breast tissue connected to the pectoral muscle. Right: the segmentation is corrected and the
minor holes are closed as well. The lower part of the breast image is excluded from further postprocessing.

doi:10.1371/journal.pone.0112709.g006

Figure 7. Final steps for breast tissue extraction. Left: the concavities of the fibroglandular tissue are
closed with morphological operations. Right: the approximate location of the sternum bone is computed and
the cut is done along its lower boundary.

doi:10.1371/journal.pone.0112709.g007
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SENS~TPVF~
jSa\Smj
jSaj

, ð2Þ

SPEC~1{FPVF~1{
jSa{Smj
jIM{Smj

, ð3Þ

where IM is the whole image and FPVF is the false positive volume fraction.

Bland-Altman plots [28] analysed the statistical agreement between the manual

and automatic volume assessment methods. The plot displays the difference

between the measures against their average, i. e. for each subject i[½1,37� the point

in the Bland-Altman plot is computed as

Vi(x,y)~ 0:5(V1zV2),(V1{V2)ð Þ, ð4Þ

where V1 and V2 are two volume values (the automatic and manual results) for

the subject i. The plot allows one to investigate the existence of any systematic

difference between the measurements and to identify possible outliers. The

average difference (mean bias) is the estimated bias, which is computed as the

value determined by one method minus the value determined by the other

method, and the SD of the differences measures the random fluctuations around

this mean.

In addition to Blan-Altman plots, we also built simple linear regression [29]

plots for volume values.

Results

The datasets were processed on an Intel(R) Core i7-950 @ 3.06 GHz computer

with 6 GB DDR3 RAM. The first processing step was implemented on an NVIDIA

parallel computing platform (CUDA) and the computations were run on NVIDIA

Tesla C2070. The refinement procedure was implemented in C++ within

MeVisLab platform [30].

Since our data exhibit significant intensity inhomogeneities, the efficient

intensity inhomogeneity correction is the central step in the pipeline. In Figure 8,

the results of the segmented breast and the intensity correction, as well as the

histogram of the corrected images are shown. One can observe that after

processing the entire breast looks homogeneous with no smooth intensity

variations in different locations of the same tissue. The histograms of the bias field

corrected images are multimodal, and the corrected images can be properly

segmented into several classes even with basic image processing techniques, for

example, thresholding.

The total processing time for one dataset was about one hour, including

postprocessing and saving procedures. The parameter values for the first

processing step were optimized in terms of convergence speed for each ACR
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Figure 8. Results for slices, shown in Figure 1. Left column: segmented images; middle column: corrected images; right column: histograms of the
corrected images. The breast tissue becomes homogeneous after the correction. The histograms show the clearly separated intensity classes.

doi:10.1371/journal.pone.0112709.g008
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group. In the steps 2 and 3, the parameters were preselected and fixed for all

datasets without additional optimization. In general, the optimal parameter

selection is a trial-and-error process, and it is expected that for other breast

sequences some prior parameter adaptation will be required.

In Figure 9, the segmentation results are shown in an overlaid 2D and 3D

manner with the initial data. The result mean values of the Dice’s Similarity

Coefficients for BV and PV are given in Table 1 and Table 2, respectively (see also

Table S1 and Table S2). The average DSC for BV of all 37 datasets equals

0:96+0:0172. The average DSC for PV of all 37 datasets equals 0:83+0:0636. The

Bland-Altman plots as well as the linear regression plots for BV and PV are

presented in Figures 10 and 11. In Table 3, the values of mean bias obtained for

each ACR group separately are presented. The mean bias for the breast volume

computations is 5:36%+3:9. The mean bias for the parenchyma volume

computations is {6:9%+13:14. The difference of two methods regressed on the

average of two methods is presented by the following regression equations:

Figure 9. An example of breast tissue (upper row) and fibroglandular tissue (lower row) segmentation
results. The results are overlaid in 2D and 3D with the original data.

doi:10.1371/journal.pone.0112709.g009

Table 1. Dice’s Similarity Coefficients, Delineation Sensitivity, and Specificity for Breast Volumes (BV).

ACR Mean + SD DSC Mean + SD Sens Mean + SD Spec

1 0.9715 + 0.0026 0.985 + 0.004 0.9921 + 0.001

2 0.9637 + 0.0154 0.977 + 0.02 0.99436 + 0.002

3 0.95367 + 0.012 0.98 + 0.009 0.99 + 0.003

4 0.9469 + 0.0244 0.987 + 0.008 0.993 + 0.002

Total 0.96 + 0.0172 0.9836 + 0.005 0.99 + 0.002

Breast Volume: Mean and standard deviation (SD) values of Dice’s Similarity Coefficients (DSC), Sensitivity
(Sens), and Specificity (Spec) for different ACR groups.

doi:10.1371/journal.pone.0112709.t001
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y~11:4663{2:8932x and y~{14:6360z44:8692x for BV and PV measure-

ments, respectively. The information on regression coefficients is given in Table 4.

Discussion

It can be observed in Tables 1 and 3, and Figure 10, the agreement between the

automatic and manual breast segmentation methods is slightly better for bigger

breasts. For example, in ACR 1 group, which usually consists of rather big breast

with high percentage of fat, the mean Dice’s similarity coefficient is

0:9715+0:026, whereas in ACR 4 group, which consists of smaller dense breasts,

the mean Dice’s coefficient is 0:9469+0:0244. The Bland-Altman plot in

Figure 10 also supports these observations. To evaluate this relationship formally,

the difference between the volumes was regressed on the average of the volumes

and the more accurate (regression-based) limits were calculated, as recommended

by Bland and Altman [31]. The linear regression equation for the difference

Table 2. Dice’s Similarity Coefficients, Sensitivity, and Specificity for Parenchyma Volumes (PV).

ACR Mean + SD DSC Mean + SD Sens Mean + SD Spec

1 0.7637 + 0.05 0.74 + 0.05 0.99 + 0.002

2 0.82613 + 0.043 0.82 + 0.07 0.989 + 0.0003

3 0.8545 + 0.0549 0.82 + 0.06 0.9927 + 0.003

4 0.8798 + 0.047 0.865 + 0.057 0.993 + 0.0044

Total 0.83 + 0.0636 0.81 + 0.07 0.99 + 0.04

Parenchyma Volume: Mean and standard deviation (SD) values of Dice’s Similarity Coefficients (DSC),
Sensitivity (Sens), and Specificity (Spec) for different ACR groups.

doi:10.1371/journal.pone.0112709.t002

Figure 10. Bland-Altman with the regression line of differences on average (left) and linear regression (right) plots for the Breast Volume (BV)
values of 37 datasets. The agreement is slightly higher for bigger breasts.

doi:10.1371/journal.pone.0112709.g010
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between the volumes on the averaged volumes is d~11:466za({2:893), where d
denotes the differences and a is the averages. The relation is statistically highly

significant with Pv0:00001. The regression of the absolute residual values on the

averages gives the following equation: r~3:1429za({0:4621). Finally, the

formula for the more accurate 95% limits of agreement is:

limits~11:466z({2:893)a+1:96
ffiffiffiffiffiffiffiffiffi
0:5p
p

(3:1429z({0:4621)a): ð5Þ

The agreement for the parenchyma detection (cf. Table 2 and Figure 11) has the

opposite trend, i.e. the agreement rates that are achieved for ACR 1 group (the average

DSC is 0:7637+0:05) are lower than the rates, achieved for ACR 4 group (the average

DSC is 0:8798+0:047), which is explained by the amount of parenchyma in the breast

tissue, especially in the breasts with high percentage of fat. The obtained Dice’s

coefficients’ behaviour is intuitively well explained by the definition of this metric itself.

Such a trend is defined by the portion of coinciding voxels, where the manual and

automatic breast (or parenchyma) masks are overlaid: the bigger these portions, the

higher the coefficient values are. Therefore, the Dice’s coefficients for BV are slightly

Figure 11. Bland-Altman with the regression line of differences on average (left) and linear regression (right) plots for the Parenchyma Volume
(PV) values of 37 datasets. No exact influence of the breast density on the agreement results is observed.

doi:10.1371/journal.pone.0112709.g011

Table 3. Breast and Parenchyma Mean Bias + SD.

ACR BV: Mean Bias (%) + SD PV: Mean Bias (%) + SD

1 3.33 + 0.75 28.1 + 17.5

2 2.89 + 4.28 21.929 + 14.46

3 6.81 + 1.89 210.39 + 10.86

4 8.79 + 4.34 27.5 + 7.8

Mean 5.36 + 3.9 26.9 + 13.14

BV and PV Mean Bias (%) + SD for different ACR groups.

doi:10.1371/journal.pone.0112709.t003

Automated MRI Breast Density Evaluation

PLOS ONE | DOI:10.1371/journal.pone.0112709 November 25, 2014 15 / 19



Table 4. Coefficients of the regression lines of the differences.

Measurements Coefficient Value P 95%CI

BV Intercept 11:4663 v0:0001 9:1054 to 13:8272

BV Slope {2:8932 v0:0001 {3:9109 to {1:8756

PV Intercept {14:6360 0:0010 {22:8816 to {6:3905

PV Slope 44:8692 0:0347 3:4202 to 86:3182

Coefficients of the regression lines of the difference between the two methods on the average of the two
methods for BV and PV.

doi:10.1371/journal.pone.0112709.t004

Figure 12. Manual (purple) and automatic (red) parenchyma segmentation results for four datasets.
Whereas the results are very similar, one can observe that the user selects usually more than the algorithm.

doi:10.1371/journal.pone.0112709.g012
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decreasing and the Dice’s coefficients for PV are increasing from ACR 1 to ACR 4. The

Bland-Altman plots, especially for PV, constructed for each ACR group show no exact

influence of the breast density on the results (cf. Table 3), i. e., no significant trend in

mean biases can be observed. The linear regression equation for the difference between

the volumes on the averaged volumes is d~{14:636za44:8692 with P~0:0351, so

no regression-based limits of agreement will be computed.

The sensitivity coefficients given in Tables 1 and 2, as expected, are rather close

to the Dice’s coefficients and have a similar trend, which is clearly observable for

PV values. The specificity values are close to 1, which shows that the automatic

method does not produce a high amount of false positives within the image

domain. However, the delineation specificity does not seem to be a reliable

measure, since it will be always close to 1, if the reference region, i. e. jIM{Smj, is

significantly larger than any possible oversegmentation produced by Sa.

Compared to previous works, the DSC values obtained by the proposed

automated framework for the breast and parenchyma volumes (average BV:

0:96+0:0172; PV: 0:83+0:0636) are higher than the ones in other works. For the

breast tissue: Gallego-Ortiz et al. [17] and Gubern-Merida et al. [16] reported an

average DSC value of 0:88+0:05 and 0:94+0:05, respectively. For breast

parenchyma: Gubern-Merida et at. [16] and Wu et al. [18] reported an average

DSC value of 0:80+0:13, and 0:73, respectively. However, it should be mentioned

that these comparisons are not fully adequate, since they were evaluated on

different datasets. The way, how the data for the test sets were selected, as well as

different vendors and sequence types, may have strong influences on results.

The comparison of the automatic and manual segmentation results shows

strong agreement for BV and sufficient agreement PV. In Figure 12, several results

for the manual and automatic parenchyma segmentation are shown next to each

other. Whereas the segmentation results look similar, one can observe that the

user usually delineates more parenchymal tissue than the automated procedure.

We plan to investigate this issue in more detail in future work as well as conduct

an inter- and intra-observer variability study on parenchyma segmentation.

Conclusions

Our study showed that the automatic results strongly agree with the manual

segmentation and volumetry. Therefore, the proposed framework for automated

breast density evaluation has high potential to be applied in the clinical and

epidemiological routine to process numerous participant data.

Supporting Information

Table S1. Breast Volume (BV) Values, Dice’s Coefficients, Sensitivity and

Specificity Values for 37 Datasets. Volume values produced by the user (Manual)

and the automatic algorithm (Auto) are given in liters (L) and voxels (Vx).

doi:10.1371/journal.pone.0112709.s001 (PDF)
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Table S2. Parenchyma Volume (PV) Values, Dice’s Coefficients, Sensitivity and

Specificity Values for 37 Datasets. Volume values produced by the user (Manual)

and the automatic algorithm (Auto) are given in liters (L) and voxels (Vx).

doi:10.1371/journal.pone.0112709.s002 (PDF)
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