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Gene expression profiling techniques, such as DNA microarray and RNA-Sequencing,
have provided significant impact on our understanding of biological systems. They
contribute to almost all aspects of biomedical research, including studying
developmental biology, host-parasite relationships, disease progression and drug
effects. However, the high-throughput data generations present challenges for many
wet experimentalists to analyze and take full advantage of such rich and complex data.
Here we present GeneCloudOmics, an easy-to-use web server for high-throughput gene
expression analysis that extends the functionality of our previous ABioTrans with several
new tools, including protein datasets analysis, and a web interface. GeneCloudOmics
allows both microarray and RNA-Seq data analysis with a comprehensive range of data
analytics tools in one package that no other current standalone software or web-based
tool can do. In total, GeneCloudOmics provides the user access to 23 different data
analytical and bioinformatics tasks including reads normalization, scatter plots, linear/non-
linear correlations, PCA, clustering (hierarchical, k-means, t-SNE, SOM), differential
expression analyses, pathway enrichments, evolutionary analyses, pathological
analyses, and protein-protein interaction (PPI) identifications. Furthermore,
GeneCloudOmics allows the direct import of gene expression data from the NCBI
Gene Expression Omnibus database. The user can perform all tasks rapidly through
an intuitive graphical user interface that overcomes the hassle of coding, installing tools/
packages/libraries and dealing with operating systems compatibility and version issues,
complications that make data analysis tasks challenging for biologists. Thus,
GeneCloudOmics is a one-stop open-source tool for gene expression data analysis
and visualization. It is freely available at http://combio-sifbi.org/GeneCloudOmics.
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INTRODUCTION

Multi-dimensional biological data is rapidly accumulating, and it
is expected that the size of the data will exceed astronomical levels
by 2025 (Stephens et al., 2015). This resulted in the development
of computational tools that became vital in driving scientific
discovery in recent times (Markowetz, 2017). A parallel increase
in the development of online servers and databases has also been
witnessed (Helmy et al., 2016), raising a new set of challenges
related to the usability andmaintenance of all these tools (Mangul
et al., 2019). About half of the computational biology tools were
found to be difficult to install, 28% of them are unavailable online
in the provided URLs, and many others are missing adequate
documentation and manuals (Mangul et al., 2019). The problem
gets more complex with the limited computational and coding
skills of two-thirds of the biologists who use these tools
(Schultheiss, 2011). On the other hand, it was also noted that
bioinformatics tools that are easy to install and use are highly
cited, indicating wider usability by the community and a larger
contribution to scientific discovery (Mangul et al., 2019). Thus,
more web-based tools that avoid installation difficulties and
operating system compatibility issues, simple point-and-click
tools are required to tackle multi-dimensional omics datasets.

Gene expression profiling is widely used in biomedical
research. They enable the investigation of expressed genes and
their relevant pathways and cellular processes in a given time
point or condition (Stark et al., 2019). Gene expression profiling is
usually performed using RNA-Seq or microarray data since they
detect the presence and quantify an RNA, the output indicator of
an activated or deactivated gene (Yang et al., 2020). It also
provides a deeper understanding of the biological system
dynamics, growth or developmental process, drug effects or
disease mechanisms through the differential gene expression
(DGE) analysis (Piras et al., 2014, 2019; Simeoni et al., 2015;
Hodgson et al., 2019; Bui et al., 2020;Wang et al., 2020). The DGE
analysis determines genes with different expression levels
between two or more conditions and statistically confirmed as
differentially expressed (Pertea et al., 2016; Bui et al., 2020).

The analysis of gene expressions or transcriptomics data faces
several challenges related to data size, quality, statistical analysis,
visualization and interpretation of the results using current
bioinformatics approaches (Mantione et al., 2014; Zou et al.,
2019). Several bioinformatics or data science tools are available
for addressing each of these challenges in the form of stand-alone
software tools, web-server or R packages/Python libraries (Russo
and Angelini, 2014; Poplawski et al., 2016; Velmeshev et al., 2016;
McDermaid et al., 2019; Zou et al., 2019) (Table 1). However,
most of the tools only provide a subset of analytics and require
some level of programming skills. Often, the users need to move
from one tool to another and this could lead to data compatibility
issues (Chowdhury et al., 2019).

The analysis of gene expression data remains a burden for
many biologists due to its intensive requirement of
computational, statistical and programming skills that are
lacking in two-thirds of biologists who use online biological
resources (Schultheiss, 2011). Moreover, as mentioned above,
most of the tools are individually scattered. Thus, there is a need

to put the tools together in an easy-to-use manner with an
intuitive GUI that will allow users to perform bioinformatics
analyses with minimum computational skills and resources. In
other words, a one-stop online server for transcriptomic data
analysis that performs all essential steps of data import, pre-
processing, statistical analyses, DGE identifications and
functional interpretations of the results, through a friendly and
simple user interface, is much needed.

Previously, we had developed ABioTrans as a stand-alone
biostatistical tool for transcriptomics data analysis, including
data pre-processing, statistical analyses, DGE and gene ontology
(GO) classification (Zou et al., 2019). It is a downloadable
executable that runs on any web browser with an interactive
GUI (Table 2). However, as it is a stand-alone application
written in R, the user needs to download it, install R or
RStudio then run an installation script that installs all the
required and up-to-date packages and dependencies. This
was found to be challenging for some users as it requires a
minimum level of programming familiarity, and several
packages became incompatible with the new release of R
(v4.0.0) in spring 2020. This is one common problem for
most bioinformatics tools (Mangul et al., 2019). ABioTrans
also needs approx. 10 min to download all packages before
running. Hence, to provide users with a quick, ready-to-use
that does not require regular system updates, a web server
version is imminent.

To overcome the above-mentioned challenges, here we rebuilt
ABioTrans as a new webserver and expanded its functionality to
include several new analysis tools such as SOM, t-SNE, random
forest clustering, and added further tools for bioinformatics
functional analysis of gene and protein sets that includes PPI,
protein complex analysis, evolutionary analysis, pathological
analysis, physicochemical analysis, and more. We named this
new revamped tool GeneCloudOmics, a web server for
transcriptomics data analysis and gene/protein bioinformatics
that is equipped with publication-ready plotting capabilities.
GeneCloudOmics allows 12 biostatistical and data analytics
tests and 11 bioinformatics tools for gene/protein datasets
analysis and annotation (see Methods and Program
Description). In addition, it provides direct data import from
NCBI’s GEO databases through GEO accession numbers.
GeneCloudOmics webserver, thus, relieves the burdens of
installation and version compatibilities and is designed to be a
quick one-stop transcriptomics (RNASeq and microarray) data
analysis tool that provides the user with all the required steps for
their analysis (Figure 1). Overall, the web server targets users
without any computational or programming skills and provides
them with a wide spectrum of hassle-free analytic tools.

METHODS AND PROGRAM DESCRIPTION

The Gene Expression Profiling Workflow
The gene expression analysis aims to identify genes expressed
under a particular condition, treatment, developmental stage, or
disease. This requires assessing thousands of gene expressions of
multiple conditions in raw format, pre-processing and
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normalizing the expression levels, statistically analysing the data,
identify DGEs between conditions and perform a functional
analysis to elucidate the pathways and cellular functions of the
DGEs (McDermaid et al., 2019) (Figure 1). GeneCloudOmics
performs this workflow easily and smoothly on a web server as
will be described below.

Overview of GeneCloudOmics Web Server
GeneCloudOmics provides users with a complete pipeline for
analysing and interpreting their transcriptome data (Figure 2 and
Table 2):

1) Data types: users input microarray (.cel files) or RNA-Seq
data (raw or normalized read count table in. csv format). In
addition, users can provide NCBI GEO database accession

and GeneCloudOmics automatically imports the data from
the database.

2) Pre-processing raw data using four different normalization
techniques (RPKM, FPKM, TPM, RUV), then plotting the
normalized data versus the raw data inbox and/or with violin
plots. The pre-processed data can be downloaded into a
CSV file.

3) Analyse the pre-processed data using nine different statistical
tests (read normalization, scatter plots, linear/non-linear
correlations, PCA, hierarchical clustering, k-means
clustering, t-SNE clustering and SOM clustering) then plot
the results of each test in a publication-ready quality.

4) Perform DGE analysis using three of the most commonly
used methods DESeq2 (Love et al., 2014), NOISeq (Tarazona
et al., 2015) and EdgeR (Robinson et al., 2009) with a single

TABLE 1 | Comparison between 30 different gene expression analysis tools.
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interface for choosing the parameters for each of the methods
and in a similar way to plot the results in volcano or
dispersion plots. The user can then download the results
as a CSV file and the plots as or PNG or PDF.

5) Functionally interpret the DGEs or proteins set using 11
different bioinformatics tools (listed in detail below and in
Table 2) that help the user perform essential enrichments and
annotations to the gene/protein sets such as pathway
enrichment analysis, gene ontology (GO) enrichment, PPI,
and protein function enrichment. All the tests are performed
through the same interface which allows the user to upload or

paste a list of genes or proteins, choose the test parameters, run
the analysis, and plot the results, using the standard
visualization provided, or download them. The gene/protein
set interpretation features are independent from the DGE
analysis and can be used separately with any gene/protein
set as a stand-alone feature (see demonstration sections below).

6) Creating an analysis report that summarizes and gathers all
analyses of the user. In each test or analysis, the user can
choose “Add to Report” option which will add the plot and
the analysis title to the analysis report. When the user clicks
“Analysis report” link in the mainmenu, the system generates

TABLE 2 | Features comparison between ABioTrans and GeneCloudOmics.

Architecture ABioTrans GeneCloudOmics

Application Type Stand alone Web-based
Requirements R, RStudio, Web browser Web browser

Gene expression data
Supported transcriptome data RNA-seq RNA-Seq, Microarray
Supported transcriptome data
formats

Gene expression table Gene expression table microarray cel files

Preprocessing and normalization
Low count filtering Yes Yes
Sequencing depth correction
methods

TPM, RPKM, FPKM TPM, RPKM, FPKM

Batch effect correction UQ, RUV, TMM UQ, RUV, TMM

Biostatistics and Analytics
Dimension reduction PCA PCA Sparse PCA Self-organizing map (SOM)
Distribution fitting Yes Yes
Scatter plot Yes Yes
Correlation analysis Pearson, spearman Pearson, spearman
Entropy Yes Yes
Noise Yes Yes

Differential expression analysis
Supporting plots volcano plot, dispersion plot volcano plot, dispersion plot

Gene-based Clustering
Clustering algorithm K-means clustering hierarchical

clustering
K-means clustering hierarchical clustering

Visualization Gene expression heatmap Gene expression heatmap

Sample-based Clustering
Clustering algorithm K-means clustering on PC space K-means clustering on PC space Random Forest clustering Self-organizing

map (SOM)
Visualization RF plot RF plot, property plot, count plot, codes plot, distance plot and cluster plot

Gene set analysis
Gene ontology Yes Yes
Gene ontology data Local databases (NIH) Online databases (UniProt)
Gene ontology visualization Pie chart hairball graph Bar chart

Table
Pathway enrichment analysis No g:Profiler, Cytoscape (V)

Protein set analysis
Protein-protein interaction No UniProt, Cytoscape (V)
Complex enrichment No CORUM
Protein function No UniProt
Subcellular localization No UniProt
Protein domains No UniProt
Tissue Expression No UniProt
Co-expression No GeneMANIA
Protein sequences No UniProt
Protein physicochemical analysis No Charge, GRAVY
Protein phylogenetic analysis No MAS, PGT., Chrom. Loc., G.Tree
Protein pathological analysis No UniProt
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FIGURE 2 | Schematic Overview of GeneCloudOmics. (A)RNASeq andMicroarray data uploading, (B)Data Pre-processing, (C) TranscriptomeData Analysis (e.g.
Correlation, DGE analysis and heatmap clustering), and (D) Gene or Protein Bioinformatics Analysis.

FIGURE 1 | The gene expression profiling workflow. The RNA sequencer produces raw RNA read counts that are aligned on the cell’s genome and processed
through the quality control (QC) steps. The raw read counts result from QC are next normalized and analyzed statistically to infer the differential gene expressions
(DGEs) or other analyses such as Shannon Entropy, Correlations or PCA. Several bioinformatics analyses can also be performed on the list of DEG for functional
inference.
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an HTML report containing all the selected plots. The user
can then download the report as a PDF.

Data Analytics Features
GeneCloudOmics accepts both gene expression matrix from
RNA-Seq and raw microarray CEL file formats, either through
data upload forms or via direct import from GEO database.
Examples of valid input files are hyperlinked at each upload
section to aid the user with the input files.

For RNA-Seq, two input files are required: 1) gene expression
matrix, and 2) metadata table. The gene expression matrix should
contain estimated abundance (either raw count or normalized) of
all genes for all samples in the experiment; and the metadata table
should specify experimental conditions (e.g., Control, Treated,
etc.) for each sample listed in the expression matrix. Depending
on target analysis, the user can upload supporting files including
gene length and list of negative control genes to facilitate the pre-
processing step.

For microarray, the user can upload CEL files to
GeneCloudOmics, upon which matrix of gene expression level
will be extracted and the user can proceed to subsequent analyses.
The data obtained directly from GEO database will undergo an
initial exploratory analysis that overviews the quality of data
using several plots.

Next, the transcriptomics data is processed and analyzed using
the following analytics:

1- Data preprocessing: Preprocessing includes two steps: 1) low-
expression gene filtering, and 2) data normalization. Removal
of lowly expressed genes is crucial to reduce the effects of
measurement noise, and consequently improve the number of
differentially expressed genes (Sha et al., 2015).
GeneCloudOmics provides the option for the user to
indicate the minimum expression value and the minimum
number of samples that are required to exceed the threshold for
each gene. If input data contain raw read counts, the user can
choose one of the normalization options: Fragments Per
Kilobase Million (FPKM), Reads Per Kilobase Million
(RPKM), Transcripts Per Kilobase Million (TPM) (Li et al.,
2015), Remove Unwanted Variation (RUV) (Risso et al., 2014)
or Upper Quartile (Bullard et al., 2010). FPKM, RPKM and
TPM option perform normalization for sequencing depth and
gene length, whereas RUV and upper quartile eliminate the
unwanted variation between samples. To check for sample
variation, Relative Log Expression (RLE) plots (Gandolfo and
Speed, 2018) of input and processed data are displayed for
comparison.

2- Transcriptome-wide distributions: Gene expressions are known
to follow certain statistical distributions such as power-law or
lognormal (Furusawa and Kaneko, 2003; Bengtsson et al., 2005;
Beal, 2017), which has been applied to determine a suitable
gene expression threshold for low signal-to-noise expression
cut-off (Piras et al., 2014, 2019; Piras and Selvarajoo, 2015;
Simeoni et al., 2015; Bui and Selvarajoo, 2020).
GeneCloudOmics can compare the cumulative distribution
function (CDF) of transcriptome-wide expression with six
model distributions: Log-normal, Log-logistic, Pareto (or

power law), Burr, Weibull, and Gamma. The goodness-of-fit
for each distribution is measured by the Akaike information
criterion (AIC), from which the user can choose the best-fitted
distribution and select threshold for low-expression gene
removal.

3- Scatter plot: Scatter plot compares any two samples (or two
replicates) by displaying the respective expression of all genes
in 2D space. As gene expression data is densely distributed in
the low-expression region, making the scatter dots
indistinguishable, GeneCloudOmics also overlays the
estimated 2D kernel density on the scatter to better
visualize the scatter dot density. The scatter plot also
shows how variable the gene expressions are between any
two samples. The wider the scatter, the less similar the global
responses and vice-versa (Piras et al., 2014).

4- Pearson and Spearman correlations: GeneCloudOmics can
evaluate the transcriptome-wide relationship between any
two samples by linear (Pearson) and monotonic non-linear
(Spearman) correlations, displayed in 1) actual values in a
table or 2) as a heat map.

5- Principal components analysis and sample clustering: Principal
Components Analysis (PCA) is used for simplifying the high-
dimensional gene expression data into two ormore dimensions,
termed the principal components. Doing so, the whole
transcriptome data can be visualized on a 2D or 3D plot.
Each principal component is a linear combination of the
original variables, hence, we can ascribe meaning to what
the components represent. From the principal components,
GeneCloudOmics can cluster the samples into groups based on
their similarity by K-means clustering.

6- t-distributed stochastic neighbour embedding (t-SNE): t-SNE
is another dimensionality-reduction approach that reduces
the complexity of transcriptomic data (Cieslak et al., 2020).
GeneCloudOmics introduces an intuitive interface that allows
performing t-SNE analysis on the processed untransformed
transcriptomic. The user can also choose to log transform the
data before submission. Sample clustering by K-means is also
applied on the t-SNE transformed dataset upon user selection.

7- Shannon entropy: GeneCloudOmics adopts the formula of
Shannon entropy (Shannon, 1948) from information theory
to measure the disorder of a high-dimensional gene
expression sample, where a higher value indicates higher
disorder. As the original formula for entropy is restricted
to discrete variables, GeneCloudOmics has to discretize gene
expression data (which is a continuous variable) by
histogram-based binning; the number of bins are
determined by Doane’s rule (Doane, 1976; Piras et al., 2014).

8- Averaged transcriptome-wide noise: Averaged transcriptome-
wide noise quantifies the variability between gene expression
scatters of all replicates in one experimental condition (Piras
et al., 2014). The noise is defined as the average of variance
(σ2) of expression divided by the square mean expression (μ2),
for all genes between all possible pairs of replicates (Piras
et al., 2014).

9- Differential Expression (DE) Analysis: DE analysis identifies
genes that are statistically different in expression levels
between any two selected conditions. GeneCloudOmics
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FIGURE 3 |Demonstration of Key Transcriptomic Analysis using GeneCloudOmics. (A–F) using bulk-RNASeq human T-regulatory cell differentiation data, and (G)
using single-cell RNASeq mouse distal lung epithelium data. (A): RLE plot of raw and normalized data, showing sample variation reduced after normalization. (B):
Comparing transcriptome-wide distribution with six model distributions to select suitable expression cut-off threshold. (C): Between-replicate transcriptome-wide
variation visualized by scatter plot. (D): Pairwise Pearson correlation between all samples. (E): Principal component analysis visualizes all sample data points in 2
dimensions. (F): Hierarchical clustering reveals common expression patterns throughout the T cell differentiation process, visualized by heat map of expression level. (G):
Random Forest clustering divides single cells according to their developmental stages.

Frontiers in Bioinformatics | www.frontiersin.org November 2021 | Volume 1 | Article 6938367

Helmy et al. GeneCloudOmics for Transcriptomic Data Analysis

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


implements three popular DE methods: edgeR, DESeq2 and
NOISeq. In case there are no replicates available for any of the
experimental condition, technical replicates can be simulated
by NOISeq. To better visualize differentially expressed genes
among the others, a volcano plot (plot of log10-p-value and
log2-fold change for all genes) distinguishing the DE and non-
DE genes is displayed. Plot of dispersion estimation, which
correlates to gene variation, is also available in DESeq2 and
EdgeR method.

10-Heatmap and gene clustering: This function clusters
differentially expressed genes (result from previous step) into
groups of co-varying genes. Expression levels of DE genes first
undergo scaling defined by zj(pi) � (xj(pi) − xj)/σxj where
zj(pi) is the scaled expression of the jth gene, xj(pi) is an
expression of the jth gene in sample pi, xj is the mean
expression across all samples and σxj is the standard
deviation (Simeoni et al., 2015). Subsequently, Ward
hierarchical clustering is applied on the scaled expression.

11- Random forest-based clustering: GeneCloudOmics uses
RAFSIL (Pouyan and Kostka, 2018), which is a random
forest based similarities learning method between single
cells from RNA sequencing experiments. RAFSIL utilizes
random forest algorithm to learn the pairwise dissimilarity
among cells/samples, which in turn is used as an input to the
K-means clustering algorithm. The resultant data is
subsequently enhanced using t-SNE-reduced dimensions,
to reveal clearer clusters of cells/samples.

12- Self-Organizing Map (SOM): SOM is a dimensionality
reduction technique that produces a two-dimensional,
discretized representation of the high-dimensional gene
expression matrix (Yin, 2008). GeneCloudOmics provides a
SOM function that outputs five different plots: property plot,
count plot, codes plot, distance plot and cluster plot.

Bioinformatics Tools
DGE analysis usually outputs a list of genes that are statistically
determined as differentially expressed genes (DEGs). Next, the list of
DEGs is analyzed, interpreted, and annotated to learn more about
the functions, pathways, and cellular processes where these genes are
involved, for example, diseases they are associated with or perform
other investigations on the properties of those genes/proteins (such
as phylogenetic or physiochemical analyses). Most of the currently
available DGE analysis tools do not include bioinformatics features
for gene set analysis or include only a few basic analyses such as GO
and pathways enrichment (Table 1). Even our previous tool,
ABioTrans, only provides one GO tool for interpreting the
DEGs. In GeneCloudOmics, we redesigned the GO feature to be
dynamic by reading the GO terms associated with the genes/
proteins directly from UniProt Knowledgebase (Bateman, 2019)
then visualize each of the three GO domains (cellular component,
molecular function and biological process) in independent tabs.
Furthermore, we have introduced 11 new bioinformatics tools that
can be performed on a given gene/protein dataset.

1) Pathways Enrichment Analysis: For a given gene or protein
set, GeneCloudOmics uses g:Profiler (Raudvere et al., 2019)
to perform a pathway enrichment analysis and displays the

results as a network where the nodes are the pathways and
the edges are the overlap between the pathways (Figure 3A).
We use Cytoscape. JS for the network visualization (Franz
et al., 2015) and through this, the network properties such as
colour and layout can be changed and the final network can
be downloaded.

2) Protein-Protein Interaction: GeneCloudOmics provides the
user with an interface where they can upload a set of
proteins (UniProt accessions) and get all the interactions
associated with them. The interactions are visualized as a
network where the nodes are the proteins, and the edges are
the interactions, and the node size corresponds to the
number of interactors of the protein. This feature uses
Cytoscape. JS for the network visualization (Franz et al.,
2015).

3) Complex Enrichment: The identification of the subunits of
the protein complexes is important to understand the
protein functions and the formation of these
macromolecular machines. GeneCloudOmics provides the
user with a complex enrichment feature that allows
identification of proteins in the provided dataset that are
part of a known protein complex using CORUM databases
(Giurgiu et al., 2019).

4) Protein Function: UniProt provides a detailed function for
thousands of protein sequences. The protein function
feature retrieves protein function information from
UniProt of a given protein set.

5) Protein Subcellular Localization: Protein localization
critically affects a protein function. The protein
subcellular localization feature provides the user with an
interface to UniProt to get the subcellular localization
information for a given list of proteins.

6) Protein Domains: The protein domains are functional
subunits of the proteins that contribute to their overall
function. GeneCloudOmics provides the user with a
protein domain feature that retrieves the domain
information from UniProt for a given list of proteins.

7) Tissue Expression: The distinct expression profile of genes
and proteins per tissue is what gives different tissues
the suitability for their functions. The tissue expression
feature in GeneCloudOmics provides the user with tissue
expression information from UniProt for each protein in a
given list.

8) Gene Co-expression: The co-expression analysis is a
common analysis that assesses the expression level of
different genes to identify simultaneously expressed
genes, which indicates that they are controlled by the
same transcriptional mechanism (Vella et al., 2017).
GeneCloudOmics provides the user with an interface
where they can submit a co-expression query to
GeneMANIA (Franz et al., 2018).

9) Protein Physicochemical Properties: For a given set of
proteins (UniProt accessions), this feature provides the
user with complete sequences of them in a single FASTA
file and allows the user to investigate their physicochemical
properties, sequence charge, GRAVY index (Kyte and
Doolittle, 1982) and hydrophobicity. The full sequences
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FIGURE 4 | Demonstration of Gene and Protein Bioinformatics Analysis using GeneCloudOmics. (A) pathway enrichment analysis, (B) gene ontology (GO), (C)
protein-protein interaction, and (D) protein phylogenetic analysis, (E) protein pathological analysis, and (F) Protein physicochemical properties (acidity, charge and
hydrophobicity) of Scutellarein treated AGS cell lines of gastric cancer proteomics dataset.
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of the proteins are automatically obtained from UniProt
Knowledgebase while the physicochemical properties are
investigated and plotted using the UniProtR package
(Bateman, 2019; Soudy et al., 2020)

10) Protein Evolutionary Analysis: For a given set of proteins,
this feature provides the user with a phylogenetic and
evolutionary analysis that includes multiple sequence
alignment (MSA) of the protein sequences, clustering
based on the amino acid sequences, chromosomal
locations, or gene trees.

11) Protein Pathological Analysis: Several diseases are
associated with the malfunction of certain genes or
proteins. The disease-protein association is collected in
different online resources such as OMIM databases
(Amberger et al., 2019), DisProt (Hatos et al., 2020) and
DisGeNET (Piñero et al., 2020). GeneCloudOmics provides
the user with an interface that retrieves the disease-protein
association from online databases for a given list of proteins
and visualizes disease-protein association as a bubble.

The features that communicate with UniProt use UniProtR,
an R package for data retrieval and visualization from UniProt
(Soudy et al., 2020). Since all the bioinformatics features only
accept gene names (gene symbol) or UniProt accessions, we
provide the user on each page with links to two ID converters
UniProt ID mapping (Bateman, 2019) and g:Convert (Raudvere
et al., 2019) to convert their identifiers to gene names or UniProt
accessions. All the analyses are either performed on the uploaded
data or involve connecting to a remote server such as UniProt
Knowledgebase. GeneCloudOmics does not store any uploaded
data and does not contain any databases.

DEMONSTRATION OF GENECLOUDOMICS
UTILITY

Transcriptome Analysis Features
We performed a demonstration of transcriptomic analysis with a
recent study on the time-resolved bulk cell RNA-Seq profile
of human T regulatory cell differentiation (Schmidt et al.,
2018). In the study, human T regulatory cells were isolated
from peripheral blood; upon which differentiation was induced
by adding TGF-ß factor, in comparison to naïve (unstimulated)
T regulatory cells as the control group. At the indicated time points
(0, 2, 6, 24, 48 h, 6 days), the cells were collected for RNA extraction
and sequencing. Here, we illustrate how GeneCloudOmics was
used for data pre-processing (normalization and filter low count),
differential analysis, and data clustering.

Firstly, unwanted variation among samples was removed by
Upper Quartile normalization. The RLE plot clearly illustrates
the normalization effects: high between-sample variation in
raw data versus low variation after normalizing (Figure 3A).
We also utilized the transcriptome-wide distribution
fitting feature to determine the expression threshold for low
count filtering (Figure 3B) (Simeoni et al., 2015; Bui et al.,
2020). The threshold of five counts was selected because from
this expression level onwards, transcriptome-wide expression

was observed to follow most of the model statistical
distributions.

Next, pairwise scatter, pair-wise sample correlation, and PCA
were used to visualize the global relationship of all data samples,
through which initial assessment on data quality can be gauged.
For example, the low between-replicate variation in contrast with
high between-condition variation could be shown by the width of
scatter plots (Figure 3C, Supplementary Figure S1A). It is further
illustrated by the correlation heatmap, in which the replicates of the
same condition all show close-to-unity Pearson correlation value
along the diagonal axis (Figure 3D); whereas decreasing
correlation value with time was observed along the edge of the
heatmap. This information is of high importance because low
correlation or high variance across replicates will negatively impact
the power to detect differentially expressed genes. Clustering of
replicates of similar time points was further illustrated in PCA and
t-SNE plots, in which the last time point (T06 - when the T cells
were fully differentiated) formed a distinct cluster from the
transitioning time points (Figure 3E, Supplementary Figure
S1B). From these analyses, we knew that the data show low
variation between replicates and that gene expression globally
changed along the differentiation time.

We performed differential expression (DE) analysis with all
three supported DE methods: EdgeR, DESeq2 and NOISeq; and
presented the analysis conducted with DESeq2 (Supplementary
Figures S1D,E). The last time point (T06) was compared against
the control group (T01) to extract DE genes in the differentiation
process (with 0.05 p-value and 2-fold expression threshold). Two
important steps in DESeq 2 were visualized: 1) the estimation of
gene-wise dispersion and empirical shrinkage of these estimates to
produce a more accurate dispersion estimate for actual gene count
modelling (Supplementary Figure S1E); and 2) the volcano plot
that summarizes DESeq2 p-value and expression fold difference
for every gene (Supplementary Figure S1E). The list of all 5,033
differentially expressed genes (3,017 up, 2,016 down) was also
listed in a separate table. Finally, the DE genes were channelled into
heatmap gene clustering feature, from which DE genes sharing
similar patterns of gene expression change throughout the
differentiation process were identified (Figure 3F). Four
common expression patterns were observed: 1) gradual decrease
(Group 2), 2) gradual increase (Group 3 and 4), 3) initial increase
followed by decrease (Group 5 and 6), and 4) sharp decrease,
followed by a gradual increase, and finally decrease (Group 1).

To further illustrate the dimension-reduced visualization
features t-SNE and random forest clustering, we used another
single-cell RNA-Seq dataset of distal lung epithelium (Treutlein
et al., 2014). The study measured gene expression of a total 198
individual mouse lung epithelial cells at four different stages
(E14.5, E16.5, E18.5, adult) throughout development. Sample
clustering by k-means on t-SNE1 and t-SNE2 space divided
the cells into clusters that are aligned with their respective
development stages (Supplementary Figure S1C and
Additional File S1): Cluster 1 contains mostly E18 cells,
Cluster 2 and 3 contain mostly AT2 cells, Cluster four
contains mostly E16 cells, and Cluster 5 contains mostly E14
cells. Finally, clustering by random forest approach (Pouyan and
Kostka, 2018) determined the number of clusters as the number
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of types of cells provided in the input metadata table and
subsequently grouped the cells according to their
developmental stages (Figure 3G).

New Bioinformatics Features
To demonstrate the utility of the bioinformatics section, we used
data from a differential proteomics analysis that was conducted
using the AGS cell lines of gastric cancer (GC) (Saralamma et al.,
2020). The AGS cells were treated with Scutellarein, a flavone
known for its anticancer effect. The study identified 41 proteins
that are differentially expressed in AGS when treated with
Scutellarein, 24 of them were downregulated and 17 were
upregulated.

Pathway analysis shows that the down-regulated proteins are
associated with movement of cellular or subcellular components
and platelet activation (Figure 4A), while that pathways
enrichment for the up-regulated proteins did not result in any
significantly enriched pathways. Functional analysis is retrieved,
visualized, and represented as Gene Ontology (GO) terms
(Biological process; Molecular function; Cellular component).
The down-regulated profile shows cell processing components
including cell cycle, cell division, and cell migration (Figure 4B),
while the up-regulated profile shows a regulation of apoptotic
process including positive and negative regulation associated with
cytokine-mediated signalling pathway (Supplementary Figure
S2A). Protein-protein interaction (PPI) network of both down-
regulated and up-regulated proteins retrieved from UniProt
(Bateman, 2019) and visualized using Cytoscape. JS (Franz
et al., 2015) and GeneCloudOmics protein interaction feature
(Figure 4C, Supplementary Figure S2B).

GeneCloudOmics internally uses ClustalOmega (Sievers and
Higgins, 2021) to perform a multiple sequence alignment
(MSA) which was used to investigate and visualise the
homogeneity among protein sequences (Figure 4D and
Supplementary Figure S2C). Pathological analysis of the
protein list is a crucial step in data interpretation for
connecting computational output with biological data, so the
protein accession list is mapped to OMIM database disease IDs
for providing information about diseases associated with
proteins (Figures 4E and Supplementary Figure S2D).
Physicochemical analysis of the two sets of proteins shows
that sequence charge of 100% of the down-regulated
proteins is negative while in the up-regulated proteins it is
94% negative and 6% positive (Figures 4F and Supplementary
Figure S2E).

SUMMARY AND FUTURE DEVELOPMENTS

In this paper, we have introduced a new webserver,
GeneCloudOmics, for gene expression data analysis using a
simple easy-to-use GUI that contains 23 data analytic and
bioinformatics tools. This is the largest number of tools in any
current webserver to our knowledge (Table 1). We have
demonstrated the utility of key functions using recently
published human T regulatory cell differentiation and mouse
distal lung epithelium RNA-Seq dataset (Risso et al., 2014;

Schmidt et al., 2018) and Scutellarein treated AGS cell lines of
gastric cancer proteomics dataset (Saralamma et al., 2020).

In the next few years, GeneCloudOmics could be extended to
support additional types of high throughput data, on top of RNA-
Seq or microarrays. The plan includes supporting the analysis of
proteomics, metabolomics, chromatin immunoprecipitation
sequencing (ChIP-Seq) and cross-linking immunoprecipitation
(CLIP-Seq) data. In addition, we hope to continue improving the
transcriptome data analysis by adding new features such as other
DGE methods [e.g. Limma (Dias-Audibert et al., 2020) and
ScatLay (Bui et al., 2020)], sample overlap analysis (Venn
diagram), additional data plots (e.g. density plot) and support
for Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,
2005). The gene and protein IDs could also be extended to
support different IDs, so the user is not restricted to use gene
names and UniProt accessions only.
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Supplementary Figure S1 | Demonstration of GeneCloudOmics transcriptomic
analysis features on (A–E): bulk-RNASeq human T regulatory cell differentiation data,
and (C): single-cell RNASeq mouse distal lung epithelium data: (A): Between-replicate
and between-condition transcriptome wide variation visualized by scatter plot. (B, C):
t-SNE (right) visualize all sample data points in 2 dimensions for (B): bulk-cell RNA-Seq
human T cell data, and (C): single-cell RNASeq distal lung epithelium data. (D, E):
Estimated dispersion (D) and resulting volcano plot (E) from DESeq2 differential
expression analysis with p-value threshold at 0.05 and expression fold threshold at 2.

Supplementary Figure S2 | Protein bioinformatics analysis for the
upregulated proteins set. (A) gene ontology (GO), (B) protein-protein
interaction, and (C) protein phylogenetic tree, (D) protein pathological
analysis, and (E) Protein physicochemical properties (acidity, charge and
hydrophobicity).

Supplementary Table S1 | The list of the R packages used in GeneCloudOmics.
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