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Abstract: In this paper, we propose a deep-learning-based method using a convolutional neural
network (CNN) to predict the volume flow rates of individual phases in the oil–gas–water three-
phase intermittent flow simultaneously by analyzing the measurement data from multiple sensors,
including a temperature sensor, a pressure sensor, a Venturi tube and a microwave sensor. To
build datasets, a series of experiments for the oil–gas–water three-phase intermittent flow in a
horizontal pipe, in which gas volume fraction and water-in-liquid ratio ranges are 23.77–94.45%
and 14.95–86.97%, respectively, and gas flow superficial velocity and liquid flow superficial velocity
ranges are 0.66–5.23 and 0.27–2.14 m/s, respectively, have been carried out on a test loop pipeline.
The preliminary results indicate that the model can provide relative prediction errors on the testing-1
dataset for the volume flow rates of oil-phase, gas-phase and water-phase within ±10% with 94.49%,
92.56% and 95.71% confidence levels, respectively. Additionally, the prediction results on the testing-2
dataset also demonstrate the generalization ability of the model. The consuming time of a prediction
with one sample is 0.43 s on an Intel Xeon CPU E5-2678 v3, and 0.01 s on an NVIDIA GeForce GTX
1080 Ti GPU. Hence, the proposed CNN-based prediction model, which can fulfill the real-time
application requirements in the petroleum industry, reveals the potential of using deep learning to
obtain accurate results in the multiphase flow measurement field.

Keywords: CNN; volume flow rate; three-phase intermittent flow; multiple sensors

1. Introduction

Multiphase flow is mixture flow of different components or phases, which widely
exist in many industry fields, such as oil field exploitation, chemical engineering, and the
metallurgical industry. The flow rate measurement of multiphase flow is very important
and helpful for process monitoring and optimizing. An important example of this is
the accurate measurement of outcomes including oil, gas, and water for an individual
well in the petroleum industry, which is crucial for the custody transfer and the digital
management of an oil field [1]. However, due to the complex flow characterizations and
harsh field conditions, it has long been a challenge to accurately measure the flow rate of
multiphase flows in industry.

Since the 1980s, for flow rate prediction, many multiphase flow meters using different
techniques have been developed [2]. In the most conventional multiphase flow rate
measurement techniques, a separator and some single-phase flow meters are needed.
This indirect-measuring method can achieve relatively high precision. Nevertheless, the
separator is bulky, and this method is costly and has a poor real-time ability [1]. Hence, it
is significant to find ways that are cost-effective and convenient to directly obtain the flow
rate of the multiphase flow.
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For realizing direct flow rate measuring, many researchers have tried a variety of
methods based on various theories. In 2005, Z. Huang and D. Xie et al. combined a
Venturi meter and an electrical capacitance tomography (ECT) system to measure the
flow rate of gas–oil two-phase flow [3]. In 2009, P. Mehdizadeh, D. Farchy and J. Suarez
combined the Coriolis flow meter and the microwave-based water cut meter to measure the
volume flow rate of each phase [4]. In 2012, C. Xie and Z. Wu estimated the liquid volume
flow rate of multiphase flow by utilizing the microwave Doppler system [5]. In 2014, F.
Zhou, M. Henry and M. Tombs combined Coriolis mass flow rate metering and water cut
metering to obtain the mass flow rates of oil, gas and water, respectively, without phase
separation [6]. In 2015, C. Yuan and Y. Xu et al. used dimensionless analysis to investigate
the gas flow rate measurement for wet gas with the Venturi tube [7]. Currently, there
are certain commercialized multiphase flow meters (MPFMs) applied practically, which
usually combine various measurement sensors and measurement techniques [8–11]. These
multiphase flow meters are usually very expensive and perform well under the condition
of high liquid-phase production, greater than several hundred cubic meters per day. For
example, the typical measurement uncertainty on liquid and gas flow rates of Roxar
MPFM 2600 M is 10% with a 95% confidence level, while working under the conditions
of 15–85% GVF and total flow velocity range of 5–25 m/s [8]. It is difficult to commonly
apply these flow meters for the measurement of an individual well with low liquid-phase
production, which is the majority of onshore oilfields in China. Thus, the development of
cost-effective flow meters and measurement techniques for oil–gas–water three-phase flow
is still a big challenge and an open problem. Meanwhile, the aforementioned measurement
methods are generally based on the empirical or semi-empirical model. Although they
have been developed and obtained good measurement results, there is still much room to
improve their performances for practical applications. Hence, new data analytics has to
be developed.

In recent years, machine learning, especially deep learning based upon various artifi-
cial neural networks, as a data-driven method, has gradually become a very hot research
topic and attracted attention in the multiphase-flow-measurement society. In 2014, S. Fan
and T. Yan presented a method based on a multilayer feedforward neural network and
conductance probes to obtain the gas and liquid flow rates of an air–water two-phase slug
flow [12]. In 2015, J. Chen and L. Xu et al. measured the water cut of an oil–water two-phase
flow on the basis of support vector regression (SVR) by combining the total flow rate and
the response of a conductance probe [13]. In 2016, S. Azizi, E. Ahmadloo and M. M. Awad
predicted the void fraction of a gas–liquid two-phase flow using multilayer perceptron
neural networks with the pipe inclination angle and the superficial Reynolds number of
gas and liquid as the input parameters [14]. In 2019, B. Bahrami and S. Mohsenpour et al.
used the feed-forward neural network approach together with the flow parameters and the
statistical characteristics of pressure signals to estimate the flow rates of individual phases
in the oil–gas–water multiphase flow [15]. In addition, the applications of convolutional
neural networks have been studied [16–18]. With the help of the powerful representational
capacity of machine learning, measurement methods combined with machine learning
have obtained promising achievements.

In the past few years, deep learning has achieved great successes in many fields [19].
The theory related to deep learning has also made great progress, including the studies
about different neural network architectures, the more powerful computation ability of
GPUs, big data, the various training techniques and open-source deep-learning platforms,
etc. Hence, it is worthy to explore the measurement method by using the prevailing deep-
learning techniques to implement the black-box soft-sensing of complex systems [20–22].
For the real-time measurement and digital management of an individual well in the
petroleum industry, there has been an increasing need to realize the flow rate measurement
of the multiphase flow in convenient, cost-effective and accuracy-assured ways. From the
perspective of combining deep learning with the petroleum industry, this paper is trying
to explore the data-driven black-box soft-sensing methods for complex systems such as
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an oil–gas–water three-phase intermittent flow by using recently booming deep learning
techniques to analyze the measured data from cost-effective sensors, which may bring
new data analytics into the multiphase flow measurement and extend the application of
deep learning.

In this paper, based on the convolutional neural network (CNN), the volume flow
rate prediction model for the oil–gas–water three-phase intermittent flow is proposed to
organically integrate the measurement data from the multiple sensors which are mounted in
the horizontal pipe of our experimental setup. For this, we use the temperature sensor and
the pressure sensor to obtain the flow temperature and the pipeline pressure, respectively,
and use the Venturi tube to obtain the differential pressures. Similar to many commercial
MPFMs using radioactive methods [9–11], we utilize the microwave sensor to obtain the
data which are sensitive to the phase fraction. Through analyzing the measurement data,
the CNN-based model can predict the oil-phase volume flow rate (OVFR), the gas-phase
volume flow rate (GVFR) and the water-phase volume flow rate (WVFR) simultaneously.

In the rest of this paper, we present our model and experiments in detail. Section 2 in-
troduces our experimental system and working conditions. Section 3 presents the proposed
CNN-based prediction model in detail. In Section 4, the obtained experimental results are
discussed. Finally, we conclude in Section 5.

2. Experimental System and Working Conditions

The schematic diagram of the experimental system in our multiphase laboratory is
shown as Figure 1a and the corresponding picture is shown as Figure 1b. In this test loop
with 50 mm diameter, which mimics the real pipeline of an individual well, the oil-phase
medium is white oil, the gas-phase medium is air and the water-phase medium is tap water.
The distance of the center sections between the Venturi tube and the microwave sensor
is 560 mm, which is about 10 times that of the pipe diameter. The Venturi tube is located
upstream of the microwave sensor.

Figure 1. The schematic diagram and picture of the experimental system. (a) The schematic diagram;
(b) The picture.

Firstly, the air compressor supplies the static pressure for the whole experimental
system. Then, the air from the air storage tank is pumped into the pipeline of our experi-
mental apparatus by the recycle compressor. In the separation tank, when the liquid-phase
flow rate and the gas-phase flow rate in working conditions are less than 20 and 150 m3/h
respectively, the oil–gas–water three-phase flow will sedimentate as single-phase air, oil
and water quickly due to their different densities, which satisfies our experimental re-
quirements. The oil and water are pumped into the pipeline by the centrifugal pumps,
respectively. These three single-phase fluids flow through the valves and standard flow me-
ters. These valves can control the individual flow rate of each single-phase component. The
standard flow meters can provide the reference volume flow rates of each single-phase flow.
Afterwards, air, oil and water are mixed into one pipe. Then, the oil–gas–water three-phase
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flow passes through the glass inspection window and the horizontal test section installed
with multiple sensors. Finally, the three-phase flow goes back into the separation tank.

Figure 2 shows the structure diagrams of the multiple sensors installed on the hori-
zontal test section of Figure 1. There are four types of sensor, which are the Venturi tube
and the microwave sensor supplemented with the temperature sensor and the pressure
sensor. The upstream and downstream pipe diameters of the test section are both 50 mm.
In Figure 2a,b, the upstream diameter D and the throat diameter d of the Venturi tube are
50 and 25 mm, respectively. There are two probes in the microwave sensor, whose lengths
r are both 20 mm. From the upper probe, the upper microwave phase and amplitude can
be acquired, and correspondingly, from the lower probe, the lower microwave phase and
amplitude can be acquired. Hence, the multiple sensors can provide eight types of sensor
reading, i.e., ∆P1 (the differential pressure of the convergent section) and ∆P2 (the differ-
ential pressure of the divergent section) from the Venturi tube, β1 (the upper microwave
phase), A1 (the upper microwave amplitude), β2 (the lower microwave phase) and A2 (the
lower microwave amplitude) from the microwave sensor, T (the flow temperature) from
the temperature sensor and P (the pipeline pressure) from the pressure sensor.

Figure 2. The schematic diagrams of the multiple sensors. (a) The structure diagram of the section
installed with the temperature sensor, the pressure sensor and the Venturi tube; (b) The structure
diagram of the microwave sensor.

Table 1 shows the standard flow meters used in our experiments. The GVF and WLR
are calculated via the equations as follows

GVF =
Qg

Qo + Qg + Qw
· 100%, (1)

WLR =
Qw

Qo + Qw
· 100%, (2)

where Qo, Qg and Qw are the reference volume flow rates of the oil, gas and water, which
are measured by the standard flow meters listed in Table 1, respectively.

Table 1. Description of standard flow meters.

Measuring Meter Measuring Range

Standard gas flow meter (thermal flow meter) 0–90 m3/h
Standard oil flow meter (dual rotor flow meter) 0.6–36 m3/h

Standard water flow meter (electromagnetic
flow meter) 0.17–26 m3/h

The working conditions of our experiments are shown in Table 2, where T, P, ∆P1,
∆P2, β1, A1, β2 and A2 have the same meaning as mentioned above. As aforementioned,
certain commercialized multiphase flow meters perform well under the condition of high
liquid-phase production. In the study of this paper, the proposed CNN-based method
can be applied to the flow condition of low liquid-phase production, which is consistent
with most well-head oil–gas–water three-phase flows in the onshore oilfields in China.
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A series of experiments under the working conditions described in Table 2 are carried
out on the test loop and the related data are collected. These collected data are used to
train, validate, and demonstrate the performances of our proposed CNN-based prediction
model. According to [23,24], we can obtain the flow regime map inside the horizontal
pipeline by using the superficial velocities of gas-phase and liquid-phase and plotting
the superficial flow velocity scattergram in Figure 3, wherein, the blue points represent
the scattergram in accordance with the experimental dataset, which will be split into the
training dataset, the validation dataset and the testing-1 dataset, and the magenta points
represent the scattergram in accordance with the testing-2 dataset. The testing-2 dataset
has 70 samples, whose flow rate range is out of range regarding the experimental dataset
in the blue color. The testing-2 dataset is used to verify the generalization ability of the
proposed model and will be discussed in Section 4. From the flow regime map, it can
be found that there is a mass of slug flow and a little elongated bubble flow which are
collectively called the intermittent flow, which is consistent with the observations from the
glass inspection window.

Table 2. Working conditions of the experiments.

Experimental Parameters Range

T (◦C) 29.6–41.06
P (kPa) 123.14–611.43

∆P1 (kPa) 0.12–62.1
∆P2 (kPa) 0–31.74

β1 (◦) 70.45–180
A1 (dB) −0.67–3.74
β2 (◦) 63.93–180

A2 (dB) −4.08–3.42
Oil volume flow rate (m3/h) 1–8.39
Gas volume flow rate (m3/h) 5.01–40

Water volume flow rate (m3/h) 1–8.46
Gas superficial velocity (m/s) 0.66–5.23

Liquid superficial velocity (m/s) 0.27–2.14
Gas volume fraction (GVF) (%) 23.77–94.45
Water-in-liquid ratio (WLR) (%) 14.95–86.97

Figure 3. The flow regime map.
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3. Prediction Model Based on CNN

Artificial neural networks (ANNs) are computational models that are loosely in-
spired by the neurosciences and are mainly composed of simple processing units and their
interconnections, so ANNs can learn from experience through modifying these interconnec-
tions [25]. Various ANN models have been studied in the past and recently researched in
different applications. In [18], X. Lin and H. Wang et al. analyzed the relationship between
the WLR and the microwave data (i.e. β1, A1, β2 and A2), and, by combining the microwave
sensor with the Venturi tube, they proposed a dual convolutional neural network model to
predict the volume flow rates of the oil and water in the oil–gas–water multiphase flow.
From [18], we can obtain the following relationship(

Q̂o, Q̂w
)
= f (P, ∆P1, ∆P2, β1, A1, β2, A2), (3)

where Q̂o and Q̂w represent the predicted OVFR and the predicted WVFR, respectively,
and P, ∆P1, ∆P2, β1, A1, β2 and A2 are the sampled sensor data have the aforementioned
meanings. From [18,26,27], the predicted gas-phase volume flow rate can be calculated by
the equation shown below, in the traditional method with the Venturi tube

Q̂g =
Cε√

1− β4
× π

4
β2D2 ×

√
2∆Pg

ρg
, (4)

where C is the discharge coefficient, ε is the expansion factor, β is the beta ratio, D is the
pipe internal diameter, ∆Pg is the differential pressure measured by the Venturi tube and
ρg is the gas-phase density. From this equation, we can know that, besides the differential
pressure, the gas-phase volume flow rate is also affected by the gas-phase density ρg in
working conditions, which is dependent on T and P. Hence, we need the flow temperature
T as an input parameter to further predict the gas-phase volume flow rate. Combining
Equations (3) and (4), we can obtain the relationship as(

Q̂o, Q̂g, Q̂w
)
= f (T, P, ∆P1, ∆P2, β1, A1, β2, A2), (5)

where f (·) denotes the prediction model that we focus on.
In this section, the CNN-based regression model is presented to predict the volume

flow rates of oil-phase, gas-phase and water-phase simultaneously. Eight types of measure-
ment data, which are T, P, ∆P1, ∆P2, β1, A1, β2 and A2, are used as the input in our model.
OVFR, GVFR and WVFR is the output. To clearly depict the model, we define Q̂o, Q̂g, Q̂w,
Qo, Qg and Qw as representing the predicted OVFR, the predicted GVFR, the predicted
WVFR, the reference OVFR, the reference GVFR and the reference WVFR, respectively.

3.1. Data Preprocessing

The CNN-based measurement model has to be trained by using the experimental
data before it is deployed for prediction. The sampling frequency of multiple sensors is
around 10 Hz. Each point in the flow regime map shown as Figure 3 corresponds to one
specific working condition described as Table 2, which lasted about 3 min and resulted in
a group of time series of experimental data composed of 1800 sampling points of P, ∆P1,
∆P2, T, β1, A1, β2 and A2. The reference volume flow rates corresponding to this 3-minute
period are the calculated mean values of readings from the standard flow meters. Hence,
the model’s input is a data matrix in 1800 by 8, which means a data group including 1800
sampling points of eight sensor readings (i.e., P, ∆P1, ∆P2, T, β1, A1, β2 and A2). The feature
extraction and flow rate prediction can be implemented by CNN. The model’s output is
the predicted OVFR (Q̂o), the predicted WVFR (Q̂w) and the predicted GVFR (Q̂g).

In our model, the input data are a group of time series obtained from the real mul-
tiple sensors. Hence, we need to implement data cleaning for the collected data. Firstly,
we compensated and corrected all of the sensor data. Then, we dropped the input data
groups including measuring points out of the measuring range of sensors and the corre-
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sponding target data (i.e., Qo, Qg and Qw). Finally, we shuffled these reserved input and
corresponding target data and then partitioned them into the different datasets we need.
After data cleaning, we obtained 8177 samples as the training dataset, 1100 samples as the
validation dataset, 1560 samples as the testing-1 dataset and 70 samples as the testing-2
dataset. Figure 4 shows two data samples, which correspond to two different working
conditions. They are the time diagrams of the input features. There are two vertical axes,
of which the left corresponds to P, β1 and β2, and the right corresponds to ∆P1, ∆P2, T,
A1 and A2 to show the curves clearly. In Figure 4a, the corresponding Qo, Qg and Qw are
5.10, 17.02 and 2.90 m3/h, respectively. In Figure 4b, the corresponding Qo, Qg and Qw are
4.86, 28.54 and 3.90 m3/h, respectively. From Figure 4, it is noteworthy that the relatively
evident differences in input features between Figures 4a,b show that it is feasible to learn
the underlying flowrate-sensitive features from inputs using deep learning techniques.

Figure 4. Two data samples of different working conditions. (a) Corresponding reference volume
flow rates: Qo = 5.10 m3/h, Qg = 17.02 m3/h, Qw = 2.90 m3/h; (b) Corresponding reference volume
flow rates: Qo = 4.86 m3/h, Qg = 28.54 m3/h, Qw = 3.90 m3/h.

3.2. CNN-Based Prediction Model

Convolutional neural networks (CNNs) are networks used to process data which have
a known, grid-like topology [19]. In recent years, CNNs have been developed rapidly and
various novel CNN architectures have emerged. Nowadays, CNNs are widely used in
various practical scenarios, like image classification [28] and sentence classification [29,30],
and have made tremendous achievements. In this paper, we propose a CNN-based predic-
tion model for the volume flow rates of the oil-phase, the gas-phase and the water-phase,
whose architecture is depicted as Figure 5. In the proposed model, the volume flow rates
of individual phases are obtained simultaneously. Through the trial and evaluation about
convolutional neural networks with different depths, which vary from 2 to 16 layers, we
determine that the CNN-based prediction model has the structure of seven layers, i.e., the
CNN-7 with the structure of Figure 5 for the volume flow rate predictions.

As illustrated in Figure 5, a group of input features are fed into the multiple convolu-
tional layers. Then, the features extracted by convolutional layers are reshaped and pass
through the final subsequent fully connected layer to obtain the prediction of OVFR, WVFR
and GVFR. In our proposed architecture, the operation of the first convolutional layer is
1D convolution, and the operations of the other convolutional layers are 2D convolutions.
Hence, there is a dimension permutation operation of intermediate features between the
first layer and the second layer.

From Figure 5, it can be noted that there are normalization operations for the raw input
and target data to train the model more effectively. In this paper, each type of input data and
target data is normalized into [−1, 1] and [0, 1] via rescaling. Inverse normalization should
be applied to restore the outputs to the scale of the original target data to obtain Q̂o, Q̂w
and Q̂g [31,32]. In Figure 5, the model part inside the dashed box is the structure, including
all trainable parameters of the model, which are updated by the back-propagation.



Sensors 2021, 21, 1245 8 of 19

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

3.2. CNN-Based Prediction Model 

Convolutional neural networks (CNNs) are networks used to process data which 

have a known, grid-like topology [19]. In recent years, CNNs have been developed rapidly 

and various novel CNN architectures have emerged. Nowadays, CNNs are widely used 

in various practical scenarios, like image classification [28] and sentence classification 

[29,30], and have made tremendous achievements. In this paper, we propose a CNN-

based prediction model for the volume flow rates of the oil-phase, the gas-phase and the 

water-phase, whose architecture is depicted as Figure 5. In the proposed model, the 

volume flow rates of individual phases are obtained simultaneously. Through the trial 

and evaluation about convolutional neural networks with different depths, which vary 

from 2 to 16 layers, we determine that the CNN-based prediction model has the structure 

of seven layers, i.e., the CNN-7 with the structure of Figure 5 for the volume flow rate 

predictions. 

As illustrated in Figure 5, a group of input features are fed into the multiple 

convolutional layers. Then, the features extracted by convolutional layers are reshaped 

and pass through the final subsequent fully connected layer to obtain the prediction of 

OVFR, WVFR and GVFR. In our proposed architecture, the operation of the first 

convolutional layer is 1D convolution, and the operations of the other convolutional layers 

are 2D convolutions. Hence, there is a dimension permutation operation of intermediate 

features between the first layer and the second layer. 

 

Figure 5. The architecture diagram of the convolutional neural network (CNN)-7-based prediction 

model for the volume flow rates of the individual phases. 

Figure 5. The architecture diagram of the convolutional neural network (CNN)-7-based prediction
model for the volume flow rates of the individual phases.

Table 3 shows some details of the CNN-7 architecture. In this table, “BN” means the
batch normalization and “ReLU” is the applied activation function [19]. The output shape
is represented by “channels of feature map × height of feature map × width of feature
map”. Note that, in Table 3, there are six convolutional layers (CONV1~CONV6) and a
fully connected layer (FC).

Table 3. Architecture of CNN-7 for the volume flow rate predictions.

Layer Name Structure Output Shape

CONV1
10 × 8, 896, s = 2, p = 0; BN; ReLU 896 × 896 × 1

Permute the dimensions of the output 1 × 896 × 896

CONV2 3 × 3, 32, s = 2, p = 1; BN; ReLU 32 × 448 × 448

CONV3 3 × 3, 64, s = 2, p = 1; BN; ReLU 64 × 224 × 224

CONV4 3 × 3, 64, s = 1, p = 1; BN; ReLU 64 × 224 × 224

CONV5 3 × 3, 128, s = 2, p = 1; BN; ReLU 128 × 112 × 112

CONV6
3 × 3, 256, s = 2, p = 1; BN; ReLU 256 × 56 × 56

Average-pooling, 56 × 56 256 × 1 × 1
Squeeze the dimensions of the output 256 × 1

FC Linear 3 × 1
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References [17,18] both leverage the CNN architecture to realize the flow rate pre-
diction for the multiphase flow. However, the research and the proposed method in this
paper are different from those in [17,18]. Compared with [18], the proposed CNN-7-based
model has the following differences and novelties. Firstly, besides the flow rates of the
oil and water, the CNN-7-based model can obtain the gas flow rate in the oil–gas–water
three-phase flow. Secondly, the CNN-7-based model is combined with ensemble learning
to improve the prediction performance, which is explained in detail in Section 3.3. Thirdly,
the proposed CNN-7-based model is more compact and concise. The CNN-7-based model
in this paper uses both 1D convolution and 2D convolution operations to extract better
features, and the input parameters are fed into one convolutional neural network so that
these input parameters are better coupled to obtain better results, which will be discussed
in Section 4. Finally, on the basis of the supervised-learning-based model studied in this
paper, a novel machine-learning-based data analytics framework for the measurement of
multiphase flow is proposed, which will be discussed in Section 4.

In [17], CNN is used to predict the oil flow rate, the gas flow rate and GVF in the gas–
oil two-phase flow through analyzing the flow patterns before and after the Venturi tube,
which are obtained from dual electrical capacitance tomography sensors and a linear back-
projection algorithm. Hence, it can be seen that the research goal and method in [17] are
very different from those in this paper. In addition, the CNN model in [17] is derived from
the Inception V3 model, which is much more complicated than the proposed CNN-7-based
model in this paper.

3.3. Loss Function and Ensemble Learning

As previously mentioned, we have demonstrated the CNN-7 prediction model in
detail. In addition to the architecture, the design of the loss function, which is suitable for
our application scenario, is also very crucial. The prediction of OVFR, GVFR and WVFR is
actually a regression problem. Therefore, we utilize the mean squared error (MSE) as the
loss function [19]

L(θ) = E(x,y)∼pdata(x,y)

{
‖ y− f (x; θ) ‖2

2

}
, (6)

where x denotes a group of normalized input features; y denotes the corresponding nor-
malized reference vector; θ denotes the trainable parameters of the model; f (·) rep-resents
the model part including θ, shown in the dashed box of Figure 5. The training process of
the CNN-based measurement model is used to resolve the optimization problem as bellow

θ∗ = argmin
θ

L(θ), (7)

where θ* represents the well-trained parameters. In deep learning, the trainable param-
eters are generally updated by the back-propagation algorithm. We selected the Adam
algorithm to train our model, which is a method for stochastic optimization about back-
propagation [33].

To improve the predictive effects further, we combined the trained CNN-based model
with the inspiration of ensemble learning. Ensemble learning is a method which constructs
multiple individual learners and combines them to achieve the learning task [34]. We
trained the CNN-7-based prediction model for multiple trials and the trained model of
each trial is an individual learner. Then, we used the averaging combination scheme
to combine the learners to obtain the final prediction results. The applied averaging
combination scheme can be demonstrated as follows [34]

F(x) =
1
T

T

∑
t=1

ft(x), (8)

where x denotes a group of normalized input features, ft(·) represents the trained model
part after the t-th trial, T is the number of trials, and F(·) represents the final outputs. After
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applying the inverse normalization to the final outputs, we can obtain the final prediction
results, i.e., the final predicted OVFR, GVFR and WVFR. In the subsequent sections, we
focus on the predictive results and effects of the CNN-based model with ensemble learning.

4. Experimental Results and Discussion

To evaluate the prediction performance of the proposed CNN-based model, we se-
lected the following criteria for each phase

Root mean squared error (RMSE)

RSME =

√√√√ 1
N

N

∑
i=1

(q̂i − qi)
2, (9)

Coefficient of determination (R2)
R2 = 1−

N
∑

i=1
(qi−q̂i)

2

N
∑

i=1
(qi−qi)

2

q = 1
N

N
∑

i=1
qi

, (10)

Mean absolute percentage error (MAPE)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ q̂i − qi
qi

∣∣∣∣ · 100%, (11)

Mean quoted error (MQE) [13]

MQE =
1
N

N

∑
i=1

|q̂i − qi|
qmax

· 100%, (12)

where N is the sample size; q̂i denotes the i-th predicted volume flow rate of one individual
phase, i.e., Q̂o, Q̂g or Q̂w; qi denotes the i-th reference volume flow rate of one individual
phase, i.e., Qo, Qg or Qw; q represents the mean value of qi and qmax represents the maximum
of all reference volume flow rates of one individual phase.

The hyper-parameters used to train the model are chosen as shown in Table 4, through
trial and error. In this paper, the model’s architecture was implemented by PyTorch, which
is a prevailing open-source deep-learning platform [35], and the training process runs
on 4 NVIDIA GeForce GTX 1080 Ti GPUs. After training, we can obtain the CNN-based
prediction model to predict the volume flow rates of the oil-phase, the gas-phase and the
water-phase simultaneously. The corresponding loss curves over five trials are shown in
Figure 6.

Table 4. Hyper-parameters for the model training.

Hyper-Parameters Setting

Number of trials T 5
Number of epochs E 150

Batch size B 64
Learning rate λ 0.001
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Figure 6. Loss curves of the CNN-based prediction model over 5 trials. The solid lines and the
shaded areas represent the mean and the standard deviation over 5 trials, respectively.

From Figure 6, it is found that the training loss and the validation loss reduce rel-
atively significantly in the first 60 training epochs, and the training loss curve is below
the validation loss curve when the loss curves converge, which satisfies our expectation.
In addition, we can see that the model does not suffer overfitting. Hence, it is feasible
to realize the volume flow rate predictions for the oil, gas and water using the proposed
CNN-based model.

After training and validation, for each individual phase, the defined criteria of the
CNN-based prediction model over five trials on different datasets are evaluated and shown
as Table 5. In this table, there are three flow phases and three types of dataset, and mean
values and standard deviation (STD) values over five trials illuminate the magnitude
and the fluctuation of each criterion, respectively. Note that RMSE, MAPE and MQE are
better when closer to 0.0, while R2 is better when closer to 1.0. These criteria are utilized
to evaluate the proposed model but not to train the model and reflect the prediction
performance of the proposed CNN-based model. It is found from Table 5 that, for the same
type of dataset and criterion, the prediction performances are relatively close between the
oil-phase and the water-phase, and the prediction performance for the gas-phase is slightly
inferior to those for the other two flow phases.

Table 5. Criteria for different datasets over 5 trials for different flow phases using the CNN-based prediction model.

Flow
Phase

Dataset
RMSE (m3/h) R2 MAPE (%) MQE (%)

Mean STD Mean STD Mean STD Mean STD

Oil
Training dataset 0.1294 0.0153 0.9914 0.0020 2.5741 0.2933 0.5131 0.0880

Validation dataset 0.1753 0.0159 0.9828 0.0032 3.2951 0.2651 0.6941 0.0774
Testing-1 dataset 0.1945 0.0108 0.9787 0.0024 3.6488 0.2129 0.7535 0.0609

Gas
Training dataset 0.5834 0.0899 0.9945 0.0016 2.3290 0.3709 0.7589 0.1197

Validation dataset 1.0539 0.0782 0.9824 0.0026 3.6297 0.3001 1.1992 0.1036
Testing-1 dataset 1.1671 0.0445 0.9801 0.0015 4.3257 0.2136 1.3975 0.0740

Water
Training dataset 0.0962 0.0128 0.9959 0.0011 2.5060 0.3158 0.3838 0.0587

Validation dataset 0.1162 0.0114 0.9946 0.0011 2.9345 0.2715 0.4630 0.0470
Testing-1 dataset 0.1214 0.0102 0.9929 0.0012 3.0969 0.2655 0.4661 0.0447

RMSE, R2, MAPE and MQE are illuminated as Equations (9)–(12).

We also compared the prediction results of the CNN-7-based model with those in [18]
and summarized the results in Table 6. From this table, we can see that the proposed
CNN-7-based model can obtain better MAPE than the CNNdual model in [18], which
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demonstrates the superiority of the proposed model in this paper and is in accordance with
the analyses in Section 3.2.

Table 6. MAPE comparison between CNNdual model in [18] and CNN-7-based model in this paper.

Model Type Flow Phase MAPE (%)

CNNdual model in [18]
Oil 5.30
Gas −

Water 3.95

CNN-7-based model in this paper
Oil 3.65
Gas 4.33

Water 3.10

Figure 7 shows the predicted results including the volume flow rate predictions and
the corresponding relative errors on the testing-1 and testing-2 datasets for the oil-phase,
the gas-phase and the water-phase. From Figure 7, it can be seen that, for the testing-1
dataset and the testing-2 dataset, the datapoints of all three individual flow phases are
predominantly located in the±10% relative error band, which illustrates that the predictive
effect of the CNN-7 prediction model combined with ensemble learning is remarkable.

Based on the results in Figure 7, the quantitative statistics about the performance
related to CNN-7 for three different flow phases on the testing-1 dataset are calculated and
summarized in Table 7. In this table, |ξ|e denotes the proportion of datapoints within ±e%
relative error band to the total datapoints, which can be considered as the confidence level
of relative errors within ±e%. The corresponding formula is shown as below

|ξ|e =

N
∑

i=1
I{|ξi| ≤ e}

N
· 100%, (13)

where ξi denotes the i-th predicted relative error expressed as a percentage of one individual
flow phase; e denotes the selected error bound expressed as a percentage which is a positive
value; N represents the number of total datapoints of the dataset; I{|ξi| ≤ e} represents the
indicator function, i.e., when |ξi| ≤ e it is equal to 1 and when |ξi| > e it is equal to 0 [36].

Table 7. |ξ|e on the testing-1 dataset for different flow phases using the CNN-based prediction model.

Flow Phase |ξ|5 |ξ|10

Oil 84.62% 94.49%
Gas 79.55% 92.56%

Water 87.31% 95.71%

From the statistics in Table 7, it can be seen that the confidence levels between the oil
and the water are relatively close, and the confidence level of the gas is inferior to those
of the other two phases, which is consistent with the aforementioned discussion obtained
from Table 5. Meanwhile, it is found that |ξ|10 of all three flow phases is greater than
90%, which demonstrates that the prediction performance of our proposed CNN-based
model is impressed and the predictive effects for three different flow phases are all fairly
good. Hence, it is feasible to utilize this model in practical applications for individual
phase-volume flow-rate measurement of the oil–gas–water three-phase intermittent flow.
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Figure 7. The predicted results on the testing-1 and testing-2 datasets of the proposed CNN-based
volume flow rate prediction model combined with ensemble learning. (a) The volume flow rate
prediction of the oil-phase; (b) The prediction relative error of the oil-phase; (c) The volume flow rate
prediction of the gas-phase; (d) The prediction relative error of the gas-phase; (e) The volume flow
rate prediction of the water-phase; (f) The prediction relative error of the water-phase.

As shown in Table 8, we also provide statistics about the time consumption of the
training and the evaluation for the proposed CNN-based model, which include the training
time with 4 NVIDIA GeForce GTX 1080 Ti GPUs and the evaluation time with 1 Intel Xeon
CPU E5-2678 v3 or 1 NVIDIA GeForce GTX 1080 Ti GPU. It is notable that the evaluation
process is aimed at one testing sample of the testing-1 dataset and can be considered as the
practical working condition of the proposed model after training and deploying. In the
practical real-time application scenario, after one sample is collected, it can be fed into the
proposed trained CNN-based model to obtain the volume flowrates of oil, gas and water.
From the statistics in Table 8, it is found that, although the training process of the model is
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relatively time-consuming, the evaluation process only takes 0.43 s on a CPU and 0.01 s on
a GPU, which demonstrates that the real-time measurement ability of the proposed model
after training and deploying is satisfactory.

Table 8. Time consumption of the training and the evaluation process.

Process Type Time

Training process 4 GPUs 5.01 h

Evaluation process 1 CPU 0.43 s
1 GPU 0.01 s

In our model, we used eight types of measurement data as input parameters, which are
T, P, ∆P1, ∆P2, β1, A1, β2 and A2. As a contrast, we reduced the number of input parameters
to 5 (i.e., T, P, ∆P1, β1 and A1). We trained the models using the same hyper-parameters
as shown in Table 4 and obtained Table 9 to show RMSE, MAPE and |ξ|10 on the testing-1
dataset with different input parameters. From this table, it is found that the prediction
performances of the model using eight input parameters are much better than those of
the model using five input parameters. In addition, we also find that there is no obvious
difference in the training time and the evaluation time between these two situations. Hence,
these eight types of measurement data are needed to obtain the individual volume flow
rates of the oil-phase, the gas-phase and the water-phase effectively.

Table 9. RMSE, MAPE and |ξ|10 on the testing-1 dataset with different input parameters.

Number of Input
Parameters Flow Phase RMSE (m3/h) MAPE (%) |ξ|10

5 (T, P, ∆P1, β1, A1)
Oil 0.2776 5.0613 90.96%
Gas 1.5111 6.2232 87.18%

Water 0.1781 4.3006 92.69%

8 (T, P, ∆P1, ∆P2, β1,
A1, β2, A2)

Oil 0.1945 3.6488 94.49%
Gas 1.1671 4.3257 92.56%

Water 0.1214 3.0969 95.71%

Furthermore, we can calculate RMSE, MAPE and |ξ|10 on the testing-2 dataset for
different flow phases using the trained model to verify the generalization ability of the
proposed model. The relevant results are summarized as Table 10. It can be found that the
predictive effect is pretty good for the prediction on the testing-2 dataset, which verifies
that the trained CNN-based model can be used to predict the flow rate out of the range
of the experimental dataset (shown as the blue points in Figure 3) to some degree. This is
capable of demonstrating the generalization ability of our proposed CNN-based model
from the aspect of practical application.

Table 10. RMSE, MAPE and |ξ|10 on the testing-2 dataset for different flow phases using the CNN-
based prediction model.

Flow Phase RMSE (m3/h) MAPE (%) |ξ|10

Oil 0.2731 2.9881 98.57%
Gas 0.4630 3.9616 88.57%

Water 0.2554 3.0986 100%

In addition, after obtaining the volume flow rates of three individual phases, we can
also estimate GVF and WLR with the following formulas

GVFestimation =
Q̂g

Q̂o + Q̂g + Q̂w
· 100%, (14)
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WLRestimation =
Q̂w

Q̂o + Q̂w
· 100%, (15)

where the meanings of Q̂o, Q̂g and Q̂w have been mentioned above. Figure 8 shows the
estimation results of GVF and WLR using the predicted volume flow rates on the testing-1
and testing-2 datasets. It can be seen that the estimated GVF and the estimated WLR
are almost in the ±5% error band. Quantitatively, Table 11 shows that the proportions
of estimated GVF and WLR within the ±5% error band are all greater than 95% for the
testing-1 dataset and the testing-2 dataset. The aforementioned results are remarkable
and demonstrate the powerful ability of our proposed CNN-based volume flow rate
prediction model.

Figure 8. The estimation of GVF and WLR with the prediction results on the testing-1 and testing-2
datasets obtained by the proposed CNN-based model. (a) The estimation of GVF; (b) The estimation
of WLR.

Table 11. Proportion within ±5% error band for GVF and WLR estimation on the testing-1 and
testing-2 datasets.

Dataset Phase Fraction Proportion within ±5%
Error Band

Testing-1 dataset GVFestimation 96.86%
WLRestimation 97.18%

Testing-2 dataset GVFestimation 98.57%
WLRestimation 100%

In the aforementioned discussions, we focused on the supervised learning regarding
the transducer data from the laboratory. In our proposed method, we can simultaneously
obtain the volume flow rates of the oil-phase, the gas-phase and the water-phase of the oil–
gas–water three-phase intermittent flow using the CNN-based prediction model. From the
perspective of practical applications, an issue that needs to be considered is the adaptability
of the proposed model to the real well-head field data. Hence, we put forward, in Figure 9,
a possible novel machine-learning-based data analytics framework for the measurement of
multiphase flow in the petroleum industry. In this framework, firstly, a laboratory set-up,
on which a series of experiments to reveal the characterization of the multiphase flow
to be studied can be conducted, is the basis of the framework and is also the research
focus of this paper. The multiphase flow meter to be developed is installed on the test
section of the set-up and data from the transducers used in the multiphase flow meter can
be sampled. Meanwhile, the labeled data that stand for the true flow conditions can be
sampled from standard flow meters installed on the single-phase flow pipelines of the
set-up. Supervised learning is used to model the transducer data in the laboratory to obtain
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the needed predicted flow rate. Then, we can deploy the supervised learning trained
model into the on-site multiphase flow meter in the oilfield to predict the multiphase
flow rate. By using novelty detection [37,38], the model needs to be updated with on-line
incremental learning if necessary [39]. In this framework, the novelty detection is supposed
to work together with transfer learning and semi-supervised learning after the model
trained by using the laboratory data is deployed in the practical oilfield. It detects whether
the laboratory-data-based training model is satisfactory when applied in the field. If not, it
will trigger that a separator-based mobile metering vehicle to sample a batch of labeled
data and use them to update the model by using transfer learning and semi-supervised
learning [16,19,40–42], which will be explored in detail in our future works. Considering
the difference and correlation of the transducer data between the laboratory and the oilfield,
transfer learning techniques can be introduced to update the model. Due to the scarcity of
the labeled data in the oilfield, semi-supervised learning can be also used to improve the
predictive effect further.

Figure 9. The machine-learning-based data analytics framework for measurement of multiphase flow.

At present, the measuring working pressure ranges from 123.14 to 611.43 kPa in
our laboratory, as shown in Table 2. Based on the data analytics framework, the model
trained from the laboratory data via supervised learning can be used as the pre-trained
model in the actual oilfield. In the higher-pressure applications of the actual oilfield, the
pre-trained model needs to be corrected and fine-tuned using some transfer learning and
semi-supervised learning techniques.

It is worth pointing out that one drawback of the model based on deep learning is
its interpretability. This is almost the same issue that all deep-learning techniques have
to face to currently. Although deep learning has achieved great successes in different
fields in the past few years, the explanation of why deep learning works and achieves
good performances is still an open problem in machine learning. Different deep-learning
techniques may have different performances for different problems. Although there is no
evidence that CNN must be universally superior in all fields, the CNN-based prediction
model achieves attractive and satisfactory results in our study about the volume flow rate
measurement of the multiphase flow. In addition, the CNN-based model is flexible, so it is
convenient to introduce transfer learning and semi-supervised learning into the multiphase
flow measurement field with the CNN-based model as the underlying architecture in the
future works, which is capable of bringing new data analytics into the multiphase flow
measurement and expanding the innovative application scenarios of deep learning.
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Moreover, from the flow regime map, shown as Figure 3, it can be seen that there is
currently a mass of slug flow and a little elongated bubble flow in our collected experi-
mental data. Due to the limitations of our current experimental flow loop system, the flow
regimes that we can acquire are indeed finite, i.e., we can only obtain the intermittent flow
(including the slug flow and the elongated bubble flow) effectively. In the future, after
improving the experimental flow loop system further, we can obtain more flow regimes
so that more abundant experimental data can be obtained to help train the more general
prediction model, which can effectively realize measurement in various flow regimes.

5. Conclusions

In this paper, we propose a deep-learning-based measurement method, i.e., the CNN-
based model. For predicting the volume flow rates of the oil-phase, the gas-phase and
the water-phase in the oil–gas–water three-phase intermittent flow simultaneously, the
CNN-based prediction model is used to analyze the measurement data including the flow
temperature, the pipeline pressure, the differential pressures from the convergent section
and divergent section of the Venturi tube and the phases and amplitudes of microwaves.
To acquire sufficient data, we carried out various experiments on a test loop pipeline in
the 50 mm diameter, in which GVF and WLR ranges are 23.77–94.45% and 14.95–86.97%,
respectively, and the gas flow superficial velocity range is 0.66–5.23 m/s and the liquid
flow superficial velocity range is 0.27–2.14 m/s.

After comprehensive analyses, we find that the proposed CNN-7 can simultaneously
predict the volume flow rates of three different flow phases of the oil–gas–water three-
phase intermittent flow. The predictive effects for the oil-phase and the water-phase are
close, while the predictive effect for the gas-phase is slightly inferior to those for the other
two flow phases. However, on the whole, for the three different flow phases, the prediction
effects are all fairly good. When combined with ensemble learning, the model can obtain
satisfactory final predictive results and effect. On the testing-1 dataset, for the volume
flow rates of the oil-phase, the gas-phase and the water-phase, the proposed CNN-based
prediction model can provide the relative errors within ±5% with 84.62%, 79.55% and
87.31% confidence levels, and within ±10% with 94.49%, 92.56% and 95.71% confidence
levels. On the testing-2 dataset, the trained model can also obtain pretty good prediction
results, which shows the generalization ability of the model. In addition, the consuming
time of a prediction with one sample on an Intel Xeon CPU E5-2678 v3 and an NVIDIA
GeForce GTX 1080 Ti GPU are 0.43 and 0.01 s, respectively. These discussions demonstrate
that the proposed model can meet the practical industrial application demands for the real-
time flow rate measurement of the oil–gas–water three-phase intermittent flow. Compared
with the expensive commercialized MPFMs, the experimental results also illuminate that
the proposed CNN-based model can implement convenient, cost-effective and accuracy-
assured multiphase flow rate measurement for an individual well with low liquid-phase
production in the petroleum industry.

As we know, the flow characteristics of the multiphase flow are very complex, so
finding a relevant real-time measurement technique is still a big challenge and an open
problem. This paper proposes the CNN-based model with ensemble learning to implement
the data-driven black-box soft-sensing from multiple sensors for the flow rate prediction of
the oil–gas–water three-phase intermittent flow, and the obtained results are convincible
and satisfactory, which quantitatively verifies the feasibility and validity of the proposed
model in individual well measurement in the petroleum industry. In addition, the CNN-
based model is fairly suitable to be the underlying architecture of some transfer learning
methods and semi-supervised learning methods, and the introduction of transfer learning
and semi-supervised learning can enhance the practicability of the proposed prediction
model. This paper effectively demonstrates the potential and promising prospect of
utilizing the deep learning techniques in multiphase flow measurement and, to some
extent, lays the foundation for future works, which can introduce new data analytics into
the multiphase flow measurement field and enrich the application areas of deep learning.
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