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Abstract

Background: Insulin-like growth factor-1 (IGF-1) is required for normal intrauterine and postnatal growth, and this
action is mediated through IGF1 receptor (IGF1R). IGF1R copy number variants (CNVs) can cause pre- and postnatal
growth restriction, affecting an individual’s height. In this study, we used multiplex ligation-dependent probe
amplification (MLPA) to detect CNVs in IGF1R, IGFALS, and IGFBP3 genes in the diagnostic workup of short stature
for 40 Egyptian children with short stature.

Results: We detected a heterozygous deletion of IGF1R (exons 4 through 21) in 1 out of the 40 studied children
(2.5%). Meanwhile, we did not detect any CNVs in either IGFALS or IGFBP3.

Conclusion: The diagnostic workup of short stature using MLPA for CNVs of IGF1R and other recognized height-
related genes, such as SHOX and GH, in non-syndromic short stature children can be a fast and inexpensive
diagnostic tool to recognize a subcategory of patients in which growth hormone treatment can be considered.

Keywords: Short stature, Copy number variations (CNVs), Multiplex ligation-dependent probe amplification (MLPA),
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Background
Short stature is a condition in which the height of an in-
dividual is more than 2 standard deviation (SD) below
the corresponding mean height for a given age and sex
in a population [1]. Small for gestational age (SGA) is
defined as a birth weight and/or birth length that is
below − 2.0 SD scores (SDS) for the gestational age in a
certain population [2]. In the majority of short children,
no final diagnosis can be reached, and they are catego-
rized under idiopathic short stature (ISS) or SGA with
failure of catch-up growth [3].
Insulin-like growth factor-1 (IGF-I) is essential for

normal intrauterine and postnatal growth. The growth-
promoting functions of IGF-I are mediated via the IGF1
cell receptor (IGF1R) [4, 5].

IGF1R is a tetrameric (α2/β2) transmembrane tyrosine
kinase [6]. This receptor plays a pivotal role in the regu-
lation of cell proliferation and metabolism and influ-
ences cancer development and life span [7–9].
The heterozygous mutations of the IGF1R gene lead to

intrauterine and postnatal growth retardation and
microcephaly. This mutation also causes a variable de-
gree of psychomotor retardation and dysmorphic fea-
tures [4, 10–12]. Meanwhile, individuals having
homozygous deletion or mutation of IGF-1 suffer from
profound intrauterine and postnatal growth failure,
microcephaly, intellectual disabilities, sensorineural deaf-
ness, and dysmorphic features [3, 13, 14].
IGF1R copy number variants (CNVs) may lead to pre-

and postnatal growth restriction. Several pure 15q26
monosomies, including those with breakpoints proximal
to the IGF1R gene, have been described in the literature
[11, 15–17].
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Circulating IGF-1 is bound to IGF-binding proteins
(IGFBPs), mainly to IGFBP-3 and the acid-labile subunit
(ALS), forming a ternary complex. ALS has a major role
in stabilizing this ternary complex and extending the
IGF-1 half-life markedly [18, 19]. Patients with ALS mu-
tations have a markedly decreased IGF-1 and extremely
low IGFBP-3 levels. These patients mostly show a mod-
erately short stature, but the phenotype can be variable
[20, 21].
Among the candidate genes for ISS are GH, GHR,

STAT5B, and IGFALS; however, mutations in these
genes are rare [22–25]. Meanwhile, the probable candi-
date genes for SGA include IGF1, IGF2, and IGF1R.
Growth hormone (GH) treatment can lead to a con-

siderable height improvement in patients with IGF1R
haploinsufficiency but not more than the expectation
from the target mid-parental height [11, 26]. The multi-
plex ligation-dependent probe amplification (MLPA)
was proposed as an economical screening assay to detect
intragenic IGF1R deletions in short children given that
appropriate genetic diagnosis will lead to the recognition
of patients suitable for GH treatment [3, 12, 27].
In this study, we utilized MLPA as a rapid and inex-

pensive tool to detect CNVs in the IGF1R gene in the
diagnostic workup of short stature. In this report, we de-
scribe a patient with a deletion of exons 4–21 in one al-
lele of IGF1R gene and who presented to our clinic with
short stature.

Methods
This study was conducted at The National Research
Centre - Egypt over a period of 3 years and was ap-
proved by its Medical Ethical Committee. Informed writ-
ten consent was obtained from parents of the included
cases. A total of 40 short children were included in the
study. Disproportionate short stature, such as Leri–Weill
dyschondrosteosis/Langer mesomelic dysplasia syn-
dromes and skeletal dysplasia, was excluded clinically.
Chromosomal abnormalities, e.g., Turner syndrome,
were excluded by conventional karyotyping. SHOX
CNVs were excluded using MLPA assay [28].
Complete medical history was obtained with the gen-

eral emphasis on the family history to construct a pedi-
gree for three consecutive generations. Consanguinity
status, family history of similar condition, and parental
heights were documented. Physical examination and the
nutritional status were carried out to exclude malnutri-
tion status, systemic diseases, and clinically suspected
syndromic cases. Birth weight, GH profile, bone age, and
height in SDS were documented.

MLPA assay
DNA extraction from 3 ml peripheral blood lymphocytes
from the 40 cases and reference samples (one reference

for 7 patients sample with a minimum of three refer-
ences per test) was carried out using the QIAamp® DNA
Mini Kit, in accordance with the manufacturer’s instruc-
tion. The quality and quantity of the DNA samples were
determined using a NanoDrop® spectrophotometer.
IGF1R, IGFALS, and IGFBP3 CNV evaluation was car-

ried out using SALSA® MLPA® P217-B2 IGF1R probemix
B2, following the manufacturer’s instruction (MRC-Hol-
land) [29, 30]. This probemix contained 42 MLPA
probes for IGF1R, IGFALS, and IGFBP3, with the ampli-
fication products between 127 and 472 nt. This probe-
mix contained one probe per exon for exons 3 to 20,
two probes for exons 1 and 2, and three probes for exon
21 for the IGF1R gene. The probemix also contained
one probe for each exon of the IGFBP3 (five exons) and
IGFALS (two exons) genes. In addition, a second probe
for IGFBP3 exon 5 and for IGFALS exon 2 has been
added. Eight reference probes were included in this pro-
bemix, detecting eight different autosomal chromosomal
locations.
DNA denaturation and overnight hybridization of the

MLPA probemix were performed, followed by probe
ligation and amplification on the next day. The separ-
ation of amplified products was conducted using a Gen-
etic Analyzer ABI 3500 (USA). The interpretation of the
results was performed using the Coffalyser.Net® software
(MRC-Holland). MLPA ratios less than 0.75 were con-
sidered as deletions, those between 0.75 and 1.30 as nor-
mal, and those with ratios more than 1.30 as
duplications.

Results
The IGF1R, IGFALS, and IGFBP3 CNVs were studied in
40 short stature children. All our patients have normal
karyotype and were screened for SHOX abnormalities
and negative for SHOX CNVs. Our patients comprised 5
males and 35 females. Their age ranged between 2 and
16 years and their height between − 2.0 and − 6.5 SD.
Exactly 19 out of the 40 patients (47.5%) had a positive
family history of short stature (Table 1).
Heterozygous deletion of IGF1R exons 4 through 21

was detected (Fig. 1) in one patient (2.5%). He was born
from a consanguineous marriage, diagnosed with intra-
uterine growth retardation (IUGR), and had a low birth
weight of 1.7 kg (−3 SD). Upon examination at 4 years,
his height was 86.5 cm (−3.8 SD) of his peers. He had
microcephaly, head circumference of 46.0 cm (−2.9 SD),
and a delayed bone age. The GH level and thyroid func-
tion tests and his IQ test yielded normal results. His
karyotype was normal (Fig. 2). His mother (145.0 cm;
−2.85 SD) and father were short (159.0 cm; −2.3 SD).
His family history revealed a short cousin. However, no
DNA was available to evaluate the detected CNVs in the
family members.
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Table 1 clinical data and growth hormone levels of studied patients

Patient No. Sex Age Low birth weight Consanguinity Family hist. SDS GH

1 F 7 + – + −2.75 N

2 F 8 – – – − 3.4 N

3 F 6 – – – −2 N

4 F 6.5 – + – − 3 N

5 F 13 – – – −3.1 N

6 F 11 – + – − 3.5 N

7 F 16 + – + −2.8 N

8 F 10 – + – −3.6 Mild low

9 F 13.5 – + – −6.5 N

10 M 6 + + – −5.6 N

11 F 15.5 – – – −3 N

12 F 12 – – – − 2.5 N

13 F 7.75 – – – − 3 N

14 M 3 – + – −5 N

15 F 2 – – – −2.9 N

16 F 11 – – – −3 N

17 M 12 – NA NA −3.5 N

18 F 16 – – + −3.5 Low

19 F 10 – – – − 2.8 N

20 F 16 – – + − 2.9 Low

21* M 4 + + + −3.8 N

22 F 8 – + + − 4.6 N

23 F 9 – – + − 3.4 N

24 F 15.5 – + + −3.3 N

25 F 12 – – – − 3.8 Low

26 F 15 – – + −4.3 N

27 F 11 – – + −4.6 Mild low

28 F 9.5 – + + −2.5 N

29 F 12.5 – + – −3.9 N

30 F 12.5 – – – − 3.7 Low

31 F 13.5 – – – − 3.3 N

32 F 9 – – + − 3.9 Low

33 F 8 – + + −4.1 Low

34 F 16 – + + −3.5 N

35 F 4.25 – – + −2.15 Low

36 M 7 – + + −2.75 N

37 F 11 – + + −2.5 N

38 F 9.5 – – + −3.3 Low

39 F 8.5 – – + −2.79 Low

40 F 6 – – – −2.5 N

N = Normal
“*”: Proband
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Discussion
IGF-I/IGFIR signaling pathway plays an important role
in pre- and postnatal growth. The proper genetic diag-
nosis may result in an appropriate therapy.
IGF1R signaling is reduced in IGF1R haploinsuffi-

ciency, although occasionally, the IGF-I response may
remain normal. Further assessment of the bi-allelic ex-
pression of the IGF1R gene to reach the normal level of
activity is needed [11, 31–33].
IGF1R haploinsufficiency may be the result of allelic

loss of IGF1R due to chromosomal 15q26 deletions [16]
or specific allelic IGF1R mutations that abrogate mRNA
[3, 11, 32].
In our work, we detected the heterozygous deletion of

IGF1R (exons 4 through 21) in a familial short stature
patient identified from the 40 studied patients (2.5%).
This finding was consistent with other group findings
who found 2 in 100 SGA patients with IGF1R gene mu-
tations in one study and detected 2 in 128 SGA patients
with IGF1R heterozygous deletion in another research
[3, 15].
Our patient had IUGR and was born SGA. This condi-

tion was in line with the clinical criteria that were pro-
posed for heterozygous IGF1R mutations or terminal
chromosome 15q deletions, including a small body size
and head circumference at birth, short stature, and
microcephaly later in childhood [15]. Moreover, a study
detected a 50% reduction in the IGF1R expression on

the cell surface by (fluorescence-activated cell sorting)
FACS, and this result may explain the SGA phenotype
[11].
In our research, we did not detect any patients with

IGFALS CNVs. A study reviewed the work conducted
on ALS complete deficiency in 61 patients from 31 fam-
ilies from different published reports and discovered that
the 28 different mutations of the human IGFALS gene,
including 17 missense, 7 frameshift, 2 in-frame inser-
tions, and 1 nonsense mutation, are all located in exon
2. One patient had a deletion of the entire exon 2 [34,
35]. This finding may indicate the rarity of the CNVs of
this gene and explain why no CNVs were detected in
our study.
Given that IGFBP3 is the major carrier of IGF1, we

investigated IGFBP3 CNVs. By reviewing the genetic
causes for short stature, no specific diseases were
connected to IGFBP gene alterations in humans [36].
IGFBPs have additional biological functions that are
potentially independent of their IGF-binding proper-
ties, and growing evidence links them to diseases
other than short stature [37–40]. Another study
aimed to detect variations in the IGF family in 60,706
people from the Exome Aggregation Consortium and
revealed that the loss of expression alleles are ex-
tremely low in IGF family genes including IGFBPs
[40, 41]. Moreover, we did not find any IGFBP3
CNVs in our study group.

Fig. 1 Ratio chart of MLPA results for a patient with short stature using SALSA MLPA probemix P217-B2 IGF1R. The chart shows the heterozygous
deletion of IGF1R (exons 4 through 21). The deletion is denoted by the red spot below the deletion cut-off line (red) in the ratio chart
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Conclusion
In spite of the small sample size, which is considered as
a limitation, we identified a familial short stature case
having a heterozygous IGF1R partial deletion in a group
of Egyptian short non-syndromic patients. In the diag-
nostic workup of short stature, MLPA can detect the
underlying genetic CNVs. Thus, screening with MLPA

for CNVs of IGF1R and other recognized genes, such as
SHOX and GH, that are considered as important regula-
tors of individual height in non-syndromic short stature
children can consequently become a fast and inexpen-
sive diagnostic tool to recognize a subcategory of pa-
tients in which GH treatment can be considered. We
recommend to carry on MLPA analysis for IGF1R after

Fig. 2 Metaphase spread and karyotype of our patient showing normal 46,XY karyotype
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exclusion of chromosomal abnormalities and SHOX
CNVs.
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