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University of Wisconsin, Madison, USA

[Received April 2008. Final revision April 2009]

Summary. Partial least squares regression has been an alternative to ordinary least squares for
handling multicollinearity in several areas of scientific research since the 1960s. It has recently
gained much attention in the analysis of high dimensional genomic data. We show that known
asymptotic consistency of the partial least squares estimator for a univariate response does not
hold with the very large p and small n paradigm. We derive a similar result for a multivariate
response regression with partial least squares. We then propose a sparse partial least squares
formulation which aims simultaneously to achieve good predictive performance and variable
selection by producing sparse linear combinations of the original predictors. We provide an
efficient implementation of sparse partial least squares regression and compare it with well-
known variable selection and dimension reduction approaches via simulation experiments. We
illustrate the practical utility of sparse partial least squares regression in a joint analysis of gene
expression and genomewide binding data.
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1. Introduction

With the recent advancements in biotechnology such as the use of genomewide microarrays and
high throughput sequencing, regression-based modelling of high dimensional data in biology
has never been more important. Two important statistical problems commonly arise within
regression problems that concern modern biological data. The first is the selection of a set of
important variables among a large number of predictors. Utilizing the sparsity principle, e.g.
operating under the assumption that a small subset of the variables is deriving the underlying
process, with L1-penalty has been promoted as an effective solution (Tibshirani, 1996; Efron
et al., 2004). The second problem is that such a variable selection exercise often arises as an
ill-posed problem where

(a) the sample size n is much smaller than the total number of variables (p) and
(b) covariates are highly correlated.

Dimension reduction techniques such as principal components analysis (PCA) or partial least
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squares (PLS) have recently gained much attention for addressing these within the context of
genomic data (Boulesteix and Strimmer, 2006).

Although dimension reduction via PCA or PLS is a principled way of dealing with ill-posed
problems, it does not automatically lead to selection of relevant variables. Typically, all or a
large portion of the variables contribute to final direction vectors which represent linear com-
binations of original predictors. Imposing sparsity in the midst of the dimension reduction step
might lead to simultaneous dimension reduction and variable selection. Recently, Huang et al.
(2004) proposed a penalized PLS method that thresholds the final PLS estimator. Although this
imposes sparsity on the solution itself, it does not necessarily lead to sparse linear combinations
of the original predictors. Our goal is to impose sparsity in the dimension reduction step of PLS
so that sparsity can play a direct principled role.

The rest of the paper is organized as follows. We review general principles of the PLS method-
ology in Section 2. We show that PLS regression for either a univariate or multivariate response
provides consistent estimators only under restricted conditions, and the consistency property
does not extend to the very large p and small n paradigm. We formulate sparse partial least
squares (SPLS) regression by relating it to sparse principal components analysis (SPCA)
(Jolliffe et al., 2003; Zou et al., 2006) in Section 3 and provide an efficient algorithm for solving
the SPLS regression formulation in Section 4. Methods for tuning the sparsity parameter and the
number of components are also discussed in this section. Simulation studies and an application
to transcription factor activity analysis by integrating microarray gene expression and chromatin
immuno-precipitation–microarray chip (CHIP–chip) data are provided in Sections 5 and 6.

2. Partial least squares regression

2.1. Description of partial least squares regression
PLS regression, which was introduced by Wold (1966), has been used as an alternative approach
to ordinary least squares (OLS) regression in ill-conditioned linear regression models that arise
in several disciplines such as chemistry, economics and medicine (de Jong, 1993). At the core
of PLS regression is a dimension reduction technique that operates under the assumption of a
basic latent decomposition of the response matrix (Y ∈Rn×q) and predictor matrix (X∈Rn×p/ :
Y =TQT+F and X=TPT+E, where T ∈Rn×K is a matrix that produces K linear combina-
tions (scores); P ∈Rp×K and Q∈Rq×K are matrices of coefficients (loadings), and E∈Rn×p

and F ∈Rn×q are matrices of random errors.
To specify the latent component matrix T such that T =XW , PLS requires finding the col-

umns of W = .w1, w2, . . . , wK/ from successive optimization problems. The criterion to find the
kth direction vector wk for univariate Y is formulated as

wk=arg max
w

{corr2.Y , Xw/var.Xw/} subject to wTw=1, wTΣXXwj=0, .1/

for j= 1, . . . , k− 1, where ΣXX is the covariance of X. As evident from this formulation, PLS
seeks direction vectors that not only relate X to Y but also capture the most variable directions
in the X -space (Frank and Friedman, 1993).

There are two main formulations for finding PLS direction vectors in the context of multivari-
ate Y. These vectors were originally derived from an algorithm, known as NIPALS (Wold, 1966),
without a specific optimization problem formulation. Subsequently, a statistically inspired mod-
ification of PLS, known as SIMPLS (de Jong, 1993), was proposed with an algorithm by directly
extending the univariate PLS formulation. Later, ter Braak and de Jong (1998) identified the
‘PLS2’ formulation which the NIPALS algorithm actually solves. The PLS2 formulation is
given by
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wk=arg max
w

.wTσXYσXY
Tw/ subject to wT.Ip−Wk−1W+k−1/w=1 and wTΣXXwj=0,

.2/

for j = 1, . . . , k− 1, where σXY is the covariance of X and Y , Ip denotes a p× p identity
matrix and W+k−1 is the unique Moore–Penrose inverse of Wk−1= .w1, . . . , wk−1/. The SIMPLS
formulation is given by

wk=arg max
w

.wTσXYσ
T
XY w/ subject to wTw=1 and wTΣXXwj=0, .3/

for j=1, . . . , k−1. Both formulations have the same objective function but different constraints
and thus yield different sets of direction vectors. Their prediction performances depend on the
nature of the data (de Jong, 1993; ter Braak and de Jong, 1998). de Jong (1993) showed that both
formulations become equivalent and yield the same set of direction vectors for univariate Y.

In the actual fitting of the PLS regression, either the NIPALS or the SIMPLS algorithm is
used for obtaining the PLS estimator. The NIPALS algorithm produces the direction vector
dk+1 with respect to the deflated matrix X̃k+1 at the .k+1/th step by solving

max
d

.dTX̃T
k Ỹ kỸT

k X̃kd/ subject to dTd=1,

where X̃k+1= .Ip−TkT+k /X, Ỹ k+1= .Ip−TkT+k /Y and Tk= .X̃1d1, . . . , X̃kdk/. At the final K th
step, ŴK= .ŵ1, . . . , ŵK/, the direction matrix with respect to the original matrix X , is computed
by ŴK =DK.PT

KDK/−1, where PK =XTTK.T T
KTK/−1 and DK = .d1, . . . , dK/. In contrast, the

SIMPLS algorithm produces the .k+ 1/th direction vector ŵk+1 directly with respect to the
original matrix X by solving

max
w

{wT.I−Pk.PT
k Pk/−1PT

k /XTYYTX.I−Pk.PT
k Pk/−1PT

k /}w subject to wTw=1:

After estimating the latent components (TK=XŴK) by using K numbers of direction vectors,
loadings Q are estimated via solving minQ.‖Y − TKQT‖2/. This leads to the final estimator
β̂PLS= ŴKQ̂T, where Q̂ is the solution of this least squares problem.

2.2. An asymptotic property of partial least squares regression
2.2.1. Partial least squares regression for univariate Y
Stoica and Soderstorom (1998) derived asymptotic formulae for the bias and variance of the
PLS estimator for the univariate case. These formulae are valid if the ‘signal-to-noise ratio’ is
high or if n is large and the predictors are uncorrelated with the residuals. Naik and Tsai (2000)
proved consistency of the PLS estimator under normality assumptions on both Y and X in
addition to consistency of SXY and SXX and the following condition 1. This condition, which is
known as the Helland and Almoy (1994) condition, implies that an integer K exists such that
exactly K of the eigenvectors of ΣXX have non-zero components along σXY .

Condition 1. There are eigenvectors vj .j= 1, . . . , K/ of ΣXX corresponding to different
eigenvalues, such that σXY =ΣK

j=1αjvj and α1, . . . ,αK are non-zero.

We note that the consistency proof of Naik and Tsai (2000) requires p to be fixed. In many
fields of modern genomic research, data sets contain a large number of variables with a much
smaller number of observations (e.g. gene expression data sets where the variables are of the
order of thousands and the sample size is of the order of tens). Therefore, we investigate the
consistency of the PLS regression estimator under the very large p and small n paradigm and
extend the result of Naik and Tsai (2000) for the case where p is allowed to grow with n at an
appropriate rate. In this setting, we need additional assumptions on both X and Y to ensure
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the consistency of SXX and SXY , which is the conventional assumption for fixed p. Recently,
Johnstone and Lu (2004) proved that the leading PC of SXX is consistent if and only if p=n→0.
Hence, we adopt their assumptions for X to ensure consistency of SXX and SXY . Assumptions
for X from Johnstone and Lu (2004) are as follows.

Assumption 1. Assume that each row of X= .xT
1 , . . . , xT

n /T follows the model xi=Σm
j=1υ

j
i ρ

j+
σ1ei, for some constant σ1, where

(a) ρj, j=1, . . . , m�p, are mutually orthogonal PCs with norms ‖ρ1‖�‖ρ2‖� . . . �‖ρm‖,
(b) the multipliers υj

i ∼N.0, 1/ are independent over the indices of both i and j,
(c) the noise vectors ei∼N.0, Ip/ are independent among themselves and of the random

effects {υj
i } and

(d) p.n/, m.n/ and {ρj.n/, j=1, . . . , m} are functions of n, and the norms of the PCs converge
as sequences: �.n/= .‖ρ1.n/‖, . . . , ‖ρj.n/‖, . . ./→ �= .�1, . . . ,�j, . . ./. We also write �+
for the limiting l1-norm: �+=Σj �j.

We remark that the above factor model for X is similar to that of Helland (1990) except for
having an additional random error term ei. All properties of PLS in Helland (1990) will hold,
as the eigenvectors of ΣXX and ΣXX−σ2

1Ip are the same. We take the assumptions for Y from
Helland (1990) with an additional norm condition on β.

Assumption 2. Assume that Y and X have the relationship, Y =Xβ + σ2f , where f ∼
N .0, In/, ‖β‖2 <∞, and σ2 is a constant.

We next show that, under the above assumptions and condition 1, the PLS estimator is con-
sistent if and only if p grows much slower than n.

Theorem 1. Under assumptions 1 and 2, and condition 1,

(a) if p=n→0, then ‖β̂PLS−β‖2→0 in probability and
(b) if p=n→k0 for k0 > 0, then ‖β̂PLS−β‖2 > 0 in probability.

The main implication of this theorem is that the PLS estimator is not suitable for very large
p and small n problems in complete generality. Although PLS utilizes a dimension reduction
technique by using a few latent factors, it cannot avoid the sample size issue since a reasonable
size of n is required to estimate sample covariances consistently as shown in the proof of theorem
1 in Appendix A. A referee pointed out that a qualitatively equivalent result has been obtained
by Nadler and Coifman (2005), where the root-mean-squared error of the PLS estimator has
an additional error term that depends on p2=n2.

2.2.2. Partial least squares regression for multivariate Y
There are limited or virtually no results on the theoretical properties of PLS regression within
the context of a multivariate response. Counterintuitive simulation results, where multivariate
PLS shows a minor improvement in prediction error, were reported in Frank and Friedman
(1993). Later, Helland (2000) argued by intuition that, since multivariate PLS achieves parsi-
monious models by using the same reduced model space for all the responses, the net gain of
sharing the model space could be negative if, in fact, all the responses require different reduced
model spaces. Thus, we next introduce a specific setting for multivariate PLS regression in the
light of Helland’s (2000) intuition and extend the consistency result of univariate PLS to the
multivariate case.

Assume that all the response variables have linear relationships with the same set of covar-
iates: Y1 =Xb1 + f1, Y2 =Xb2 + f2, . . . , Yq =Xbq + fq, where b1, . . . , bq are p× 1 coefficient
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vectors and f1, . . . , fq are independent error vectors from N .0,σ2In/. Since the shared reduced
model space of each response is determined by bis, we impose a restriction on these coefficients.
Namely, we require the existence of eigenvectors v1, . . . , vK of ΣXX that span the solution space,
which each bi belongs to.

We have proved consistency of the PLS estimator for a univariate response using the facts that
SXY is proportional to the first direction vector and the solution space, which β̂PLS belongs to,
can be explicitly characterized by {SXY , . . . , SK−1

XX SXY}. However, for a multivariate response,
PLS finds the first direction vector as the first left singular vector of SXY . The presence of remain-
ing directions in the column space of SXY makes it difficult to characterize the solution space
explicitly. Furthermore, the solution space varies depending on the algorithm that is used to fit
the model. If we further assume that bi=kib1 for constants k2, . . . , kq then ΣXY becomes a rank
1 matrix and these challenges are reduced, thereby leading to a setting where we can start to
understand characteristics of multivariate PLS.

Condition 2 and assumption 3 below recapitulate these assumptions where the set of regres-
sion coefficients b1, b2, . . . , bq are represented by the coefficient matrix B.

Condition 2. There are eigenvectors vj .j=1, . . . , K/ of ΣXX corresponding to different eigen-
values, such that σXYi =ΣK

j=1αijvj and αi1, . . . ,αiK are non-zero for i=1, . . . , q.

Assumption 3. Assume that Y =XB+F , where columns of F are independent and from
N .0,σ2In/. B is a rank 1 matrix with singular value decomposition ϑuvT, where ϑ denotes the
singular value and u and v are left and right singular vectors respectively. In addition, ϑ<∞
and q is fixed.

Lemma 1 proves the convergence of the first direction vector which plays a key role in forming
the solution space of the PLS estimator. The proof is provided in Appendix A.

Lemma 1. Under assumption 3,

‖ŵ1−w1‖2=Op{√.p=n/},

where ŵ1 is the estimate of the first direction vector w1 and is given by ΣXXu=‖ΣXXu‖2.

The main implication of lemma 1 is that, under the given conditions, the convergence rate
of the first direction vector from multivariate PLS is the same as that of a single univariate
PLS. Since the application of univariate PLS for a multivariate response requires estimating
q numbers of separate direction vectors, the advantage of multivariate PLS is immediate. The
proof of lemma 1 relies on obtaining the left singular vector s by the rank 1 approximation of
SXY , minimizing ‖SXY − ςstT

1 ‖F. Here, ‖·‖F denotes Frobenius norm, ς is the non-zero singular
value of SXY and s and t1 are left and right singular vectors respectively. As a result, s can be
represented by

q∑
i=1
|t1i|sgn.t1i/SXYi

/∥∥∥∥
q∑

i=1
t1iSXYi

∥∥∥∥
2
,

where t1i is the ith element of t1, and sgn.t1i/= sgn.sTSXYi/. This form of s provides intuition for
estimating the first multivariate PLS direction vector. Namely, the first direction vector can be
interpreted as the weighted sum of sign-adjusted covariance vectors. Directions with stronger
signals contribute more in a sign-adjusted manner.

The above discussion highlighted the advantage of multivariate PLS compared with univari-
ate PLS in terms of estimation of the direction vectors. Next, we present the convergence result
of the final PLS solution.
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Theorem 2. Under assumptions 1 and 3, condition 2 and for fixed K and q, ‖B̂PLS−B‖2→0
in probability if and only if p=n→0.

Theorem 2 implies that, under the given conditions and for fixed K and q, the PLS estimator is
consistent regardless of the algorithmic variant that is used if p=n→0. Although PLS solutions
from algorithmic variants might differ for finite n, these solutions are consistent. Moreover,
the fixed q case is practical in most applications because we can always cluster Y s into smaller
groups before linking them to X. We refer to Chun and Keleş (2009) for an application of this
idea within the context of expression quantitative loci mapping.

Our results for multivariate Y are based on the equal variance assumption on the components
of the error matrix F. Even though the popular objective functions of multivariate PLS given
in expressions (2) and (3) do not involve a scaling factor for each component of multivariate Y ,
in practice, Y s are often scaled before the analysis. Violation of the equal variance assumption
will affect the performance of PLS regression (Helland, 2000). Therefore, if there are reasons
to believe that the error levels in Y , not the signal strengths, are different, scaling will aid in
satisfying the equal variance assumption of our theoretical result.

2.3. Motivation for the sparsity principle in partial least squares regression
To motivate the sparsity principle, we now explicitly illustrate how a large number of irrele-
vant variables affect the PLS estimator through a simple example. This observation is central
to our methodological development. We utilize the closed form solution of Helland (1990) for
univariate PLS regression β̂PLS= R̂.R̂TSXXR̂/−1R̂TSXY , where R̂= .SXY , . . . , SK−1

XX SXY /.
Assume that X is partitioned into .X1, X2/, where X1 and X2 denote p1 relevant and p−p1

irrelevant variables respectively and each column of X2 follows N .0, In/. We assume the existence
of a latent variable (K=1) as well as a fixed number of relevant variables (p1) and let p grow at
the rate O.k′n/, where the constant k′ is sufficiently large to have

max.σT
X1YσX1Y ,σT

X1YΣX1X1σX1Y /	k′σ2
1σ

2
2, .4/

where σ1 and σ2 are from Section 2.2.1.
It is not difficult to obtain a sufficiently large k′ to satisfy condition (4) for fixed p1. Then, the

PLS estimator can be approximated by

β̂PLS= ST
X1Y SX1Y +ST

X2Y SX2Y

ST
X1Y SX1X1SX1Y +2ST

X1Y SX1X2SX2Y +ST
X2Y SX2X2SX2Y

SXY

≈ ST
X2Y SX2Y

ST
X2Y SX2X2SX2Y

SXY .5/

=O.k′−1/SXY : .6/

Approximation (5) follows from lemma 2 in Appendix A and assumption (4). Approximation
(6) is due to the fact that the largest and smallest eigenvalues of the Wishart matrix are O.k′/
(Geman, 1980). In this example, the large number of noise variables forces the loadings in the
direction of SXY to be attenuated and thereby cause inconsistency.

From a practical point of view, since latent factors of PLS have contributions from all the
variables, the interpretation becomes difficult in the presence of large numbers of noise variables.
Motivated by the observation that noise variables enter the PLS regression via direction vectors
and attenuate estimates of the regression parameters, we consider imposing sparsity on the
direction vectors.
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3. Sparse partial least squares regression

3.1. Finding the first sparse partial least squares direction vector
We start with formulation of the first SPLS direction vector and illustrate the main ideas within
this simpler problem. We formulate the objective function for the first SPLS direction vector by
adding an L1-constraint to problems (2) and (3):

max
w

.wTMw/ subject to wTw=1, |w|�λ, .7/

where M=XTYYTX and λ determines the amount of sparsity. The same approach has been
used in SPCA. By specifying M to be XTX in expression (7), this objective function coincides
with that of a simplified component lasso technique called ‘SCOTLASS’ (Jolliffe et al., 2003)
and both SPLS and SPCA correspond to the same class of maximum eigenvalue problem with
a sparsity constraint.

Jolliffe et al. (2003) pointed out that the solution of this formulation tends not to be sufficiently
sparse and the problem is not convex. This convexity issue was revisited by d’Aspremont et al.
(2007) in direct SPCA by reformulating the criterion in terms of W =wwT, thereby producing
a semidefinite programming problem that is known to be convex. However, the sparsity issue
remained.

To obtain a sufficiently sparse solution, we reformulate the SPLS criterion (7) by generalizing
the regression formulation of SPCA (Zou et al., 2006). This formulation promotes the exact
zero property by imposing an L1-penalty onto a surrogate of the direction vector (c) instead of
the original direction vector (w), while keeping w and c close to each other:

min
w,c

{−κwTMw+ .1−κ/.c−w/TM.c−w/+λ1|c|1+λ2|c|22} subject to wTw=1: .8/

In this formulation, the L1-penalty encourages sparsity on c whereas the L2-penalty addresses
the potential singularity in M when solving for c. We shall rescale c to have norm 1 and use
this scaled version as the estimated direction vector. We note that this problem becomes that
of SCOTLASS when w= c and M=XTX, SPCA when κ= 1

2 and M=XTX, and the original
maximum eigenvalue problem of PLS when κ= 1. We aim to reduce the effect of the concave
part (hence the local solution issue) by using a small κ.

3.2. Solution for the generalized regression formulation of sparse partial least squares
We solve the generalized regression formulation of SPLS given in expression (8) by alternatively
iterating between solving for w for fixed c and solving for c after fixing w.

For the problem of solving w for fixed c, the objective function in problem (8) becomes

min
w

{−κwTMw+ .1−κ/.c−w/TM.c−w/} subject to wTw=1: .9/

For 0 <κ< 1
2 , problem (9) can be rewritten as

min
w

{.ZTw−κ′ZTc/T.ZTw−κ′ZTc/} subject to wTw=1,

where Z=XTY and κ′ = .1−κ/=.1−2κ/. This constrained least squares problem can be solved
via the method of Lagrange multipliers and the solution is given by w=κ′.M+λÅI/−1Mc where
the multiplier λÅ is the solution of cTM.M+λI/−2Mc=κ′2. For κ= 1

2 , the objective function
in problem (9) reduces to −wTMc and the solution is w=UV T, where U and V are obtained
from the singular value decomposition of Mc (Zou et al., 2006).

When solving for c for fixed w, problem (8) becomes
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min
c

{.ZTc−ZTw/T.ZTc−ZTw/+λ1|c|1+λ2|c|22}: .10/

This problem, which is equivalent to the naive elastic net (EN) problem of Zou and Hastie
(2005) when Y in the naive EN is replaced with ZTw, can be solved efficiently via the least angle
regression spline algorithm LARS (Efron et al., 2004). SPLS often requires a large λ2-value to
solve problem (10) because Z is a q×p matrix with usually small q, i.e. q=1 for univariate Y.
As a remedy, we use an EN formulation with λ2=∞ and this yields the solution to have the
form of a soft thresholded estimator (Zou and Hastie, 2005). This concludes our solution of the
regression formulation for general Y (univariate or multivariate). We further have the following
simplification for univariate Y (q=1).

Theorem 3. For univariate Y , the solution of problem (8) is ĉ= .|Z̃|−λ1=2/+ sgn.Z̃/, where
Z̃=XTY=‖XTY‖ is the first direction vector of PLS.

Proof. For a given c and κ=0:5, it follows that ŵ= Z̃ since the singular value decomposition
of ZZTc yields U = Z̃ and V = 1. For a given c and 0 <κ< 0:5, the solution is given by w=
{ZTc=.‖Z‖2+λÅ/}Z by using the Woodbury formula (Golub and van Loan, 1987). Noting
that ZTc=.‖Z‖2+λÅ/ is a scalar and by the norm constraint, we have ŵ= Z̃. Since ŵ does not
depend on c, we have ĉ= .|Z̃|−λ1=2/+ sgn.Z̃/ for large λ2.

4. Implementation and algorithmic details

4.1. Sparse partial least squares algorithm
In this section, we present the complete SPLS algorithm which encompasses the formulation of
the first SPLS direction vector from Section 3.1 as well as an efficient algorithm for obtaining
all the other direction vectors and coefficient estimates.

In principle, the objective function for the first SPLS direction vector can be utilized at each
step of the NIPALS or SIMPLS algorithm to obtain the rest of the direction vectors. We call this
idea the naive SPLS algorithm. However, this naive SPLS algorithm loses the conjugacy of the
direction vectors. A similar issue appears in SPCA, where none of the methods proposed (Jolliffe
et al., 2003; Zou et al., 2006; d’Aspremont et al., 2007) produces orthogonal sparse principal
components. Although conjugacy can be obtained by the Gram–Schmidt conjugation of the
derived sparse direction vectors, these post-conjugated vectors do not inherit the property of
Krylov subsequences which is known to be crucial for the convergence of the algorithm (Krämer,
2007). Essentially, such a post-orthogonalization does not guarantee the existence of the solution
among the iterations.

To address this concern, we propose an SPLS algorithm which leads to a sparse solution by
keeping the Krylov subsequence structure of the direction vectors in a restricted X -space of
selected variables. Specifically, at each step of either the NIPALS or the SIMPLS algorithm,
it searches for relevant variables, the so-called active variables, by optimizing expression (8)
and updates all direction vectors to form a Krylov subsequence on the subspace of the active
variables. This is simply achieved by conducting PLS regression by using the selected variables.
Let A be an index set for active variables and K the number of components. Denote XA as the
submatrix of X whose column indices are contained in A. The SPLS algorithm can utilize either
the NIPALS or the SIMPLS algorithm as described below.

Step 1: set β̂PLS= 0, A= {·} and k= 1. For the NIPALS algorithm set, Y1=Y , and for the
SIMPLS algorithm set X1=X.
Step 2: while k �K,
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(a) find ŵ by solving the objective (8) in Section 3.1 with M=XTY1YT
1 X for the NIPALS

and M=XT
1 YYTX1 for the SIMPLS algorithm,

(b) update A as {i : ŵi �=0}∪{i : β̂PLS
i �=0},

(c) fit PLS with XA by using k number of latent components and
(d) update β̂PLS by using the new PLS estimates of the direction vectors,

update k with k←k+1,
for the NIPALS algorithm, update Y1 through Y1←Y −Xβ̂PLS and
for the SIMPLS algorithm, update X1 through X1A←XA.I−PA.PT

APA/−1PT
A/, where

PA=XT
AXAWA.WT

AXT
AXAWA/−1.

The original NIPALS algorithm includes deflation steps for both X - and Y - matrices, but the
same M-matrix can be computed via the deflation of either X or Y owing to the idempotency
of the projection matrix. In our SPLS–NIPALS algorithm, we chose to deflate the Y -matrix
because, in that case, the eigenvector XTY1=‖XTY1‖ of M is proportional to the current correla-
tions in the LARS algorithm for univariate Y. Hence, the LARS and SPLS–NIPALS algorithms
use the same criterion to select active variables in this case. However, the SPLS–NIPALS algo-
rithm differs from LARS in that it selects more than one variable at a time and utilizes the
conjugate gradient (CG) method to compute the coefficients at each step (Friedman and Pop-
escu, 2004). This, in particular, implies that the SPLS–NIPALS algorithm can select a group
of correlated variables simultaneously. The cost of computing coefficients at each step of the
SPLS algorithm is less than or equal to that of LARS as the CG method avoids matrix inver-
sion.

The SPLS–SIMPLS algorithm has similar attributes to the SPLS–NIPALS algorithm. It also
uses the CG method and selects more than one variable at each step and handles multivariate
responses. However, the M-matrix is no longer proportional to the current correlations of the
LARS algorithm. SIMPLS yields direction vectors directly satisfying the conjugacy constraint,
which may hamper the ability of revealing relevant variables. In contrast, the direction vectors
at each step of the NIPALS algorithm are derived to maximize the current correlations on the
basis of residual matrices, and conjugated direction vectors are computed at the final stage.
Thus, the SPLS–NIPALS algorithm is more likely to choose the correct set of relevant variables
when the signals of the relevant variables are weak. A small simulation study investigating this
point is presented in Section 5.1.

4.2. Choosing the thresholding parameter and the number of hidden components
Although the SPLS regression formulation in expression (8) has four tuning parameters (κ,λ1,λ2
and K ), only two of these are key tuning parameters, namely the thresholding parameter λ1 and
the number of hidden components K. As we discussed in theorem 3 of Section 3.2, the solution
does not depend on κ for univariate Y. For multivariate Y , we show with a simulation study in
Section 5.2 that setting κ smaller than 1

2 generally avoids local solution issues. Different κ-values
have the effect of starting the algorithm with different starting values. Since the algorithm is
computationally inexpensive (the average run time including the tuning is only 9 min for a sample
size of n= 100 with p= 5000 predictors on a 64-bit machine with 2.66 GHz central processor
unit), users are encouraged to try several κ-values. Finally, as described in Section 3.2, setting
the λ2-parameter to∞ yields the thresholded estimator which depends only on λ1. Therefore,
we proceed with the tuning mechanisms for the two key parameters λ1 and K. We start with
univariate Y since imposing an L1-penalty has the simple form of thresholding, and then we
discuss multivariate Y.

We start with describing a form of soft thresholded direction vector w̃ : w̃ = .|ŵ| −
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ηmax1�i�p |ŵi|/ I.|ŵ|�η max1�i�p |ŵi|/ sgn.ŵ/, where 0�η�1. Here, η plays the role of the
sparsity parameter λ1 in theorem 3. This form of soft thresholding retains components that
are greater than some fraction of the maximum component. A similar approach was utilized
in Friedman and Popescu (2004) with hard thresholding as opposed to our soft thresholding
scheme. The single tuning parameter η is tuned by cross-validation (CV) for all the direction
vectors. We do not use separate sparsity parameters for individual directions because tuning
multiple parameters is computationally prohibitive and may not produce a unique minimum
for the CV criterion.

Next, we describe a hard thresholding approach by the control of the false discovery rate
FDR. SPLS selects variables which exhibit high correlations with Y in the first step and adds
additional variables with high partial correlations in the subsequent steps. Although we are
imposing sparsity on direction vectors via an L1-penalty, the thresholded form of our solution
for univariate Y allows us to compare and contrast our approach directly with the supervised
PC approach of Bair et al. (2006) that operates by an initial screening of the predictor variables.
Selecting related variables on the basis of correlations has been utilized in supervised PCs, and,
in a way, we further extend this approach by utilizing partial correlations in the later steps.
Owing to uniform consistency of correlations (or partial correlations after taking into account
the effect of relevant variables), FDR control is expected to work well even in the large p and
small n scenario (Kosorok and Ma, 2007). As we described in Section 4, the components of
the direction vectors for univariate Y have the form of a correlation coefficient (or a partial
correlation coefficient after the first step) between the individual covariate and response, and
a thresholding parameter can be determined by control of the FDR at a prespecified level α.
Let r̂k

YXi·T k−1
1

denote the sample partial correlation of the ith variable Xi with Y given T k−1
1 , where

T k−1
1 denotes the set of first k− 1 latent variables included in the model. Under the normality

assumption on X and Y , and the null hypothesis H0i : rk
YXi·T k−1

1
=0, the z-transformed (partial)

correlation coefficients have the distribution (Bendel and Afifi, 1976)

√
.n−|T k−1

1 |−3/

2
ln

⎛
⎝1+ r̂k

YXi·T k−1
1

1− r̂k

YXi·T k−1
1

⎞
⎠∼N .0, 1/:

We compute the corresponding p-values p̃i, for i=1, . . . , p, for the (partial) correlation coeffi-
cients by using this statistic and arrange them in ascending order: p̃[1] � . . . � p̃[p]. After defin-
ing m̂=max{m : p̃[m] � .m=p/α}, the hard thresholded direction vector becomes w̃= ŵ I.|ŵ|>
|ŵ|[p−m̂+1]/ based on the Benjamini and Hochberg (1995) FDR procedure.

We remark that the solution from FDR control is minimax optimal if α∈ [0, 1
2 ] and α>

γ= log.p/ .γ> 0/ under independence among tests. As long as α decreases with an appropriate
rate as p increases, thresholding by FDR control is optimal without knowing the level of sparsity
and, hence, reduces computation considerably. Although we do not have this independence, this
adaptivity may work since the argument for minimax optimality mainly depends on marginal
properties (Abramovich et al., 2006).

As discussed in Section 3.2, for multivariate Y , the solution for SPLS is obtained through
iterations and the resulting solution has a form of soft thresholding. Although hard threshold-
ing with FDR control is no longer applicable, we can still employ soft thresholding based on
CV. The number of hidden components, K , is tuned by CV as in the original PLS. We note that
CV will be a function of two arguments for soft thresholding and that of one argument for hard
thresholding and thereby making hard thresholding computationally much cheaper than soft
thresholding.
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Table 1. Variable selection performances of SPLS–NIPALS
versus SPLS–SIMPLS algorithms

Method Number of Number of
correct variables† incorrect variables†

SPLS–NIPALS 9.75 / 12 / 13 0 / 0 / 2
SPLS–SIMPLS 7 / 9 / 13 0 / 2 / 5

†First quartile/median/third quartile.

5. Simulation studies

5.1. Comparison between SPLS–NIPALS and SPLS–SIMPLS algorithms
We conducted a small simulation study to compare variable selection performances of the two
SPLS variants, SPLS–NIPALS and SPLS–SIMPLS. The data-generating mechanism is set as
follows. Columns of X are generated by Xi=Hj + "i for nj−1+ 1 � i � nj, where j= 1, . . . , 3
and .n0, n1, n2, n3/= .0, 6, 13, 30/. Here, H1, H2 and H3 are independent random vectors from
N .0, 25I100/ and the "is are from N .0, I100/. Columns of Y are generated by Y1=0:1H1−2H2+
f1, and Yi+1=1:2Yi+fi, where the fis are from N .0, I100/, i=1, . . . , q=10. We generated 100
simulated data sets and analysed them using both the SPLS–NIPALS and the SPLS–SIMPLS
algorithms. Table 1 reports the first quartile, median, and the third quartile of the numbers of cor-
rectly and incorrectly selected variables. We observe that the SPLS–NIPALS algorithm performs
better in identifying larger numbers of correct variables with a smaller number of false positive
results compared with the SPLS–SIMPLS algorithm. Further investigation reveals that the rel-
evant variables that the SPLS–SIMPLS algorithm misses are typically from the H1-component
with weaker signal.

5.2. Setting the weight factor κ in the general regression formulation of problem (8)
We ran a small simulation study to examine how the generalization of the regression formulation
given in expression (8) helps to avoid the local solution issue. The data-generating mechanism is
set as follows. Columns of X are generated by Xi=Hj+"i for nj−1+1� i�nj, where j=1, . . . , 4
and .n0, . . . , n4/= .0, 4, 8, 10, 100/. Here, H1 is a random vector from N .0, 290I1000/, H2 is a
random vector from N .0, 300I1000/, H3=−0:3H1+ 0:925H2 and H4= 0. The "is are indepen-
dent identically distributed random vectors from N .0, I1000/. For illustration, we use M=XTX.
When κ=0:5, the algorithm becomes stuck at a local solution in 27 out of 100 simulation runs.
When κ= 0:1, 0:3, 0:4, the correct solution is obtained in all runs. This indicates that a slight
imbalance giving less weight to the concave objective function of formulation (8) might lead to
a numerically easier optimization problem.

5.3. Comparisons with recent variable selection methods in terms of prediction power
and variable selection
In this section, we compare SPLS regression with other popular methods in terms of prediction
and variable selection performances in various correlated covariates settings. We include OLS
and the lasso, which are not particularly tailored for correlated variables. We also consider
dimension reduction methods such as PLS, principal component regression (PCR) and super-
vised PCs, which ought to be appropriate for highly correlated variables. The EN is also included
in these comparisons since it can handle highly correlated variables.
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We first consider the case where there is a reasonable number of observations (i.e. n>p) and
set n=400 and p=40. We vary the number of spurious variables as q=10 and q=30, and the
noise-to-signal ratios as 0.1 and 0.2. Hidden variables H1, . . . , H3 are from N .0, 25In/, and the
columns of the covariate matrix X are generated by Xi=Hj + "i for nj−1+ 1 � i � nj, where
j= 1, . . . , 3, .n0, . . . , n3/= .0, .p− q/=2, p− q, p/ and "1, . . . , "p are drawn independently from
N .0, In/. Y is generated by 3H1−4H2+f , where f is normally distributed with mean 0. This
mechanism generates covariates, subsets of which are highly correlated.

We, then, consider the case where the sample size is smaller than the number of the variables
(i.e. n < p) and set n= 40 and p= 80. The numbers of spurious variables are set to q= 20 and
q=40, and noise-to-signal ratios to 0.1 and 0.2 respectively. X and Y are generated similarly to
the above n>p case.

We select the optimal tuning parameters for most of the methods by using tenfold CV. Since
the CV curve tends to be flat in this simulation study, we first identify parameters of which CV
scores are less than 1.1 times the minimum of the CV scores. We select the smallest K and the
largest η among the selected parameters for SPLS, the largest λ2 and the smallest step size for
the EN and the smallest step size for the lasso. We use the F -statistic (the default CV score in the
R package superpc) from the fitted model as a CV score for supervised PC. Then, we use the
same procedure to generate an independent test data set and predict Y on this test data set on
the basis of the fitted models. For each parameter setting, we perform 30 runs of simulations and
compute the mean and standard deviation of the mean-squared prediction errors. The averages
of the sensitivities and specificities are computed across the simulations to compare the accuracy
of variable selection. The results are presented in Tables 2 and 3.

Although not so surprising, the methods with an intrinsic variable selection property show
smaller prediction errors compared with the methods lacking this property. For n > p, the lasso,
SPLS,supervisedPCsandtheENshowsimilarpredictionperformances inall fourscenarios.This

Table 2. Mean-squared prediction error for simulations I and II†

p/n/q/ns Mean-squared prediction errors for the following methods:
settings

PLS PCR OLS Lasso SPLS1 SPLS2 Supervised EN
(SE) (SE) (SE) (SE) (SE) (SE) PCs (SE) (SE)

40/400/10/0.1 31417.9 15717.1 31444.4 208.3 199.8 201.4 198.6 200.1
(552.5) (224.2) (554.0) (10.4) (9.0) (11.2) (9.5) (10.0)

40/400/10/0.2 31872.0 16186.5 31956.9 697.3 661.4 658.7 658.8 685.5
(544.4) (231.4) (548.9) (15.7) (13.9) (15.7) (14.2) (17.7)

40/400/30/0.1 31409.1 20914.2 31431.7 205.0 203.3 205.5 202.7 203.1
(552.5) (1324.4) (554.2) (9.5) (10.1) (11.1) (9.4) (9.7)

40/400/30/0.2 31863.7 21336.0 31939.3 678.6 661.2 663.5 663.5 684.9
(544.1) (1307.6) (549.1) (13.6) (14.4) (15.6) (14.4) (19.3)

80/40/20/0.1 29121.4 15678.0 485.2 538.4 494.6 720.0 533.9
(1583.2) (652.9) (48.4) (70.5) (63.0) (240.0) (75.3)

80/40/20/0.2 30766.9 16386.5 1099.2 1019.5 965.5 2015.8 1050.7
(1386.0) (636.8) (86.0) (74.6) (74.7) (523.6) (84.5)

80/40/40/0.1 29116.2 17416.1 502.4 506.9 497.7 522.7 545.3
(1591.7) (924.2) (54.0) (66.9) (62.8) (69.4) (77.1)

80/40/40/0.2 29732.4 17940.8 1007.2 1013.3 964.4 1080.6 1018.7
(1605.8) (932.2) (82.9) (78.7) (74.6) (165.6) (74.9)

†p, the number of covariates; n, the sample size; q, the number of spurious variables; ns, noise-to-signal ratio;
SPLS1, SPLS tuned by FDR control (FDR = 0.1); SPLS2, SPLS tuned by CV; SE, standard error.
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holds for the n < p case, except that supervised PC shows a slight increase in prediction
error for dense models (p=80 and q=20). For the model selection accuracy, SPLS, supervised
PCs and the EN show excellent performances, whereas the lasso exhibits poor performance by
missing relevant variables. SPLS performs better than other methods for n<p and high noise-
to-signal ratio scenarios. We observe that the EN misses relevant variables in the n<p scenario,
even though its L2-penalty aims to handle these cases specifically. Moreover, the EN performs
well for the right size of the regularization parameter λ2, but finding the optimal size objectively
through CV seems to be a challenging task.

In general, both SPLS–CV and SPLS–FDR perform at least as well as other methods (Table 3).
Especially, when n<p, the lasso fails to identify important variables, whereas SPLS regression
succeeds. This is because, although the number of SPLS latent components is limited by n, the
actual number of variables that makes up the latent components can exceed n.

5.4. Comparisons of predictive power among methods that handle multicollinearity
In this section, we compare SPLS regression with some of the popular methods that handle
multicollinearity such as PLS, PCR, ridge regression, a mixed variance–covariance approach,
gene shaving (Hastie et al., 2000) and supervised PCs (Bair et al., 2006). These comparisons are
motivated by those presented in Bair et al. (2006). We compare only prediction performances
since all methods except for gene shaving and supervised PCs are not equipped with variable
selection. For the dimension reduction methods, we allow only one latent component for a fair
comparison.

Throughout these simulations, we set p= 5000 and n= 100. All the scenarios follow the
general model of Y =Xβ+f , but the underlying data generation for X is varying. We devise
simulation scenarios where the multicollinearity is due to the presence of one main latent variable
(simulations 1 and 2), the presence of multiple latent variables (simulation 3) and the presence
of a correlation structure that is not induced by latent variables but some other mechanism
(simulation 4). We select the optimal tuning parameters and compute the prediction errors as
in Section 5.3. The results are summarized in Table 4.

The first simulation scenario is the same as the ‘simple simulation’ that was utilized by Bair

Table 4. Mean-squared prediction errors†

Method Mean-squared prediction errors for the following simulations:

Simulation 1 Simulation 2 Simulation 3 Simulation 4

PCR1 320.67 (8.07) 308.93 (7.13) 241.75 (5.62) 2730.53 (75.82)
PLS1 301.25 (7.32) 292.70 (7.69) 209.19 (4.58) 1748.53 (47.47)
Ridge regression 304.80 (7.47) 296.36 (7.81) 211.59 (4.70) 1723.58 (46.41)
Supervised PC 252.01 (9.71) 248.26 (7.68) 134.90 (3.34) 263.46 (14.98)
SPLS1(FDR) 256.22 (13.82) 246.28 (7.87) 139.01 (3.74) 290.78 (13.29)
SPLS1(CV) 257.40 (9.66) 261.14 (8.11) 120.27 (3.42) 195.63 (7.59)
Mixed variance–covariance 301.05 (7.31) 292.46 (7.67) 209.45 (4.58) 1748.65 (47.58)
Gene shaving 255.60 (9.28) 292.46 (7.67) 119.39 (3.31) 203.46 (7.95)
True 224.13 (5.12) 218.04 (6.80) 96.90 (3.02) 99.12 (2.50)

†PCR1, PCR with one component; PLS1, PLS with one component; SPLS1(FDR), SPLS with one
component tuned by FDR control (FDR = 0.4); SPLS1(CV), SPLS with one component tuned by
CV; True, true model.



Sparse Partial Least Squares Regression 17

et al. (2006), where hidden components H1 and H2 are defined as follows: H1j equals 3 for
1 � j � 50 and 4 for 51 � j � n and H2j = 3:5 for 1 � j � n. Columns of X are generated by
Xi=H1+ "i for 1 � i � 50 and H2+ "i for 51 � i � p, where "i are an independent identically
distributed random vector from N .0, In/. β is a p×1 vector, where the ith element is 1/25 for
1� i�50 and 0 for 51� i�p. f is a random vector from N .0, 1:52In/. Although this scenario
is ideal for supervised PCs in that Y is related to one main hidden component, SPLS regression
shows a comparable performance with supervised PCs and gene shaving.

The second simulation was referred to as ‘hard simulation’ by Bair et al. (2006), where
more complicated hidden components are generated, and the rest of the data generation
remains the same as in the simple simulation. H1, . . . , H5 are generated by H1j= 3I.j �50/+
4 I.j> 50/, H2j = 3:5+ 1:5 I.u1j � 0:4/, H3j = 3:5+ 0:5 I.u1j � 0:7/, H4j = 3:5− 1:5I.u1j � 0:3/

and H5j=3:5, for 1� j �n, where u1j, u2j and u3j are independent identically distributed ran-
dom variables from Unif(0,1). Columns of X are generated by Xi=Hj+"i for nj−1+1� i�nj,
where j=1, . . . , 5 and .n0, . . . , n5/= .0, 50, 100, 200, 300, p/. As seen in Table 4, when there are
complex latent components, SPLS and supervised PCs show the best performance. These two
simulation studies illustrate that both SPLS and supervised PCs have good prediction perfor-
mances under the latent component model with few relevant variables.

The third simulation is designed to compare the prediction performances of the methods when
all methods are allowed to use only one latent component, even though there are more than one
hidden components related to Y. This scenario aims to illustrate the differences of the derived
latent components depending on whether they are guided by the response Y. H1 and H2 are
generated as H1j = 2:5 I.j � 50/+ 4 I.j > 50/, H2j = 2:5 I.1 � j � 25 or 51 � j � 75/+ 4 I.26 �
j �50 or 76� j �100/. .H3, . . . , H6/ are defined in the same way as .H2, . . . , H5/ in the second
simulation. Columns of X are generated by Xi=Hj+ "i for nj−1+1� i�nj, j=1, . . . , 6, and
.n0, . . . , n6/= .0, 25, 50, 100, 200, 300, p/. f is a random vector from N .0, In/. Gene shaving and
SPLS both exhibit good predictive performance in this scenario. In a way, when the number
of components in the model is fixed, the methods which utilize Y when deriving latent com-
ponents can achieve better predictive performances compared with methods that utilize only X
when deriving these vectors. This agrees with the prior observation that PLS typically requires
a smaller number of latent components than that of PCA (Frank and Friedman, 1993).

The fourth simulation is designed to compare the prediction performances of the methods
when the relevant variables are not governed by a latent variable model. We generate the first
50 columns of X from a multivariate normal distribution with auto-regressive covariance, and
the remaining 4950 columns of X are generated from hidden components as before. Five hid-
den components are generated as follows: H1j equals 1 for 1 � j � 50 and 6 for 51 � j �n and
H2, . . . , H5 are the same as in the second simulation. Denoting X= .X.1/, X.2// by using a par-
titioned matrix, we generate rows of X.1/ from N .0, Σ50×50/, where Σ50×50 is from an AR(1)
process with an auto-correlation ρ= 0:9. Columns of X.2/ are generated by X

.2/
i =Uj + "i for

nj−1+1� i�nj, where j=1, . . . , 5 and .n0, . . . , n5/= .0, 50, 100, 200, 300, p−50/. β is a p×1
vector and its ith element is given byβi=kj for nj−1+1� i�nj, where j=1, . . . , 6, .n0, . . . , n6/=
.0, 10, 20, 30, 40, 50, p/ and .k1, . . . , k6/= .8, 6, 4, 2, 1, 0/=25. SPLS regression and gene shaving
perform well, indicating that they have the ability to handle such a correlation structure. As in
the third simulation, these two methods may gain some advantage in handling more general
correlation structures by utilizing response Y when deriving direction vectors.

6. Case-study: application to yeast cell cycle data set

Transcription factors (TFs) play an important role for interpreting a genome’s regulatory code by
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Table 5. Comparison of the number of selected TFs†

Method Number of Number of Prob(K � k)
TFs selected confirmed TFs

(s) (k)

Multivariate SPLS 32 10 0.034
Univariate SPLS 70 17 0.058
Lasso 100 21 0.256

Total 106 21

†Prob.K � k/ denotes the probability of observing at least k confirmed
variables out of 85 unconfirmed and 21 confirmed variables in a random
draw of s variables.

binding to specific sequences to induce or repress gene expression. It is of general interest to iden-
tify TFs which are related to regulation of the cell cycle, which is one of the fundamental processes
in a eukaryotic cell. Recently, Boulesteix and Strimmer (2005) performed an integrative analysis
of gene expression and CHIP–chip data measuring the amount of transcription and physical
binding of TFs respectively, to address this question. Their analysis focused on estimation rather
than variable selection. In this section, we focus on identifying cell cycle regulating TFs.

We utilize a yeast cell cycle gene expression data set from Spellman et al. (1998). This exper-
iment measures messenger ribonucleic acid levels every 7 min for 119 min with a total of 18
measurements covering two cell cycle periods. The second data set, CHIP–chip data of Lee
et al. (2002), contains binding information of 106 TFs which elucidates which transcriptional
regulators bind to promoter sequences of genes across the yeast genome. After excluding genes
with missing values in either of the experiments, 542 cell-cycle-related genes are retained.

We analyse these data sets with our proposed multivariate (SPLS–NIPALS) and univariate
SPLS regression methods, and also with the lasso for a comparison and summarize the results in
Table 5. Since CHIP–chip data provide a proxy for the binary outcome of binding, we scale the
CHIP–chip data and use tenfold CV for tuning. Multivariate SPLS selects the least number of
TFs (32 TFs), and univariate SPLS selects 70 TFs. The lasso selects the largest number of TFs,
100 out of 106. There are a total of 21 experimentally confirmed cell-cycle-related TFs (Wang et
al., 2007), and we report the number of confirmed TFs among those selected as a guideline for
performance comparisons. In Table 5, we also report a hypergeometric probability calculation
quantifying chance occurrences of the number of confirmed TFs among the variables selected
by each method. A comparison of these probabilities indicates that multivariate SPLS has more
evidence that selection of a large number of confirmed TFs is not due to chance.

We next compare results from multivariate and univariate SPLS. There are a total of 28 TFs
which are selected by both methods and nine of these are experimentally verified according
to the literature. The estimators, i.e. TF activities, of selected TFs in general show periodicity.
This is indeed a desirable property since the 18 time points cover two periods of a cell cycle.
Interestingly, as depicted Fig. 1, multivariate SPLS regression obtains smoother estimates of TF
activities compared with univariate SPLS. A total of four TFs are selected only by multivariate
SPLS regression. These coefficients are small but consistent across the time points (Fig. 2). A
total of 42 TFs are selected only by univariate SPLS, and eight of these are among the confirmed
TFs. These TFs do not show periodicity or have non zero coefficients only at few time points
(the data are not shown). In general, multivariate SPLS regression can capture the weak effects
that are consistent across the time points.



Sparse Partial Least Squares Regression 19

−0.20.00.2

20
40
60
80
10

0

A
C

E
2

−0.20.00.2

20
40
60
80
10

0

S
W

I4

−0.20.00.2

20
40
60
80
10

0

S
W

I5

−0.20.00.2

20
40
60
80
10

0

S
W

I6

−0.20.00.2

20
40
60
80
10

0

M
B

P
1

−0.20.00.2

20
40
60
80
10

0

S
T

B
1

−0.20.00.2

20
40
60
80
10

0

F
K

H
1

−0.20.00.2

20
40
60
80
10

0

F
K

H
2

−0.20.00.2

20
40
60
80
10

0

N
D

D
1

−0.20.00.2

20
40
60
80
10

0

M
C

M
1

−0.20.00.2

20
40
60
80
10

0

B
A

S
1

−0.20.00.2

20
40
60
80
10

0

G
C

N
4

−0.20.00.2

20
40
60
80
10

0

G
C

R
1

−0.20.00.2

20
40
60
80
10

0

LE
U

3

−0.20.00.2

20
40
60
80
10

0

M
E

T
31

−0.20.00.2

20
40
60
80
10

0

R
E

B
1

−0.20.00.2

20
40
60
80
10

0

S
T

E
12

F
ig

.1
.

E
st

im
at

ed
T

F
ac

tiv
iti

es
fo

r
th

e
21

co
nfi

rm
ed

T
F

s
(p

lo
ts

fo
r

A
B

F
-1

,
C

B
F

-1
,

G
C

R
2

an
d

S
K

N
7

ar
e

no
t

di
sp

la
ye

d
si

nc
e

th
e

T
F

ac
tiv

iti
es

of
th

e
fa

ct
or

s
w

er
e

ze
ro

by
bo

th
th

e
un

iv
ar

ia
te

an
d

th
e

m
ul

tiv
ar

ia
te

S
P

LS
;t

he
y

-a
xi

s
de

no
te

s
es

tim
at

ed
co

ef
fic

ie
nt

s
an

d
th

e
x

-a
xi

s
is

tim
e;

m
ul

tiv
ar

ia
te

S
P

LS
re

gr
es

si
on

yi
el

ds
sm

oo
th

er
es

tim
at

es
an

d
ex

hi
bi

ts
pe

rio
di

ci
ty

):
,

es
tim

at
ed

T
F

ac
tiv

iti
es

by
th

e
m

ul
tiv

ar
ia

te
S

P
LS

re
gr

es
si

on
;–

–
–,

es
tim

at
ed

T
F

ac
tiv

iti
es

by
un

iv
ar

ia
te

S
P

LS



20 H. Chun and S. Keleş
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Fig. 2. Estimated TF activities selected only by the multivariate SPLS regression; the magnitudes of the
estimated TF activities are small but consistent across the time points

7. Discussion

PLS regression has been successfully utilized in ill-conditioned linear regression problems that
arise in several scientific disciplines. Goutis (1996) showed that PLS yields shrinkage estimators.
Butler and Denham (2000) argued that it may provide peculiar shrinkage in the sense that some
of the components of the regression coefficient vector may expand instead of shrinking. How-
ever, as argued by Rosipal and Krämer (2006), this does not necessarily lead to worse shrinkage
because PLS estimators are highly non-linear. We showed that both univariate and multivariate
PLS regression estimators are consistent under the latent model assumption with strong restric-
tions on the number of variables and the sample size. This makes the suitability of PLS for the
contemporary very large p and small n paradigm questionable. We argued and illustrated that
imposing sparsity on direction vectors helps to avoid sample size problems in the presence of
large numbers of irrelevant variables. We further developed a regression technique called SPLS.
SPLS regression is also likely to yield shrinkage estimators since the methodology can be con-
sidered as a form of PLS regression on a restricted set of predictors. Analysis of its shrinkage
properties is among our current investigations. SPLS regression is computationally efficient since
it solves a linear equation by employing a CG algorithm rather than matrix inversion at each step.

We presented the solution of the SPLS criterion for the direction vectors and proposed an
accompanying SPLS regression algorithm. Our SPLS regression algorithm has connections to
other variable selection algorithms including the EN (Zou and Hastie, 2005) and the thresh-
old gradient (Friedman and Popescu, 2004) method. The EN method deals with collinearity
in variable selection by incorporating the ridge regression method into the LARS algorithm.
In a way, SPLS handles the same issue by fusing the PLS technique into the LARS algorithm.
SPLS can also be related to the threshold gradient method in that both algorithms use only the
thresholded gradient and not the Hessian. However, SPLS achieves faster convergence by using
the CG.

We presented proof-of-principle simulation studies with combinations of small and large
number of predictors and sample sizes. These illustrated that SPLS regression achieves both
high predictive power and accuracy for finding the relevant variables. Moreover, it can select a
higher number of relevant variables than the available sample size since the number of variables
that contribute to the direction vectors is not limited by the sample size.

Our application with SPLS involved two recent genomic data types, namely gene expression
data and genomewide binding data of TFs. The response variable was continuous and a linear
modelling framework followed naturally. Extensions of SPLS to other modelling frameworks
such as generalized linear models and survival models are exciting future directions. Our appli-
cation with integrative analysis of expression and TF binding date highlighted the use of SPLS
within the context of a multivariate response. We expect that several genomic problems with
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multivariate responses, e.g. linking expression of a cluster of genes to genetic marker data, might
lend themselves to the multivariate SPLS framework. We provide an implementation of the
SPLS regression methodology as an R package at http://cran.r-project.org/web/
packages/spls.
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Appendix A: Proofs of the theorems

We first introduce lemmas 2 and 3 and then utilize these in the proof of theorem 1. ‖A‖2 for matrix A∈Rn×k

is defined as the largest singular value of A.

Lemma 2. Under assumptions 1 and 2, and p=n→0,

‖SXX−ΣXX‖2=Op{√.p=n/},

‖SXY −σXY‖2=Op{√.p=n/}:

Proof. The first part of lemma 2 was proved by Johnstone and Lu (2004), and we shall show the
second part on the basis of their argument. We decompose SXY −σXY as .An+Bn+Cn/β+Dn, where
An =Σm

j,k.n
−1Σn

i=1υ
j
i υ

k
i − δjk/ρ

jρkT, Bn =Σm
j=1σ1n

−1.ρjυjTE+ETυjρjT/, Cn = σ2
1.n−1ETE− Ip/ and Dn =

σ1σ2n−1.Σm
j=1ρ

jυjTf +ETf/. We remark that here E is defined to be an n×p matrix of which the ith row
is ei, whereas the corresponding matrix Z in Johnstone and Lu (2004) is a p×n matrix. We aim to show
that the norm of each component of the decomposition is Op{√.p=n/}. Johnstone and Lu (2004) showed
that, if p=n→ k0 ∈ [0,∞/, then ‖An‖2→ 0, ‖Bn‖2 �σ1

√
k0Σ�j and ‖Cn‖2→σ2

1.k0+ 2
√

k0/ almost surely.
Hence, we examine ‖Dn‖2, components of which have the distributions υjTf =d χnχ1Uj for 1� j �m and
ETf =d χnχpUm+1, where χ2

n,χ2
1 and χ2

p are χ2 random variables and the Ujs are random vectors, uniform
on the surface of the unit sphere Sp−1 in Rp. After denoting aj = υjTf for 1 � j � m and am+1=ETf ,
we have that σ2

1n−2‖aj‖2
2→ 0 almost surely, for 1 � j � m, and σ2

2σ
2
1n−2‖am+1‖2

2→ k0σ
2
1σ

2
2 almost surely

from the previous results on the distributions. By using a version of the dominated convergence theorem
(Pratt, 1960), the results follow: σ1σ2n

−1.Σm
j=1ρ

jυjTf /→0 almost surely ‖Dn‖2→√k0σ1σ2 almost surely
and ‖SXY − σXY‖2 � {σ1

√
k0Σ�j + σ2

1.k0+ 2
√

k0/}‖β‖2+√k0σ1σ2 almost surely, and thus the lemma is
proved.

Lemma 3. Under assumptions 1 and 2 and p=n→0,

‖Sk
XXSXY −Σk

XXσXY‖2=Op{√.p=n/}, .11/

‖ST
XY Sk

XXSXY −σT
XYΣk

XXσXY‖2=Op{√.p=n/}: .12/

Proof. Both of these bounds (equations (11) and (12)) are direct consequences of lemma 2. By using the
triangular inequality, Hölder’s inequality and lemma 2, we have that

‖Sk
XXSXY −Σk

XXσXY‖2 �‖Sk
XX−Σk

XX‖2‖σXY‖2+‖Σk
XX‖2‖SXY −σXY‖2=Op{√.p=n/}k1+k2Op{√.p=n/}

for some constants k1 and k2 and

‖ST
XY Sk

XXSXY −σT
XYΣk

XXσXY‖2 �‖ST
XY −σT

XY‖2‖Sk
XXSXY‖2+‖σT

XY‖2‖Sk
XXSXY −Σk

XXσXY‖2=Op{√.p=n/}:

A.1. Proof of theorem 1
We start with proving the first part of theorem 1. We use the closed form solution

β̂PLS= R̂.R̂TSXXR̂/−1R̂TSXY ,

where R̂= .SXY , . . . , SK−1
XX SXY /. First, we establish that
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β̂
PLS→R.RTΣXXR/−1RTσXY in probability.

By using the triangular inequality and Hölder’s inequality,

‖R̂.R̂TSXXR̂/−1R̂TSXY −R.RTΣXXR/−1RTσXY‖2 �‖R̂−R‖2‖.R̂SXXR̂/−1R̂TSXY‖2+‖R‖2‖.R̂SXXR̂/−1

− .RΣXXR/−1‖2‖R̂TSXY‖2

+‖R‖2‖.RΣXXR/−1‖2‖R̂TSXY −RTσXY /‖2:

It is sufficient to show that ‖R̂−R‖2→0, ‖.R̂SXXR̂/−1− .RΣXXR/−1‖2→0 and ‖R̂T
SXY −RTσXY /‖2→0

in probability.
The first claim is proved by using the definition of a matrix norm and lemmas 2 and 3 as

‖R̂−R‖2 �√K max
1�k<K

‖Sk−1
XX SXY −Σk−1

XX σXY‖2=Op{√.p=n/}:

For the second claim, we focus on ‖R̂SXXR̂−RΣXXR‖2‖.RΣXXR/−1‖2‖.R̂SXXR̂/−1‖2 since

‖.A+E/−1−A−1‖2 �‖E‖2‖A−1‖2‖.A+E/−1‖2

(Golub and van Loan, 1987). Here, ‖.RΣXXR/−1‖2 and ‖.R̂SXXR̂/−1‖2 are finite as .RΣXXR/−1 and
.R̂SXXR̂/−1 are non-singular for a given K. Using this fact as well as the triangular and Hölder’s inequalities,
we can easily show the second claim. The third claim follows by the fact that ‖R̂−R‖2→0 in probability,
lemma 2 and the triangular and Hölder’s inequalities.

Next, we can establish that β=Σ−1
XXσXY =R.RTΣXXR/−1RTσXY by using the same argument of propo-

sition 1 of Naik and Tsai (2000).
We, now, prove the second part of theorem 1. Since R̂T.SXXβ̂

PLS−SXY /=0 almost surely,

lim[P{‖R̂T.SXXβ̂
PLS−SXY /‖2=0}]=1: .13/

If ‖β̂PLS−β‖2→0 in probability for p=n→k0 .> 0/,

lim{P.‖R̂TETf=n‖2=0/}=1: .14/

Since ‖ETf=n‖2 �=0 almost surely, equation (14) implies that P{ETf=n∈null.R̂T/}→1 as n→∞.
This contradicts the fact that ETf =d χ.n/χ.p/Up, where Up is a vector uniform on the surface of the unit

sphere Sp−1, as the dimension of null.R̂T/ is p−K.

A.2. Proof of lemma 1
We remark that Σq

i=1 hiSXYi
= .Σhivi/λSXXu+Σ hiX

Tfi=n, and
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

q∑
i=1

hiX
Tfi=n

q∑
i=1
|hi|

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

�

q∑
i=1
‖hiX

Tfi=n‖2

q∑
i=1
|hi|

�

q∑
i=1
|hi‖|XTfi=n‖2

q∑
i=1
|hi|

=Op{√.p=n/}

from the triangular inequality, proof of theorem 1 and 1�Σq

i=1 |hi|�√q. Then, we have
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

q∑
i=1

hiSXYi

‖
q∑

i=1
hiSXYi

‖2

− ΣXXu

‖ΣXXu‖2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
2

=
∣∣∣∣
∣∣∣∣ SXXu

‖SXXu‖2
− ΣXXu

‖ΣXXu‖2

∣∣∣∣
∣∣∣∣

2

+Op{√.p=n/}=Op{√.p=n/}:

A.3. Proof of theorem 2
We start with the sufficient condition of the convergence. We shall first characterize the space that is gener-
ated by the direction vectors of each algorithm. For the NIPALS algorithm, we denote ŴNIP

K = .ŵ1, . . . , ŵK/
and DK = .d1, . . . , dK/ as direction vectors for the original covariate and the deflated covariates respec-
tively. The first direction vector d1 .= ŵ1/ is obtained by SXY t1=‖SXY t1‖2, where t1 is the right singular
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vector of SXY . We denote si,1=SXY ti=‖SXY ti‖2, as this form of vector recurs in the remaining steps. Then,
span.ŴNIP

1 /= span.s1,1/. Define ψi as the step size vector at the ith step, and the ith current correla-
tion matrix Ci as .1=n/XT.Y −XΣi−1

j=1ŵjψ
T
j /. The current correlation matrix at the second step is given by

C2=SXY −SXXŵ1ψ
T
1 and thus the second direction vector d2 is proportional to SXY t2−ψT

1 t2SXXŵ1, where t2 is
the right singular vector of C2. Then span.ŴNIP

2 /= span.s1,1, s2,1+ l2,1SXXs1,1/, where l2,1=ψT
1 t2=‖SXY t2‖2.

Similarly, we can obtain

span.ŴNIP
K /= span

(
s1,1, s2,1+ l2,1SXXs1,1, . . . , sK,1+

K−1∑
i=1

lK, iS
i
XXsK−i,1

)
:

Now, we observe that span.ŴNIP
i / does not form a Krylov space, because si,1 is not the same as s1,1 for

multivariate Y. However, it forms a Krylov space for large n, since ‖SXY t=‖SXY t‖2 −w1‖2→ 0 for any
q-dimensional random vector t subject to ‖t‖2=1 almost surely, following lemma 1.

For the SIMPLS algorithm, using the fact that the ith direction vector of SIMPLS is obtained sequen-
tially from the left singular vector of Di= .I −ΠPi−1 /SXY , where Pi−1= SXXŴi−1

SIM.Ŵ i−1
SIMSXXŴi−1

SIM/−1, we
can characterize

span.ŴSIM
K /= span

(
s1,1, s2,1+ l2,1SXXs1,1, . . . , sK,1+

K−1∑
i=1

lK, iS
i
XXsK−i,1

)
:

We note that si,1s and li,js from the NIPALS and SIMPLS algorithms are different because the tis are from
Ci and Di for the NIPALS and SIMPLS algorithms respectively.

Next, we shall focus on the convergence of the NIPALS estimator, because the convergence of the
SIMPLS estimator can be proved by the same argument owing to the structural similarity of span.ŴNIP

K /
and span.ŴSIM

K /.
Denoting W̃ = .s1,1, s2,1 + l2,1SXXs1,1, . . . , sK,1 + ΣK−1

i=1 lK, iS
i
XXsK−i,1/ and ˜̃W = .s1,1, s1,1 + l2,1SXXs1,1,

. . . , s1,1+ΣK−1
i=1 lK, iS

i
XXs1,1/, one can show that ‖W̃ − ˜̃W‖2=Op{√.p=n/} by using the fact ‖si,1−w1‖2=

Op{√.p=n/} for i= 1, . . . , K. Since span. ˜̃W/ can also be represented as span.s1,1, SK−1
XX s1,1, . . . , SXXs1,1/

.= span.R̂//, we have that ‖B̂NIP − R̂.R̂TSXXR̂/−1R̂TSXY‖2 =Op{√.p=n/}. Thus, we now deal with the
convergence of R̂.R̂TSXXR̂/−1R̂TSXY , which has a similar form to that of the univariate response case.

Since ‖Si−1
XX s1,1−Σi−1

XXw1‖2=Op{√.p=n/} for i=1, . . . , K, one can show that ‖R̂−R‖2=Op{√.p=n/},
where R= .w1, ΣXXw1, . . . , ΣXXw1/. The convergence of the estimator can be established similarly to the
argument in theorem 1 with the following additional argument:

‖R̂SXY −RΣXY‖2 �‖R̂SXY −RSXY‖2+‖RSXY −RΣXY‖2

�‖SXY‖2‖R̂−R‖2+‖RXTF=n‖2

=Op{√.p=n/}+‖RXTF=n‖2

=Op{√.p=n/}+Op{q
√

.K=n/} .15/

=Op{√.p=n/}:

Inequality (15) follows from observing that each column of the matrix

.RTΣXXR/−1=2.1=n/RTXT

follows N .0, IK/ independently. The remainder of the proof is a simple extension of the proof of theorem
1.

The necessity condition of the convergence is proved as follows. Assume that ‖B̂PLS−B‖2→0 in prob-
ability, when p=n→k0 .> 0/. Following the argument in the proof of theorem 1, we have

lim{P.‖R̂TETF=n‖2=0/}=1:

Since ‖ETF=n‖2 �=0 almost surely, this equation implies that P{range.ETF=n/⊂null.R̂
T
/}→1 as n→∞.

If p=n→ k0 .> 0/, this contradicts the fact that ETFi=d χ.n/χ.p/Up, where Fi denotes the ith column
of F and Up is a vector uniform on the surface of the unit sphere Sp−1, as the dimension of null.R̂T/ is
p−K.
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