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Abstract

Background: Presently, multi-omics data (e.g., genomics, transcriptomics, proteomics, and metabolomics) are
available to improve genomic predictors. Omics data not only offers new data layers for genomic prediction but
also provides a bridge between organismal phenotypes and genome variation that cannot be readily captured at
the genome sequence level. Therefore, using multi-omics data to select feature markers is a feasible strategy to
improve the accuracy of genomic prediction. In this study, simultaneously using whole-genome sequencing (WGS)
and gene expression level data, four strategies for single-nucleotide polymorphism (SNP) preselection were
investigated for genomic predictions in the Drosophila Genetic Reference Panel.

Results: Using genomic best linear unbiased prediction (GBLUP) with complete WGS data, the prediction
accuracies were 0.208 +0.020 (0.181 £ 0.022) for the startle response and 0.272 £0.017 (0.307 = 0.015) for starvation
resistance in the female (male) lines. Compared with GBLUP using complete WGS data, both GBLUP and the
genomic feature BLUP (GFBLUP) did not improve the prediction accuracy using SNPs preselected from complete
WGS data based on the results of genome-wide association studies (GWASs) or transcriptome-wide association
studies (TWASs). Furthermore, by using SNPs preselected from the WGS data based on the results of the expression
quantitative trait locus (eQTL) mapping of all genes, only the startle response had greater accuracy than GBLUP
with the complete WGS data. The best accuracy values in the female and male lines were 0.243 + 0.020 and

0.220 + 0.022, respectively. Importantly, by using SNPs preselected based on the results of the eQTL mapping of
significant genes from TWAS, both GBLUP and GFBLUP resulted in great accuracy and small bias of genomic
prediction. Compared with the GBLUP using complete WGS data, the best accuracy values represented increases of
60.66% and 39.09% for the starvation resistance and 27.40% and 35.36% for startle response in the female and male
lines, respectively.

Conclusions: Overall, multi-omics data can assist genomic feature preselection and improve the performance of
genomic prediction. The new knowledge gained from this study will enrich the use of multi-omics in genomic
prediction.
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Introduction

Genomic prediction, also known as genomic selection
(GS), was initially proposed in 2001 [1] and is a statis-
tical method to predict the yet-to-be observed pheno-
types or unobserved genetic values of complex traits
based on genomic data. This method assumes that all
quantitative trait loci (QTLs) are in linkage disequilib-
rium (LD) with at least one marker in the whole gen-
ome. GS is known for shortening the generation
intervals and increasing the reliability of predicted
breeding values, especially for dairy cattle breeding [2].
Presently, genomic prediction is widely used in animal
and plant breeding and polygenic disease risk prediction.

Over the past decade, the implementation of GS was
mainly based on single-nucleotide polymorphism (SNP)
chip data. With the cost of sequencing dropping rapidly,
it became possible to perform genomic predictions with
whole-genome sequencing (WGS) data. Compared with
SNP chip data, WGS data are expected to improve the
accuracy of genomic predictions by increasing the de-
gree of LD between the SNPs and QTLs, even including
causal mutations. Simulation studies confirmed the hy-
pothesis that WGS data would improve the accuracy of
genomic prediction in a single population [3] or multiple
populations [4]. However, higher accuracy of genomic
prediction was not achieved for Drosophila using real
WGS data [5], and similar results were found for live-
stock using imputed WGS data [6-8]. Possibly, large
amounts of markers are both non-causal markers and
not in LD with the causal loci. Moreover, our previous
study indicated that the LD pruning of imputed WGS
data could improve prediction accuracy [8]. Therefore,
pre-selected potential causal markers or QTLs from
WGS has great potential for improving the accuracy of
genomic prediction [9]. Nowadays, many preselection
variant strategies were used to improve the power of
genomic prediction based on the following methods:
genome-wide association study (GWAS) [8, 10-12],
Bayesian procedures [13], genome-wide signatures of
selection [14], QTL regions in Animal QTLdb [12], gene
annotation [15, 16], and gene ontology categories [17,
18]. These methods mainly depend on the direct link
between phenotype and DNA variants or some prior
genome annotation information. However, the genetic
links between phenotype and genome variants are too
complex to determine directly at the genome sequencing
level.

Presently, it has become possible to obtain multi-
omics data (e.g., genomic, transcriptomics, proteomics,
and metabolomics) for genomic predictions. This makes
it possible to uncover genotype—phenotype relationships
using different types of data. Related studies were re-
ported using omics data to perform genomic prediction
for complex traits in humans [19, 20], plants [21-24],
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and model animals [25, 26]. Most of these studies fo-
cused on integrating multiple omics data into a predic-
tion model to improve prediction accuracy [22, 25-27].
However, multi-omics data not only offers new data
layers for genomic prediction but also provides a bridge
between organismal phenotype and genome variation
that cannot be readily captured at the genome sequence
level [21]. Therefore, using omics data to select feature
markers is a feasible strategy to improve the accuracy of
genomic prediction.

In this study, using WGS and gene expression level
data, different strategies of SNP preselection were in-
vestigated for genomic predictions in the Drosophila
genetic reference panel (DGRP). Our results provide
useful knowledge about preselected genomic features
based on multi-omics data and thus improve the pre-
dictive ability of genomic predictions for complex
traits.

Materials and methods

The genomic, transcriptomic, and phenotypic data of
DGRP lines

The DGRP is a living library of common polymorphisms
affecting complex traits, as well as a community resource
for the whole genome association mapping of quantita-
tive trait loci [28, 29]. The DGRP has 205 Drosophila in-
bred lines derived from 20 generations of full-sib mating
from isofemale lines collected at the Farmer’s Market in
Raleigh, NC, USA. These 205 lines were subjected to
whole genome sequencing using Illumina and 454 se-
quencing. After variant calling, a total of 4,672,297 SNPs
were found around the chromosome arm (X, 2L, 2R, 3L,
3R, 4) [28]. The gene expression level of 200 DGRP lines
(as the log,-transformed fragments per kilobase of tran-
script per million fragments mapped, FPKM) for 15,732
genes in females and 20,375 genes in males were ob-
tained by Everett et al. [30] and can be found in GEO
(accession GSE117850). Furthermore, two traits (startle
response and starvation resistance) were selected as
model traits. Finally, totals of 198 and 199 lines selected
for starvation resistance and startle response, respect-
ively, were used for further genomic prediction due to
allowing the measurement of phenotypes and expression
levels simultaneously. In addition,the phenotypic value
of Startle response and starvation resistance per line
were the averages of two replicate measurements (20
flies/sex/replicate) and five replicate measurements (10
flies/sex/replicate), respectively [28]. The quality control
of the WGS data was conducted using PLINK [31] with
the criteria of SNP call rate > 95%, individual call rate >
97%, MAF > 5%, and the Hardy—Weinberg equilibrium
P-value > 1.0e-6. The missing genotypes were imputed
by Beagle 4.1 with default parameters [32]. Ultimately, a
total of 2,037,712 SNPs was used for further analysis.
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Genetic parameter estimations

Before performing genomic prediction, in order to assess
how much phenotypic variability could be explained by
the genetic variation of the WGS data, the variance com-
ponents (additive genetic and residual variance) of the
startle response and starvation resistance were estimated
in the male and female lines, respectively, by the infor-
mation restricted maximum likelihood (REML) method
implemented in the LDAK software [33]. The statistical
model was

y=Xb+Zg+e,

where y is a vector of the phenotypic values of all lines;
b is the Wolbachia infection status as a fixed effect; X
and Z are the incidence matrices relating the fixed and
polygene effects to the phenotypic records; g is a vector
of the polygene effect of all individuals, which is as-
sumed to be distributed as g ~ N(O, O'EG); and e is the
residual term, which is assumed to follow a normal dis-
tribution of e ~ N(0,02I). In addition, G is the stan-
dardized relatedness matrix calculated by GEMMA
v0.98.1 software [34] using all SNPs according to [35]:

. mMMT
2y p(1-p)’

where M is a matrix of centered genotypes, and p; is the
minor allele frequency of SNP;.

G

Strategies for selecting the feature markers in genomic
prediction

In order to improve the predictive ability of whole gen-
ome prediction, four strategies were used to preselect
SNPs from the WGS data as genomic feature markers,
including 1) SNPs preselection based on the GWAS re-
sults (abbreviation as “S_ GWAS”); 2) SNPs preselection
based on the genome positions of significant genes from
the transcriptome-wide association study (TWAS) (ab-
breviation as “S_ TWAS”); 3) SNPs preselection based
on the results of the eQTL mapping of all genes (abbre-
viation as “S_eQTL_A"); and 4) SNPs preselection based
on the results of the eQTL mapping of significant genes
from TWAS (abbreviation as “S_eQTL_S”). In all scenar-
ios, if there was no gene or SNP remained after the cut-
off thresholds of different categories, the top two genes
or five SNPs were exacted as feature markers.

SNPs preselection based on the GWAS results (S_GWAS)
In order to link genomic variation with complex traits,
GWASs were performed for each sex separately for the
analyzed traits in the training population. Univariate
tests of association were performed using a mixed model
approach implemented in the GEMMA v0.98.1 software
[34]. The model was
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y=Xb+Zg+Sa+e,

where y is a vector of the phenotypic values of lines in
the training set; a is the additive effect of the candidate
variants to be tested for association; S is a vector of an
SNP, and the other terms are defined as above. A Wald
test was applied to test the alternative hypotheses of
each SNP in the univariate models. After the GWAS
analysis, the SNPs associated with related traits were di-
vided into different categories based on P values of less
than 0.05, 0.001, 0.0001, 0.00001, or 0.000001. Then, the
different categories of significant SNPs were extracted
from the WGS data as genomic features, respectively.

SNPs preselection based on the genome position of
significant genes from TWAS (S_TWAS)

In order to link the gene expression level with complex
traits, TWASs were performed for each sex separately
for the analyzed traits in the training population. The
univariate tests of association were performed using a
mixed model approach implemented in TMVP’, a pack-
age in R (https://github.com/xiaolei-lab/rMVP). The
model was

y=Xb+Zg+ Tu-+e,

where y is a vector of the phenotypic values of lines in
the training set; T is a vector of a gene expression level
of lines in the training set; u is the genetic effect of the
candidate genes to be tested for association. and the
other terms are defined as above. A Wald test was ap-
plied to test the alternative hypotheses of each gene in
the univariate models. After the TWAS analysis, the sig-
nificant gene expression levels associated with related
traits were divided into different categories based on P
values of less than 0.05, 0.001, 0.0001, 0.00001, or
0.000001. Then, the SNPs located in significant genes
were extracted as feature markers based on their corre-
sponding genomic positions from the WGS data.

SNPs preselection based on the results of the eQTL
mapping of all genes (S_eQTL_A)

In order to link genome variation with the gene expres-
sion level, eQTL mapping was performed for each sex
separately for each gene expression level using the WGS
data. Univariate tests of association were performed
using a mixed model approach implemented in the
GEMMA v0.98.1 software [34]. The model was

y=Xb+Zg+Sa+e,

where y is a vector of each gene expression level of all
lines; b is the fixed effect, including Wolbachia infection
status and five major polymorphic inversions [In2L(t),
In2R(NS), In3R(P), In3R(K), and In3R(Mo)]; S is a vector
of the SNP, and the other terms are defined as above. A
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Wald test was applied to test the alternative hypotheses
of each SNP in the univariate models. After eQTL map-
ping, the significant eQTLs of each gene were divided
into different categories based on P values of less than
0.05, 0.001, 0.0001, 0.00001, or 0.000001. Then, the dif-
ferent categories of significant eQTLs of each gene were
extracted as feature markers from the WGS data, re-
spectively. Because polymorphic inversions had a direct
impact on gene expression, moreover, for avoiding
spurious associations due to adjustment on both eQTL
mapping and TWAS, we added five major polymorphic
inversions as fixed effect only in eQTL mapping.

SNPs preselection based on the results of the eQTL
mapping of significant genes (S_eQTL_S)

After the TWAS and eQTL mapping analysis, genes and
eQTLs were divided into different categories according
to the significance threshold as described above. Using
different categories of combination, these significant
eQTLs of significant genes were extracted as feature
markers from the WGS data, respectively.

Genomic prediction model

The breeding values of the genotyped individuals were
estimated via genomic best linear unbiased prediction
(GBLUP) [35] and a genomic feature BLUP model
(GFBLUP) [36]. The statistical model for the GBLUP ap-
proaches is

y=Xb+Zg+e,

where y is a vector of the phenotypic values; b is Wal-
achia infection status as a fixed effect; and the other pa-
rameters are defined as above.

The GFBLUP model was an extended BLUP including
two random genetic effects:

Y=Xb+Z,f+Z;r+e,

where y, b, X, and e are the same as GBLUP, f is the
vector of the genomic values captured by the genetic
markers linked to the genomic feature of interest, fol-
lowing a normal distribution of f ~ N(0,6%Gy); and r
is a vector of genomic values captured by the remaining
set of genetic markers, following a normal distribution
of r ~ N(0,062G,). Z, and Z, are the incidence matrices
relating the additive genetic values (g and f) to the
phenotypic records. Gyand G, were constructed accord-
ing to [35] using the preselected and remaining markers,
respectively.

In this study, the variance components were estimated
in the training set using the REML algorithm via the
LDAK software [33]. Finally, using the dispersion matri-
ces as define in [37] and the variance components,
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predictions of genetic values of testing sets were ob-
tained by solving the mixed model equations.

Predictive ability evaluation

The Pearson’s correlation and regression coefficients
between the predicted genetic values and the true
phenotypic values were used to assess the accuracy
and the bias of genomic prediction. The true pheno-
typic values represent the fixed effects of original
phenotypic observations were corrected. Ten repli-
cates of five-fold cross-validation were used to avoid
the uncertainty of predictive correlations in this study.
Briefly, the genotyped individuals were randomly di-
vided into five subsets. One subset was selected as
the validation set, and the remaining four were used
as the reference set. Then the cross-validation process
was repeated five times to ensure that each subset
was validated once. Finally, the average accuracy
values and the bias of genomic prediction for the ten
replicates of five-fold cross-validation were reported.

Results

Summary statistics and genetic parameter estimations of

the analyzed traits

Before performing genomic prediction, the summary of
statistics and genetic parameter estimations for the traits
were performed in the male and female lines, and the
detailed results were shown in Table 1. The results
showed that the times of the startle response in the fe-
male lines (average 28.68s; range: 14.13-41.25) were
similar to those in the male lines (average 28.25 s; range:
13.38—42.10). However, the times of starvation resistance
in the female lines (average 60.43h; range: 34.45—
106.56) were much longer than those in the male lines
(average 45.52 h; range: 21.28-72.00). The standard devi-
ations were 6.37 and 6.45 for the startle response and
12.61 and 9.40 for starvation resistance in the female
and male lines, respectively. The coefficients of variation

Table 1 Summary statistics and genetic parameter estimations
of the analyzed traits

Traits Startle response, s Starvation resistance, h
Sex Female Male Female Male

N? 199 199 198 198

Min 1413 13.38 34.45 21.28

Max 41.25 4210 106.56 72.00

Mean 28.68 28.25 60.43 4552

SpP 6.37 6.45 12,61 9.40

% 2221% 22.833% 20.87% 20.65%
HeritabHity(SEd) 0.771 (0.191) 0691 (0.222) 0.999 (0.083) 0.999 (0.071)
Pval of LRTf 0.003 0.011 0.0002 0.00002

2N: Number of individuals; °SD: Standard deviation; “CV Coefficient of variation;
9dSE: Standard error; fPval of LRT: P-value obtained from likelihood ratio test
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were 22.21% and 22.83% for the startle response and
20.87% and 20.65% for starvation resistance in the male
and female lines, respectively. This indicated that sub-
stantial phenotypic variation exists among these traits.
Furthermore, the values (standard error) of the heritabil-
ity estimates were 0.771 (0.191) and 0.691 (0.222) for the
startle response and 0.999 (0.083) and 0.999 (0.071) for
starvation resistance in the male and female lines, re-
spectively, indicating that they are high-heritability traits.
Using likelihood ratio tests, the levels of significance of
the heritability estimates were 0.003 and 0.011 for the
startle response and 0.0002 and 0.00002 for starvation
resistance, indicating a significant genetic contribution
to phenotypic variability.

SNPs preselection based on the GWAS results (S_GWAS)
with different P-value cutoffs for genomic prediction
Using S_GWAS with different P-value cutoffs, the accur-
acy values of both GBLUP and GFBLUP were shown in
Table 2. When GBLUP was performed using the
complete WGS data, the prediction accuracy values were
0.208 £ 0.020 and 0.181 +0.022 for the startle response
and 0.272 £ 0.017 and 0.307 £ 0.015 for starvation resist-
ance in the female and male lines, respectively (Table 2).
Using S_GWAS with the optimal P-value cutoffs
(P< 0.05), the accuracy values of GBLUP were 0.186 +
0.021 and 0.158+0.022 for the startle response and
0.207 £ 0.020 and 0.268 + 0.020 for starvation resistance
in the female and male lines, respectively (Table 2).
These accuracy values, however, were still lower than
those of GBLUP with the complete WGS data. Further-
more, when was using S_GWAS to perform the genomic
prediction, the accuracy of GBLUP increased with the P-
value cutoffs (Table 2). In other words, the accuracy of
GBLUP increased with the number of SNPs (Table S2).
For example, the number of SNPs increased from 11 to
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100,708, meanwhile, the accuracy of GBLUP increased
from 0.066 to 0.186 for Startle Response in the female
lines. Using S_GWAS with the optimal P-value cutoffs,
the accuracy of GFBLUP was much lower than that of
GBLUP (Table 2). In addition, there was no obvious
trend for the accuracy of GFBLUP using different P-
value cutoffs to preselect SNPs. Overall, using S_GWAS
provided lower accuracy and a larger bias of genomic
prediction compared to using the complete WGS data
for both GBLUP and GFBULP (Table 2, Table S1).

SNPs preselection based on the TWAS results (T_GWAS)
with different P-value cutoffs for genomic prediction

The accuracy of both GBLUP and GFBLUP using S_
TWAS with different P-value cutoffs was shown in
Table 3. The results showed that the accuracy of GBLUP
using S_TWAS with the optimal P-value cutoffs
(p< 0.05) was 0.189+0.022 and 0.118 + 0.022 for the
startle response and 0.128 + 0.017 and 0.196 + 0.015 for
starvation resistance in the female and male lines, re-
spectively (Table 3). However, compared with the
complete WGS data, the accuracy of GBLUP cannot be
improved by using S_TWAS. In addition, by using S_
TWAS to perform genomic prediction, the accuracy of
GBLUP always increased with the P-value cutoffs or
number of SNPs (Table 3 and Table S4), for example,
the number of SNPs increased from 594 to 70,285 the
accuracy of GBLUP increased from — 0.001 to 0.189 for
Startle Response in the female lines. Compared with the
GBLUP with S_TWAS, GFBLUP resulted in higher ac-
curacy and smaller bias of genomic prediction, except
for the startle response using P-value cutoffs less than
0.05 (Table 3 and Table S3). But these accuracies still
did not higher than using the complete WGS data in
GBLUP. However, by using P-value cutoffs less than
0.0001 to preselect the SNPs, the accuracy of GFBLUP

Table 2 Prediction accuracies using SNPs preselection based on GWAS results (S_GWAS)

Model P-value Prediction accuracy (Mean * SE®)
cutoffs? . ;
Startle response Starvation resistance
Female Male Female Male
GBLUP? All° 0.208 £ 0.020 0.181 £ 0.022 0.272 £0.017 0.307 £ 0.015
< 005 0.186 + 0.021 0.158 + 0.022 0.207 + 0.020 0.268 + 0.020
< 0001 0.097 + 0.025 0.087 + 0.022 0.135 + 0.025 0.140 £ 0.019
< 0.0001 0.065 £ 0.018 0.053 £ 0.020 0.100 £ 0.019 0.032 £ 0.021
< 0.00001 0.066 + 0.019 0.060 + 0.025 0.004 + 0.021 —0.056 + 0.019
GFBLUP® < 005 0.054 + 0.026 0.049 + 0.024 0.115 + 0.025 0.121 £ 0.024
< 0.001 0.083 £ 0.026 0.034 + 0.023 0.036 £ 0.025 0.047 £ 0.019
< 0.0001 0.041 + 0.020 0.045 + 0.021 0.130 + 0.021 0.084 + 0.020
< 0.00001 0.068 + 0.019 0.061 + 0.025 0.101 + 0.024 0.045 + 0.017

@P-value cutoffs: using different P-value cutoffs to preselect SNPs from whole genome sequencing (WGS) data based on the results of genome-wide association
study (GWAS); PSE: Standard error; “All: All SNPs of WGS data; “GBLUP Genomic best linear unbiased prediction; °GFBLUP: Genomic feature best linear

unbiased prediction
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Table 3 Prediction accuracies using SNPs preselection based on TWAS results (S_TWAS)
Model P-value Prediction accuracy (Mean + SE®)
cutoffs® Startle response Starvation resistance
Female Male Female Male
GBLUP? All© 0.208 + 0.020 0.181 + 0.022 0272 +0.017 0307 +0.015
< 0.05 0.189 + 0.022 0.118 £ 0.022 0.128 £ 0.017 0.196 = 0.015
< 0.001 0.029 + 0.023 —0.008 + 0.026 —0.007 £ 0.021 0.081 + 0.022
< 0.0001 0.005 + 0.022 —-0.042 £ 0019 0.002 + 0.020 0.024 + 0017
< 0.00001 -0.001 £ 0.022 -0.042 £ 0.019 0.002 = 0.020 0.004 = 0.020
GFBLUP® < 0.05 0.176 + 0.024 0.106 + 0.024 0.196 + 0.020 0287 + 0.017
< 0.001 0.168 + 0.022 0.140 + 0.022 0266 + 0.018 0291 + 0016
< 0.0001 0.170 £ 0.019 0.137 £ 0.024 0.272 £ 0.017 0.288 + 0.018
< 0.00001 0.169 + 0.019 0.137 + 0.024 0272 £ 0017 0.296 + 0.016

#P-value cutoffs: using different P-value cutoffs to preselect genes based on the results of transcriptome-wide association study (TWAS), then extracted SNPs from
whole genome sequencing (WGS) data according corresponding genomic positions of genes; °SE: Standard error; All: All SNPs of WGS data; GBLUP: Genomic
best linear unbiased prediction; *GFBLUP: A genomic feature best linear unbiased prediction

was equal to the accuracy of GBLUP with the complete
WGS data (Table 3), but the bias of GFBLUP was
smaller than that of GBLUP with the complete WGS
data (Table S3).

SNPs preselection based on the eQTL mapping results of
all genes (S_eQTL_A) with different P-value cutoffs for
genomic prediction

The accuracy of both GBLUP and GFBLUP using S_
eQTL_A with different P-value cutoffs was shown in
Table 4. The results showed that the accuracy of GBLUP
using S_eQTL_A with the optimal P-value cutoffs was
0.243 £ 0.020 and 0.220 +0.022 for the startle response
and 0.274 + 0.017 and 0.305 + 0.015 for starvation resist-
ance in the female and male lines, respectively (Table 4).
Compared with GBLUP with S_eQTL_A, GFBLUP re-
sulted in lower prediction accuracy, except for the startle
response using P-value cutoffs less than 0.001 in the

male lines (Table 4). Furthermore, by using S_eQTL_A,
the trends of the accuracy and bias of genomic predic-
tion were different for the startle response and starvation
resistance. For the startle response, by using S_eQTL_A
with the optimal strategy, the best accuracy values were
represented by increases of 19.12% and 21.55% for
GBLUP and 10.78% and 19.89% for GFBULP in the fe-
male and male lines, respectively, compared to GBLUP
with the complete WGS data (Table 4). However, the
biases of genomic prediction with the optimal preselec-
tion SNPs were larger than those of the complete WGS
data (Table S5). For starvation resistance, lower accuracy
and similar biases of genomic prediction were found in
the female and male lines, respectively (Table 4 and
Table S5). In addition, when the number of SNPs was
sufficiently large, the increased number of SNPs de-
creased the accuracy of GBLUP (Table 4 and Table S6).
For example, the number of SNPs increased from 1,038,

Table 4 Prediction accuracies using SNPs preselection based on the results of eQTL mapping of all genes (S_eQTL_A)

Model P-value Prediction accuracy (Mean + SEP)
cutoffs® . -
Startle response Starvation resistance
Female Male Female Male
GBLUP? All° 0.204 + 0.021 0.181 £ 0.022 0272 £0.017 0.307 £ 0.015
< 0.001 0.220 + 0.020 0.178 + 0.023 0.268 + 0.017 0.296 + 0.015
< 0.0001 0.243 + 0.020 0.191 + 0.023 0.278 + 0.017 0.305 + 0.015
< 0.00001 0.241 £ 0.020 0.215 £ 0.022 0.274 £ 0.017 0.300 £ 0.014
< 0.000001 0.208 + 0.020 0.220 + 0.022 0.238 + 0.018 0.288 + 0.016
GFBLUP® < 0.001 0.183 + 0.023 0.181 + 0.022 0.265 + 0.017 0.292 + 0016
< 0.0001 0.216 = 0.021 0.178 £ 0.025 0.265 £ 0.018 0.294 +£ 0.015
< 0.00001 0.226 + 0.021 0.177 £ 0.024 0.252 + 0.017 0.276 + 0.017
< 0.000001 0.187 + 0.024 0217 +£0.022 0237 £ 0.02 0272 +0.016

@P-value cutoffs: using different p-value cutoffs to preselect SNPs from whole genome sequencing (WGS) data based on the results of expression quantitative trait
loci (eQTL) mapping of all genes; ®SE: Standard error, All: All SNPs of WGS data, “GBLUP: Genomic best linear unbiased prediction, *GFBLUP: A genomic feature

best linear unbiased prediction
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728 to 2,023,905, the accuracy of GBLUP decreased from
0.241 to 0.220 for Startle Response in the female lines.

SNPs preselection based on the eQTL mapping results of

significant genes (S_eQTL_S) with different P-value

cutoffs for genomic prediction

The accuracy of genomic prediction for the startle re-
sponse and starvation resistance using S_eQTL_S with dif-
ferent P-value cutoffs is shown in Figs. 1 and 2,
respectively. For the startle response, when we used P-
value cutoffs less than 0.05 or 0.001 to select the signifi-
cant genes, there existed an appropriate P-value cutoff to
preselect eQTLs to improve the prediction accuracy of
GBLUP and GFBLUP, compared with using GBLUP with
the complete WGS data, except when performing
GFBLUP on the female lines (Fig. 1). The best accuracy
values were 0.258 +0.019 and 0.237 +0.019 for GBLUP
and 0.265 + 0.018 and 0.245 + 0.020 for GFBLUP in the fe-
male and male lines, respectively (Fig. 1). Compared with
the GBLUP using complete WGS data, the accuracy
values represented increases of 24.04% and 30.94% for
GBLUP and 27.40% and 35.36% for GFBULP in the female
and male lines, respectively (Fig. 1). Furthermore, using
SNPs preselected with the optimal strategy, the bias of
GBLUP was 0.916 +0.080 and 0.851 + 0.079, which are
similar to the bias of GBLUP with the complete WGS data
in the female (1.113+0.140) and male lines (1.223 +
0.177), but larger biases of GFBLUP were found in the fe-
male (0.415 + 0.099) and male (0.324 + 0.096) lines (Table
S7). However, when we used P-value cutoffs less than
0.0001 or 0.00001 to select the significant genes, we
achieved lower accuracy than when using the complete
WGS data for both GBLUP and GFBLUP, no matter what
P-value cutoff was used to preselect eQTLs. For starvation
resistance, no matter what P-value cutoff was used to pre-
select significant genes from TWAS results, there always
existed an appropriate P-value cutoff to preselect eQTLs
to improve the accuracy of GBLUP and GFBLUP, com-
pared with GBLUP using complete WGS data (Fig. 2).
The best accuracy values were 0.437 +0.015 and 0.427 +
0.015 for GBLUP and 0.419 + 0.016 and 0.390 + 0.014 for
GFBLUP (Fig. 2). Compared to GBLUP with the complete
WGS data, the accuracy values represented increases of
60.66% and 39.09% for GBLUP and 54.04% and 27.04%
for GFBULP in the female and male lines, respectively
(Fig. 2). Furthermore, by using SNPs preselected with the
optimal strategy, the biases of genomic prediction were
0.897 £ 0.064 and 1.217 +0.061 for GBLUP and 1.122 +
0.060 and 1.106 + 0.062 for GFBLUP in the female and
male lines, respectively; these values were similar to or
smaller than the biases of GBLUP with the complete
WGS data (1.137 £ 0.078 and 1.153 + 0.065 in the female
and male lines, respectively) (Table S6). In addition, the
number of SNPs preselected from the WGS data based on
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the results of the eQTL mapping of significant genes from
TWAS are shown in Table S8.

Discussion

In the present study, we determined the impact of differ-
ent SNP preselection strategies on prediction accuracy
using WGS and gene expression level data. To the best
of our knowledge, this is the first time that gene expres-
sion level data of whole population were used to pre-
select feature SNPs to improve the accuracy of genomic
prediction. Overall, using the SNPs preselected from
WGS data based on gene expression data results in
greater accuracy and a smaller bias of genomic predic-
tion for the startle response and starvation resistance in
Drosophila. Especially in using the SNPs preselected
from the eQTL mapping of significant genes, the best
accuracy values represented increases of 60.66% and
39.09% for the starvation resistance and 27.40% and
35.36% for startle response in the female and male lines,
respectively, compared with GBLUP using the complete
WGS data. The new knowledge gained from this study
will help scholars enrich the use of omics data to im-
prove the power of genomic prediction.

Total genomic heritability and prediction accuracy

Before performing genomic prediction, the heritability
estimates of analyzed traits were estimated in the male
and female lines. We found that the analyzed traits had
high heritability, especially for starvation resistance,
which almost explains the whole phenotypic variability
in both the female and male lines (Table 1). These re-
sults are similar to those of a previous study [25] but
higher than the results in [26]. This may be due to the
quality control of the SNPs, the number of lines, and the
line means for phenotypes in the present study, which
are the same as those used in [25] and different from
those in [16]. The high heritability of the analyzed traits
showed that most loci that affect the traits have additive
gene actions or contributions from non-additive gene
actions at many loci. If additive gene action contributed
to high heritability, high heritability would easily achieve
a high prediction accuracy [38]. However, in this study,
the high heritability of traits did not result in high pre-
diction accuracy. Using WGS data, the accuracy values
of GBLUP were 0.208 +0.020 (0.181 +0.022) for the
startle response and 0.272 +0.017 (0.307 £ 0.015) for
starvation resistance in the female (male) lines (Table 2).
One possible reason for this result may be the small size
of the reference population for genomic predictions. The
other possible reason is that non-additive gene actions
might contribute to the high estimated additive genetic
variation components [39]. A previous study found that
epistasis dominates the genetic architecture of Drosoph-
ila’s quantitative traits [40]. Therefore, the high
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Startle Response
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Fig. 1 Prediction accuracies of the startle response using S_eQTL_S strategy with different P-value cutoffs. S_eQTL_S represents SNPs preselected
from WGS data based on the results of the eQTL mapping of significant genes. The Y axis represents the Pearson correlation between the
predicted genetic values and the phenotypic values for each trait in the validation sets. Both the X axis and the different colors of box plots
represent the SNP datasets preselected from whole genome sequencing data using different P-value cutoffs based on the results of the eQTL
mapping of significant genes from a transcriptome-wide association study (TWAS). GBLUP-Female and GBLUP-Male refer to performing genomic
best linear unbiased prediction (GBLUP) on the female and male lines. GFBLUP-Female and GFBLUP-Male refer to performing genomic feature
best linear unbiased prediction (GFBLUP) on the female and male lines. TWAS (P < cutoffs) refers to using the P-value cutoffs to preselect
significant genes from TWAS. Black lines indicate the trend of the average accuracy in different scenarios
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Starvation Resistance
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Fig. 2 Prediction accuracies of the starvation resistance using S_eQTL_S strategy with different P-value cutoffs. S_eQTL_S represents SNPs
preselected from WGS data based on the results of the eQTL mapping of significant genes. The Y axis represents the Pearson correlation
between the predicted genetic values and the phenotypic values for each trait in the validation sets. Both the X axis and the different colors of
box plots represent the SNP datasets preselected from whole genome sequencing data using different P-value cutoffs based on the results of the
eQTL mapping of significant genes from a transcriptome-wide association study (TWAS). GBLUP-Female and GBLUP-Male refer to performing
genomic best linear unbiased prediction (GBLUP) on the female and male lines. GFBLUP-Female and GFBLUP-Male refer to performing genomic
feature best linear unbiased prediction (GFBLUP) on the female and male lines. TWAS (P < cutoffs) refers to using the P-value cutoffs to preselect
significant genes from TWAS. Black lines indicate the trend of the average accuracy in different scenarios
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heritability of the analyzed traits was most likely the re-
sult of non-additive gene actions. In addition, the accur-
acy values of GBLUP in the present study were different
than those in [5, 17] and similar to those in [25]. This
difference may be due to the quality control of SNPs,
fixed effects, the cross-validation procedure, or the size
of the reference population.

Genomic feature BLUP model for genomic prediction
GFBLUP is an expansion model for traditional GBLUP
that separates the total genomic components into two
random genetic components using prior biological know-
ledge [36]. If a genomic feature contains more causal vari-
ants, GFBLUP always has a greater accuracy by adding
different weights for the genomic features in the model ac-
cording to the estimated variance components [17, 36].
Similar results were also found in this study (Fig. 1 and
Fig. 2). Furthermore, the accuracy of GFBLUP was influ-
enced by the composition’s genomic features. If the pro-
portion of QTNs in preselected genomic feature markers
was very few (or even no), the accuracy of GFBLUP will
decrease due to excessive consideration on spurious gen-
omic features [41]. Similar results were also found in this
study (Table 2). If the proportion of QTNs in preselected
genomic feature markers was large, the GFBLUP further
increases its prediction accuracy compared to GBLUP
with genomic features only or the complete WGS data
[17, 36]. For example, when P-values of TWAS and eQTL
mapping less than 1e-05 and 0.001 were used to preselect
3,500 and 5,377 SNPs in female and male lines as the gen-
omic feature, the accuracy values of GBLUP with the gen-
omic feature were 0418 and 0.353 for starvation
resistance in the female and male lines, respectively; these
values are lower than the accuracy of GFBLUP (0.419 and
0.381 for the female and male lines) (Fig. 2). However, if
the proportion of QTNs in preselected genomic feature
markers was small, GFBLUP resulted in a lower accuracy
compared to GBLUP with genomic features only. For ex-
ample, when the best parameter (the P-values of the
TWAS and eQTL mapping were less than 1le-05 and 0.05)
were used to preselected 177,035 and 227,569 SNPs in fe-
male and male lines as the genomic feature, the accuracy
values of GBLUP with the genomic feature were 0.437
and 0.414 for starvation resistance in the female and male
lines, respectively, which were higher than the accuracy
value of GFBLUP (0.355 and 0.369 for the female and
male lines) (Fig. 2). Therefore, the strength of GFBLUP is
dependent on the preselection strategy for genomic
features.

SNP preselection strategies influencing prediction
accuracy

Performing genomic predictions with prior biological
knowledge can improve the predictive ability for
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complex traits [17, 42, 43]. In this study, using the asso-
ciation analysis method, four strategies were proposed to
preselect SNPs from WGS data for genomic prediction.
We found that using S_GWAS did not improve the pre-
diction accuracy values, especially for P-value cutoffs less
than 0.001 (Table 2). Similar results were also indicated
in previous studies using SNPs preselected from GWAS
[8, 11]. The main reason for this result is that overfitting
decreases the prediction accuracy. Overfitting means
that a small proportion of variants captured a large pro-
portion of variant components in the prediction model
(Table S9 and Table S10). In addition, a smaller number
of SNPs were preselected based on the P-value of
GWAS (Table S2), which is similar to the results of a
previous study, which showed that the accuracy of
GBLUP decreased with the number of SNPs [5].

Moreover, using S_TWAS with different P-value cut-
offs to perform genomic prediction resulted in lower
prediction accuracy values compared to GBLUP with the
complete WGS data (Table 3). However, compared with
S_GWAS, there are no overfitting problems in the pre-
diction model using S_TWAS (Table S11 and Table
S12). The main factor for the decrease in prediction ac-
curacy is that very few causal variants were detected
using the genome position of the significant genes from
TWAS (Table S4), as the gene expression level is not
only affected by the variants near the regions of this
gene (cis-eQTL) but also by the other SNPs in the gen-
ome (trans-eQTL) [30]. This phenomenon was con-
firmed by the greater accuracy values obtained using the
SNPs preselected from the eQTL mapping of significant
genes (Fig. 1 and Fig. 2).

Furthermore, when using S_eQTL_A with different P-
value cutoffs to perform genomic prediction, only the
startle response produced greater accuracy values com-
pared to GBLUP with the complete WGS data. This is
most likely because extreme noise was avoided using
eQTL mapping to preselect the SNPs for genomic pre-
diction. Because the expression of numerous genes was
found in Drosophila [30], combining the significant
eQTLs of each gene together almost covered the whole
genome (Table S6).

Finally, we combined the strength of TWAS and eQTL
mapping by using S_eQTL_S to perform genomic pre-
diction and obtained a higher accuracy and smaller bias
of genomic prediction (Fig. 1, Fig. 2 and Table S7), as
the link between genomic variation and organismal phe-
notypes could only be determined by TWAS and eQTL
mapping using gene expression data [21]. Briefly, the sig-
nificant genes from TWAS in the training population
represented the main gene expression level directly asso-
ciated with the traits, and eQTL mapping of the whole
population determined the significant SNPs associated
with the gene expression level. In addition, combining
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the analyses of genomic variation with those of tran-
scriptional variation and organismal phenotype variation
allowed us to determine the gene networks associated
with complex traits [30] so that the gene—gene interac-
tions (epistasis) associated with complex traits could be
captured. Overall, using genomic features preselected
from multi-omics data is a feasible strategy to improve
the power of genomic prediction.

Challenges for integrating transcriptomic data into
genomic predictions

Both this study and several previous studies have indicated
that integrating transcriptomic data into genomic predic-
tion is a feasible method to improve the power of genomic
prediction [21, 24, 25]. However, using transcriptomic
data for genomic prediction in animal and plant breeding
remains challenging, because it’s too expensive to perform
RNA sequencing for thousands of individuals in routine
implementation, especially in practical breeding. Further-
more, unlike SNP, the level of gene expression is tissue-
specific and time-dependent. Hence, the RNA must be
extracted from the tissue associated with the trait of inter-
est during the correct periods. However, this is very diffi-
cult to achieve in practice. In this study, RNA was
extracted from whole flies, which ignored the tissue-
specific and time-dependent effect such that the gene ex-
pression levels represented the average across all tissues
[30]. It is important to balance the costs and benefits of
using transcriptomic information when integrating tran-
scriptomic data into genomic predictions for practical
implementations.

Conclusion

Overall, multi-omics data can assist genomic feature pre-
selection and improve the performance of genomic pre-
diction. The new knowledge gained from this study will
enrich the use of multi-omics in genomic prediction.
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