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Abstract

Background: As egg production and offspring care are costly, females should invest resources adaptively into their eggs to
optimize current offspring quality and their own lifetime reproductive success. Parasite infections can influence maternal
investment decisions due to their multiple negative physiological effects. The act of preening – applying oils with anti-
microbial properties to feathers – is thought to be a means by which birds combat pathogens and parasites, but little is
known of how preening during the reproductive period (and its expected disease-protecting effects) influences maternal
investment decisions at the level of the egg.

Methodology/Principal Findings: Here, we experimentally prevented female mallards (Anas platyrhynchos) from accessing
their preen gland during breeding and monitored female immunoresponsiveness (e.g., plasma lysozyme concentration) as
well as some egg traits linked to offspring quality (e.g., egg mass, yolk carotenoid content, and albumen lysozyme levels).
Females with no access to their preen gland showed an increase in plasma lysozyme level compared to control, normally
preening females. In addition, preen-gland-restricted females laid significantly lighter eggs and deposited higher carotenoid
concentrations in the yolk compared to control females. Albumen lysozyme activity did not differ significantly between
eggs laid by females with or without preen gland access.

Conclusion/Significance: Our results establish a new link between an important avian self-maintenance behaviour and
aspects of maternal health and reproduction. We suggest that higher yolk carotenoid levels in eggs laid by preen-gland-
restricted females may serve to boost health of offspring that would hatch in a comparatively microbe-rich environment.
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Introduction

Parasites (e.g. bacteria, ectoparasites, viruses) can markedly

reduce host fitness by continually draining resources [1]. Thus,

hosts are favoured by selection to develop physiological,

behavioural or immunological responses to combat parasite

pressures [2]. Parasites can also be transmitted to host offspring,

and selection should favour maternal responses that extend

protection against parasites to eggs, embryos or chicks [1]. One

line of maternal defence involves the deposition of non-genetic

resources into eggs (e.g. antibodies, nutrients), where they

influence strongly offspring health, growth, survival and phenotype

[3]. However, as the deposition of these egg resources can be

costly, females are faced with trading-off offspring quality against

their own survival and reproductive prospects throughout life [4].

In birds, females deposit immune factors in the yolk and

albumen to protect embryos with poorly developed immune

systems from harmful pathogens and to enhance their develop-

ment [5,6,7,8,9]. For example, lysozyme in egg albumen is a major

component of maternal innate immunity in birds [10,11]. This

family of enzymes acts by digesting peptidoglycans of bacterial cell

walls and thus protecting the embryo from harmful bacteria that

penetrate the eggshell [11,12]. In addition, females allocate

varying amounts of carotenoids into yolk, which can quench free

radicals produced during early growth and allow proper

functioning of the embryonic immune system [13,14,8]. Caroten-
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oids also can boost maternal health status [15]. As these

compounds cannot be manufactured de novo by birds and must

be extracted from the diet [16], mothers face allocation trade-offs

between self-maintenance and deposition in eggs.

Another critical trait by which females influence offspring

survival is egg size. Several studies demonstrate that egg size is

related to hatching success [17,18], early nestling survival [19],

nestling condition [20] or fledgling survival [21]. For example, in

mallards (Anas platyrhynchos), young hatched from larger eggs are

better able to survive during the few days immediately after

hatching [19,22,23].

Among the pathogens to which eggs or newly hatched animals

may be exposed, there is the community of bacteria on the feathers

of parents [24,25,26] or in the nests [27,28] that can be

transmitted to chicks or eggs by contact. These bacteria can

influence bird metabolism and immune status, since during

maintenance behaviour, birds ingest feather-associated bacteria

that are then found in their digestive tracts [29]. Such

maintenance behaviour includes preening (or direct application

of preen oil to feathers using the bill), which is thought to

constitute a first line of defence against parasites [30,31,32,33].

Preen oil (also known as urogygial gland secretions) is composed of

a mixture of aliphatic monoester waxes, fatty acids and

monohydroxy wax-alcohols [34], and there are at least three

modes by which preen oil could influence feather-degrading

bacteria (FDB; see [26]). First, preen oil may simply form a

physical barrier that prevents FDB from reaching the feather

surface [33]. Second, chemicals in preen oil could have anti-

microbial actions [32,35]. Third, antibiotic-producing symbiotic

bacteria could be cultivated within the uropygial gland and

preened onto feathers [36]. In preliminary studies, we found that

deprivation of preen gland access in mallards led to a significant

change in the structure of plumage bacterial communities

(Giraudeau et al. unpublished data). In addition, we found that

surgical removal of the preen gland in adult house sparrows (Passer

domesticus) led to an increase in the abundance of non-feather

degrading bacteria on the plumage (Czirjak et al. unpublished

data). These results show that bacterial communities change when

birds do not have access to their preen gland.

Despite the potential importance of preen oil for limiting

feather-associated bacterial growth, the effect of preening behavior

on immune status and breeding decisions has been seldom

considered to date. The goal of this study was thus to examine, for

the first time, how preening behavior (and its expected disease-

protecting effects) during the reproductive period influences female

immunoresponsiveness and parental investment decisions at the

level of the egg. We used an experimental approach by blocking

preen gland access [37] in one group of captive female mallards,

while another group acted as unmanipulated, control animals. An

assumption of our study is that having restricted access to the

preen gland elevated maternal exposure to and accumulation of

environmental microorganisms [32] and altered female immunor-

esponsiveness. We measured lysozyme concentration in maternal

plasma to assess if our treatment induced an innate constitutive

immune response (i.e. higher lysozyme concentration [38,39,11]).

In addition, we measured egg size, clutch size, yolk carotenoid

concentration and albumen lysozyme concentration as indices of

maternal investment. Because we also expected that chicks raised

by mothers with no access to their preen gland would also suffer

increased microbial exposure, we predicted that experimental

females would lay eggs with higher carotenoid and lysozyme

concentrations in order to increase embryo immunological

protection [40]. In addition, we expected that experimental

females would produce lighter eggs compared to control females

due to the energetic costs of mounting an immune response [41].

Finally, differential allocation of lysozyme along the laying

sequence was recently shown in the yellow-legged gull (Larus

michahellis, [42]). The authors proposed that females deposit higher

concentrations of lysozyme in the last egg because transmission of

bacteria between eggs and from the mother may be more intense

for the last egg. Thus, we predicted an increase of albumen

lysozyme concentration with laying order.

Methods

Ethics statement
Housing conditions and experimental procedures were carried

out in compliance with European legal recruitment and national

permissions (ETS123). Moreover, we received approval (ID:

A79001) from the French ethics institutions (Préfecture des

Deux-Sèvres, Direction de l’Environnement et des Relations avec

les collectivités locales).

Experimental procedure
We conducted our experiment from March to April 2008 at the

Centre d’Etudes Biologiques de Chizé (CEBC) in Western France,

using 33 adult duck pairs (2–3 years old) descending from

individuals caught in the wild in three different areas near the

CEBC. Birds from these 3 areas were equally distributed in both

experimental and control groups during the experiment to

eliminate possible bias. The birds were kept in captive conditions

at the CEBC for at least two years before the experiment, and

were therefore accustomed to their aviary environment. Birds were

fed with an ad libitum diet of water and a mixture of crushed corn,

wheat and commercial duck food.

Before the beginning of the maternal investment experiment, we

randomly assigned 18 females to the experimental group. Each

bird was fitted with an anti-preening apparatus (APM) that was

designed to prevent bill-uropygial gland contact and the spread of

preen gland secretions on the feathers. The device consisted of a

rubber tube of 1 cm in diameter and 2.5 cm in height, glued to the

feathers and skin around the small feathered nipple of the

uropygial gland. We reinforced this structure with a flexible plastic

square (pierced in the middle at the ring level) glued to the plastic

ring and set around the uropygial gland (Giraudeau et al. 2010).

Ducks were visually observed with binoculars twice a week to

check that the APM remained properly attached. Females from

the control group did not have any device attached (N = 15). The

devices were removed from all the birds once breeding was

completed.

Measurement of maternal investment
Females were housed individually in outdoor aviaries (464

meters) for about two weeks before the start of the experiment.

One male was then randomly assigned to each female and pairs

were housed together until females had finished laying the entire

clutch. Eggs were collected on the day of laying, weighed, and

each collected egg was then replaced with a dummy egg to induce

females to lay a normal clutch. Then, three eggs per clutch – the

first, middle and last in the sequence – were carefully opened over

sterile Petri dishes and immediately frozen (at 220uC) until

determination of yolk carotenoid concentrations and albumen

lysozyme concentration. Females were captured one week before

they were housed individually and one week after the laying of the

last egg of the clutch for blood sampling and biometric

measurements (tarsus length and mass). We drew 500 ml of whole

blood from each bird through the alar vein with a heparinized

syringe and immediately placed the sample on ice until
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centrifugation (3 min at 10 000 rpm). Plasma was then frozen at

280uC for later analysis of lysozyme and carotenoids.

Assessment of egg and plasma compounds
To measure lysozyme concentration in albumen or plasma, we

used the lysoplate assay method of Osserman and Lawlor (1966)

[43]: 25 mL plasma or albumen were inoculated in the test holes of

a 1% agar gel (A5431, Sigma) containing 50 mg/100 ml

lyophilized Micrococcus lysodeikticus (M3770, Sigma), a bacteria

which is particularly sensitive to lysozyme concentration. Crystal-

line hen egg white lysozyme (L6876, Sigma) was used to prepare a

standard curve in each plate. Plates were incubated at room

temperature (25–27uC) for 18 h. During this period, as a result of

bacterial lysis, a clear zone developed in the area of the gel

surrounding the sample inoculation site. The diameters of the

cleared zones are proportional to the log of the lysozyme

concentration. This area was measured using digital callipers,

and converted on a semilogarithmic plot into hen egg lysozyme

equivalents (HEL equivalents, expressed in mg/mL) according to

the standard curve. We found a highly significant correlation

between two independent measurements of the same sample,

indicating that our method of quantifying lysozyme concentration

was repeatable between assays (F1,28 = 64791; P,1028).

Methods for plasma and yolk carotenoid extractions and HPLC

analyses follow those described in McGraw and Ardia (2003) [15].

Due to technical problems, albumen lysozyme concentration was

measured from only 18 of the clutches (APM = 9, Control = 7) and

yolk carotenoid concentration from 27 of the clutches (APM = 15,

Control = 12).

Statistical analyses
Lysozyme data were log transformed to normalise them. All

other data met assumptions of parametric statistics. We performed

T-tests on female morphological traits to ensure that they did not

differ between treatment groups. We examined effects of female

treatment on body mass, body condition and plasma lysozyme

concentration through repeated-measures analyses of variance

(rmANOVAs). Body condition was expressed as the residual mass

from a linear regression relating body mass to tarsus length.

We calculated mean egg mass for each clutch and performed T-

tests to examine the effect of female treatment on this variable. We

performed repeated-measures analyses of variance (rmANOVAs)

to test if preen-gland treatment, laying order and the interaction

between these two factors influenced yolk carotenoid concentra-

tion and albumen lysozyme concentration. Finally, we performed

linear regression to examine if female physiological status (body

condition, plasma carotenoid and lysozyme) predicted egg

characteristics (mean mass, yolk carotenoid and albumen lysozyme

per clutch). Data were analyzed using STATISTICA 6.0 software

(Statsoft, Tulsa, USA).

Results

Effects of preen-gland treatment on females
Before the start of the experiment, there were no significant

differences in tarsus length (t = 20.3, P = 0.76), body mass (t = 1.4,

P = 0.17), body condition (t = 1.09, P = 0.28), plasma lysozyme

concentration (t = 20.24, P = 0.81) or plasma carotenoid concen-

tration (t = 0.77, P = 0.44) between females assigned to the

experimental or control groups. During the experiment, we found

that females with no access to their preen gland lost more mass

(F1,31 = 8.58, P = 0.006) and were in lower body condition at the

end of the experiment (F1,31 = 10.36, P = 0.003) compared to

control birds. Moreover, plasma lysozyme concentration increased

in females without access to the preen gland, while it stayed

constant in control females during the experiment (Treatment:

F1,30 = 4.8, P = 0.04; Time*Treatment: F1,30 = 4.6, P = 0.04,

Figure 1 and Table 1). By contrast, plasma carotenoid concen-

tration change during the experiment was not affected by

treatment (t = 20.62, P = 0.5).

Maternal investment
Egg mass and clutch size. We found that females with no

access to their preen gland laid significantly lighter eggs compared

Figure 1. Effect of the preen-gland treatment on plasma lysozyme concentration (±SE) in breeding female mallards. White points
represent females with free access to the preen gland while black points represent females for which preen gland access was blocked.
doi:10.1371/journal.pone.0013555.g001
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to controls (t = 22.27, P = 0.03, N = 33, Figure 2 and Table 1). In

contrast, clutch size was not significantly different between the two

groups of females (t = 21.04, P = 0.3, N = 33). Female body

condition before laying the clutch did not influence the mass of

eggs laid (F1,31 = 0.04, P = 0.84).

Yolk carotenoids
We found that experimental females deposited higher concen-

trations of carotenoids into egg yolk than control ones (Tables 1

and 2 and Figure 3). Laying order did not influence yolk

carotenoid deposition, and no significant interaction was found

between egg laying order and preen-gland treatment (Table 2).

Female plasma carotenoid concentrations measured before the

experiment did not predict the concentration of these compounds

in the yolk of eggs (mean yolk carotenoid/clutch, F1,25 = 0.55,

P = 0.47).

Albumen lysozyme
Albumen lysozyme concentration was not influenced by

maternal preen-gland treatment (Figure 4, Table 2). Also, no

significant interaction existed between egg laying order and

maternal treatment. However, laying order tended to influence

albumen lysozyme, with lysozyme concentration increasing along

the laying sequence (Tables 1 and 2 and Figure 4). Maternal

plasma lysozyme concentration measured before the experiment

did not predict albumen concentration of this enzyme (mean

albumen lysozyme concentration/clutch, F1,31 = 0.26, P = 0.61).

Finally, we did not find any significant covariance between mean

egg mass, carotenoid concentration and lysozyme concentration

(P.0.5).

Discussion

We found that blocking preen gland access in breeding female

mallards modified several aspects of their condition and health.

First, our treatment increased maternal lysozyme concentration in

plasma and thereby constitutive immune status. Lysozymes are a

major component of innate antibacterial immunity [10,11], acting

by digesting peptidoglycans of bacterial cell walls [11]. Thus,

higher plasma levels of this antimicrobial enzyme in experimental

females is consistent with the fact that they were exposed to more

bacteria during egg laying [38,44,11]. As preen oil constitutes the

first line of defence against potential environmental plumage

parasites and particularly feather-associated bacteria [30,32,33],

we argue that experimental females faced higher densities of

detrimental bacteria on their plumage and probably ingested them

while grooming [29]. In a previous experiment on mice,

inoculation of pathogenic bacteria (flagellin from Salmonella enterica

Table 1. Egg characteristics and female immune status
according to treatment (Mean and SE).

Mean (APM/
control)

SE (APM/
control)

Female mass loss during the
experiment (g)

319/237 18.53/20.78

Female plasma lysozyme (mg.mL21)

Beggining of the experiment 0.036/0.046 0.029/0.009

End of the experiment 0.27/0.07 0.07/0.04

Clutch size 11.67/12.53 0.45/0.74

Egg mass (g) 52.66/56.11 0.83/1.21

Yolk carotenoid concentration
(mg.g21)

First egg 57.13/47.75 6.48/8.56

Middle Egg 49.14/37.52 3.29/3.98

Last egg 50.34/40.95 4.13/3.94

Albumen lysozyme concentration
(mg.mL21)

First egg 61.4/66.57 23.47/12.51

Middle Egg 39.66/57.23 7.54/22.81

Last egg 102.82/99.96 37.23/41.48

doi:10.1371/journal.pone.0013555.t001

Figure 2. Mass of eggs (mean + SE) laid by female mallards with access or no access to their preen glands.
doi:10.1371/journal.pone.0013555.g002
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serovar Enteritidis) led to an elevation of plasma lysozyme [44]. For

the moment, these kinds of experiment seem to be lacking in birds

[11] and our study provides, for the first time, information about

plasma lysozyme concentration in birds subjected to a microbe-

rich environment.

We also found that experimental females lost more body mass

and were in worse body condition during the study than controls

females. Bacterial exposure and mounting an immune response

may have significant effects on energy intake and metabolism, such

as an increased utilization of glucose by peripheral tissues [45].

Consistent with our results, previous studies in poultry and

mammals have shown that stimulation of the immune system with

LPS results in an acute reduction of body weight gain and feed

intake [46,47,48,41]. An alternative hypothesis could be that

females with the device that did not allow them access to the preen

gland were more stressed than females that had access to their

preen gland. However, we have three lines of evidence that work

counter to this argument. First, in a preliminary study we did not

find any significant difference in time devoted to several

behaviours (e.g. grooming, feeding, walking, sleeping, bathing,

courtship) between birds equipped with an APM or with a control-

preening mechanism (same mechanism as the APM but without

the small tube that prevents bill/preen gland contact; [37]).

Second, we did not find any effect of our treatment on circulating

carotenoids levels, a variable that can be affected by stressful

conditions [49,50]. Third, we found increased, not decreased,

deposition of yolk carotenoids by experimental females compared

to control ones (see more below). Taken together, these results

suggest that blocking preen gland access does not increase stress in

mallards, but we cannot rule out this hypothesis. Unfortunately,

we do not have blood samples available to test this idea, but in

future work we suggest that measuring blood or feces corticoste-

rone levels would be a useful addition to this line of work.

In addition to the somatic effects on mothers, we found that

restricting maternal access to the preen gland altered egg

investment. Experimental females deposited more carotenoids

and produced lighter eggs than control females. The fact that eggs

were lighter is consistent with the idea that these females were in

worse condition and health and thus could devote fewer resources

Table 2. Effect of restricting access to the preen gland of
breeding female mallards on egg characteristics.

Egg characteristics Factors F P

Albumen lysozyme
concentration

Treatment 0.05 0.81

Laying order 3.04 0.06

Treatment*Laying
order

1.16 0.33

Yolk carotenoid
concentration

Treatment 5.03 0.03

Laying order 0.26 0.26

Treatment*Laying
order

0.21 0.81

doi:10.1371/journal.pone.0013555.t002

Figure 3. Yolk carotenoid concentration (mean + SE) of eggs laid by female mallards with access or no access to their preen glands.
doi:10.1371/journal.pone.0013555.g003
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to eggs, as has been shown previously [51,52,53]. Dufva (1996)

[54], for example, showed that female great tits (Parus major)

infected with Trypanosoma blood parasites laid smaller eggs than

non-infected females. However, the shift in carotenoid allocation

differs from the results of Saino et al. (2002a) [13], who found that

wild female barn swallows (Hirundo rustica) whose immune system

had been experimentally challenged with an antigen deposited

lower lutein concentrations in their eggs than control females. If

we assume that microbe exposure was also higher in eggs and

chicks of females that had no access to their preen gland, then it is

possible that elevated carotenoid levels worked to boost immunity

[13,8] in comparatively pathogen-challenged offspring. It is

interesting that another health-related metric – albumen lysozyme

concentration – was not altered by the preen gland treatment,

suggesting a quite carotenoid-specific mechanism here. Small

sample size could have limited our statistical power in this analysis

as well. However, it should be noted that the lysozyme patterns we

obtained were very consistent and similar in relation to the laying

sequence. The precise carotenoid allocation mechanism at work is

far from clear; carotenoids probably were not a limiting resource in

our captive study (i.e. birds were fed ad libitum, carotenoid levels did

not decline with laying order), and treated females did not show

higher circulating plasma carotenoid levels compared to controls.

In conclusion, we found evidence that breeding female mallards

are somatically affected by having no access to their preen gland

and also modulate their reproductive investment accordingly.

Further studies should examine the proximate mechanisms and

fitness consequences of maternal deposition of immune com-

pounds in eggs as a function of pathogen exposure.
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