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Abstract: Quantitative structure–activity relationships (QSAR) are a widely used methodology
allowing not only a better understanding of the mechanisms of chemical reactions, including radical
scavenging, but also to predict the relevant properties of chemical compounds without their synthesis,
isolation and experimental testing. Unlike the QSAR modeling of the kinetic antioxidant assays,
modeling of the assays with stoichiometric endpoints depends strongly on the number of hydroxyl
groups in the antioxidant molecule, as well as on some integral molecular descriptors characterizing
the proportion of OH-groups able to enter and complete the radical scavenging reaction. In this
work, we tested the feasibility of a “hybrid” classification/regression approach, consisting of explicit
classification of individual OH-groups as involved in radical scavenging reactions, and using further
the number of these OH-groups as a descriptor in simple-regression QSAR models of antiradical
capacity assays with stoichiometric endpoints. A simple threshold classification based on the sum of
trolox-equivalent antiradical capacity values was used, selecting OH-groups with specific radical
stability- and reactivity-related electronic parameters or their combination as “active” or “inactive”.
We showed that this classification/regression modeling approach provides a substantial improvement
of the simple-regression QSAR models over those built on the number of total phenolic OH-groups
only, and yields a statistical performance similar to that of the best reported multiple-regression
QSARs for antiradical capacity assays with stoichiometric endpoints.

Keywords: antiradical capacity assays; ABTS•+; DPPH•; TEAC; stoichiometric endpoint; QSAR;
classification/regression approach

1. Introduction

Conversion of the molecular oxygen to reactive oxygen species (ROS) in the process
of sequential one-electron reductions occurs constantly in living organisms and could be
increased under pathological conditions [1]. A complex defense system has evolved in
aerobic organisms for dealing with free radical oxidation. It includes a number of ROS-
metabolizing enzymes, metal ion sequestration proteins, and a number of low-molecular-
weight compounds that can intercept initiating or chain-carrying free radicals and act as
either preventive or chain-breaking antioxidants (α-tocopherol, plant phenols, and polyphe-
nols) [2,3]. The research interest, especially in polyphenolic antioxidants of plant origin, is
determined mainly by two factors: (a) dietary polyphenols exert a number of beneficial
health effects presumably due to their antioxidant properties; and (b) the enormous number
of natural plant phenolic compounds (>8000 identified) provides a vast source of data
for experimental and computational research [4,5]. The differentiation of polyphenols
by their ability to counteract oxidative processes is not straightforward using classical
methods for measuring antioxidant reaction kinetics [6] or relative antioxidant activity [7].
This has led to the development of numerous ways of measuring antiradical capacity [8]
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widely used for evaluation and differentiation of (poly)phenols’ “antioxidant potency”.
Antiradical capacity methods measure the stoichiometry of reactions of (poly)phenols with
stable free radicals (e.g., 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS•+,
or 2,2-diphenyl-1-picrylhydrazyl, DPPH• [8,9]) or of the reduction of other, non-radical
compounds (e.g., Fe3+ or Cu2+ ions [8,10]).

Structure–activity and quantitative structure–activity relationships (SAR and QSAR)
are widely used methodologies allowing not only the better understanding of the mecha-
nisms of pharmacological action [11] and of chemical reactions, including antioxidant and
antiradical reactions [12–15], but also the prediction of the relevant properties of chemical
compounds without experimental testing and even without synthesis or isolation in the
case of natural compounds. It is not surprising that QSAR approaches have been applied
to model and predict the endpoints of many stoichiometric antiradical capacity assays. The
simplest approach correlates the number of hydroxyl groups in the (poly)phenol molecule
(nOH) with the endpoint of the antiradical capacity assay [16], and indeed, as noted in [10],
“among the compounds having the same basic structure, the number of OH groups is
the determinant factor for the antioxidant activity”. However, in each particular struc-
ture the surroundings of the individual hydroxyl group are of crucial importance for its
participation in radical scavenging [10,12,14,17].

The regression QSAR models developed for antiradical capacity assays, in fact, almost
always include the number of OH-groups in the (poly)phenol molecule as one of the
descriptors in the regression equation [10,18,19], or the number of OH-groups identified
as important in the antiradical reactions (e.g., vicinal OH-groups in catechol or pyrogallol
moieties) [17,20]. In the models, where nOH is not among the regression parameters,
a parameter strongly correlated with nOH is usually present, e.g., the sum of charges
of hydroxyl group atoms [21] or cyclic voltammetry peak currents [22]. The rest of the
parameters in the QSAR regression models aim to describe the dependence of OH-groups’
reactivity in radical scavenging reactions on their molecular surroundings. These are either
indicator variables summarizing the (poly)phenol structural features [19,23,24], cyclic
voltammetry-measured oxidation potentials [10,22], or calculated electronic descriptors as
the lowest bond dissociation enthalpy (BDE) of the molecular OH-groups [17,18] or spin
densities (SD) on hydroxyl radical oxy gen atoms [21].

Notably, among the reported QSARs of antiradical capacity assays, there are no
models attempting to use explicit classification of individual hydroxyl groups within a
single polyphenol molecule and across multiple tested (poly)phenols with regard to their
participation in the radical scavenging reactions [15]. The antiradical capacity assays, due
to the stoichiometric nature of their endpoints, could benefit from such a classification. The
explicit classification of (poly)phenol OH-groups could be based on easily interpretable
calculated electronic parameters, as illustrated by [17,18], where the lowest BDE was used
as a descriptor assisting in the classification of simple phenolics or flavonoid compound
performance in antiradical capacity assays, but implicitly on the level of whole molecules
only. Reasonable candidates for classification descriptors regarding the participation of OH-
groups in the radical scavenging are the electronic parameters determining the phenoxyl
radical stability, e.g., BDE (predominantly for monophenols [25]) or some spin-densities-
related parameters describing spin delocalization on the phenoxyl radicals (predominantly
for polyphenols [26–29]). However, such explicit classification of OH-groups, and its use in
QSAR models, has some limitations and requires some important assumptions: (a) it cannot
account for some molecular features important in radical stabilization [13,30–32] unless
they are reflected in the electronic descriptors used; (b) it cannot account for the structural
changes in (poly)phenol molecules upon its participation in a number of sequential radical
scavenging reactions [33,34]; and thus, (c) it assumes that ranking of the individual OH-
groups remains unchanged during the radical scavenging assay, both within a single
polyphenol molecule and across the all molecules tested in the assay.

In this work, we tested the feasibility of an approach based on explicit classification
of the individual hydroxyl groups in several aspects. First, we showed that an appropri-
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ate classification method using calculated electronic radical-stability-related parameters
could be derived and reliable regression-based QSAR models could be obtained using the
resulting number of “active” OH-groups, i.e., classified as involved in the radical scav-
enging in the ABTS•+ and DPPH• assays. Furthermore, we explored how these “hybrid”
classification/regression QSAR models improve upon simple-regression models obtained
using the total number of (poly)phenol OH-groups, and addressed the question whether
the classification accuracy could be improved by the addition of other, reactivity-related
parameters to the classification descriptors. Finally, we checked the applicability domain
of the classification/regression QSAR models, i.e., were the calculated classification de-
scriptors consistent across a broad range of structurally diverse (poly)phenols, so that this
classification/regression approach could be applied to structurally diverse datasets.

2. Data and Methods
2.1. Data Selection and Curation

The data from stoichiometric radical scavenging assays were collected from the study
of Cai et al. (2006) [16]. The scavenging capacities against stable ABTS•+ and DPPH•

radicals of 100 phenolic and polyphenolic compounds (predominantly of plant origin) were
presented as trolox-equivalent antiradical capacity (TEAC). These compounds belong to
the following chemical classes: phenolic acids, chalcones, flavonoids, tannins, coumarins,
lignans, quinones, stilbenes, and curcuminoids. They possess between 0 and >15 phenolic
groups, and their antiradical capacities range from 0 to >10, in the DPPH• assay, and from
0 to >11, in the ABTS•+ assay. In the present study, compounds without phenolic groups
(e.g., trans-chalcone, coumarine, anthraquinone) and those with polymeric structures and a
variable number of monomers (e.g., Chinese tannin) were excluded (10 compounds alto-
gether). Thus, the compounds in the resulting dataset possessed between 1 and 15 phenolic
groups, and their TEAC ranged from 0.020 to 8.79 in the DPPH• assay, and from 0.025 to
9.18 in the ABTS•+ assay.

The chemical structures of the selected compounds were retrieved from comprehensive
online databases (PubChem [35], ChemSpider [36], NCI/CADD CIR [37]), or built in the
CCG Molecular Operating Environment (MOE) [38] if not found in the databases. The
chiral centers of the built structures were checked and corrected when necessary. Finally,
their InChi keys were used for a reverse check by searching the online databases. All
format conversions of the chemical structures’ representations were performed with Open
Babel [39].

After the structure retrieval and quality check, another compound (carthamin) was
discarded because of a discrepancy between the structure provided in the source [16] and
the structures retrieved from online databases [35] and other publications [40,41]. One more
compound was excluded, because of the doubtful stability of the myricetin preparation
suggested in the source [16]. Thus, the final dataset consisted of 88 curated (poly)phenolic
structures with associated ABTS•+ and DPPH• radical scavenging data.

2.2. Geometry Optimization and Electronic Parameters Calculations

The curated structures were energy minimized using MMFF94x force field in MOE,
and then subjected to conformational search using LowModeMD [42] procedure of the
Environment (an exhaustive search procedure is not feasible for molecules with saturated
and/or fused cycles). The minimal energy conformations were geometry optimized using
the semi-empirical molecular orbital package MOPAC2016 [43,44] by AM1, PM6, PM7, and
RM1 Hamiltonians, in vacuum or accounting for the solvent contribution to the enthalpies
with the conductor-like screening model (COSMO). Semi-empirical methods were used
in this study because of their reasonable computational cost and reliability, sufficient for
calculation of electronic parameters for modeling of radical scavenging reactions [18].

Cation-radical, oxygen-centered radical, and anion structures were prepared from the
basic molecular structures. From the 88 molecular structures, 88 cation radicals, 265 oxygen-
centered radicals, and 265 anions were generated. The OH-groups of the sugar moieties
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in glycosides were not processed; however, some non-phenolic OH-groups were (enol
hydroxyls of curcuminoids and chromosomal hydroxyls of flavan-3-ols). The structures
were geometry optimized using restricted and unrestricted Hartree-Fock (RHF, UHF)
formalisms for non-radical and radical species, respectively. The simulation-terminating
criteria were increased hundred-fold using keyword PRECISE, the gradient norm only
was explicitly set using keyword GNORM = 0.02. Finally, a single self-consistent field
calculation with restricted open-shell Hartree-Fock (ROHF) calculation was performed on
the UHF-optimized radical structures to avoid spin contamination, at least at the final stage
of enthalpy and spin density calculations. The heats of formation (H) and the spin densities
on the C- and O-atoms (derived by Löwdin population analysis [45]) were extracted from
the MOPAC output files. All simulations were performed on Persy Stinger Intel® Xeon
workstations (www.persy.com, last accessed on the 1 December 2021).

The thermodynamic parameters of the different radical scavenging reactions (the
hydrogen atom transfer, HAT; the sequential proton loss-electron transfer, SPLET; and the
single electron transfer-proton transfer, SET-PT), which are pertinent to the individual OH-
groups (the bond dissociation enthalpy, BDE; the proton affinity, PA; the electron transfer
enthalpy, ETE; and the proton dissociation enthalpy, PDE) were calculated according to the
standard reaction mechanisms. The pertinent to the whole molecule adiabatic ionization
potential, IP, was also calculated.

BDE = H(PhO•) + H(H•) − H(PhOH) (1)

PA = H(PhO−) + H(H+) − H(PhOH) (2)

ETE = H(PhO•) + H(e−) − H(PhO−) (3)

IP = H(PhOH•+) + H(e−) − H(PhOH) (4)

PDE = H(PhO•) + H(H+) − H(PhOH•+) (5)

The gas-phase enthalpies of the proton, electron, and hydrogen atom, as well as their
solvation enthalpies, were taken from literature [46,47]

2.3. Descriptor Calculations and Statistics

The calculation of the parameters necessary for the active/inactive OH-group classifi-
cation and the descriptor assignment based on this classification, as well as the statistical
calculations (simple linear regressions and leave-one-out, LOO, cross-validation proce-
dures) were performed using in-house Perl [48] scripts, employing List::Rank, List::Util,
Statistics::Descriptive, Statistics::OLS, and Statistics::Regression modules.

3. Results and Discussion
3.1. Calculation and Analysis of Electronic Parameters

The classification of the OH-groups of interest (phenolic, enolic in curcuminoids,
and chromanol OH-groups of flavan-3-ols) as active or inactive in radical scavenging
reactions was based on the calculated electronic parameters determining radical stability.
The BDE and the spin delocalization were used for this purpose [25–29]. Having in mind
the substantial structural diversity of the dataset used, we chose the maximal SD localized
on any of the heavy atoms of oxygen-centered radicals (maxSD) as a measure of the spin
delocalization on radical structures (lower maxSD indicates more spin delocalization)
instead of using SD sums/normalized sums over the oxygen or aromatic atoms in the
compounds’ radicals [27–29,49].

BDE and maxSD were obtained from semi-empirical simulations of all 88 mono-
and polyphenolic compounds under investigation. Compound structures and calculated
electronic parameters are reported in the Supplementary SDF files.

The distribution of BDE and maxSD over all compounds’ OH-groups of interest
calculated by AM1 are shown in Figure 1. Three different distribution modes can be
outlined, and this trimodal pattern was characteristic for the results obtained in simulations

www.persy.com
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with all other Hamiltonians too, with or without COSMO corrections. The analysis of OH-
groups belonging to the three distribution modes revealed some differences between BDE
and maxSD distributions. In the case of BDE, the first mode (78 ÷ 92 kcal/mol) contains
mainly OH-groups in ortho-position one to another (e.g., those of caffeic acid, gallic acid,
catechin, and quercetin OH-groups in the flavonoid B-ring—for flavonoid ring labeling
see [12]), to a carbonyl group (e.g., 3-OH groups of flavonols), or to a methoxy group (e.g.,
hesperetin OH-group in the B-ring). In the second mode (92 ÷ 96 kcal/mol) OH-groups
in meta- or para-position one to another (e.g., chrysin and kaemferol OH-groups in the
A-ring, or those of 1,5-dihydroxylanthraquinone) and OH-groups without a counterpart
in the benzene ring (e.g., those of o-hydroxybenzoic acid and rhein), were mainly found.
The third mode (BDE > 96 kcal/mol) consisted of 3-OH groups of flavanols and condensed
tannins. MaxSD distributions differed from those of BDE mainly by the relocation of the
3-OH groups of flavonols from the lowest end of the first mode into the highest end of the
second mode (0.30 ÷ 0.42) and by relocation of the enol hydroxyl groups of curcuminoids
from the first mode into the third mode (maxSD > 0.42).
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Figure 1. Distribution histograms for BDE (A) and maxSD (B) obtained in semi-empirical simulations
using AM1 Hamiltonian without COSMO corrections (n = 265).

Due to the described pattern of differences in BDE and maxSD distributions and
to the presence of both mono- and polyphenols in the dataset, a composite descriptor
was constructed, BDE × maxSD, in order to encompass the stability measures of both
compound types and to account for differences in the primary parameters’ distributions.
The multiplication product of the primary descriptors was chosen instead of their sum
to avoid predicaments caused by the different scales of BDE and maxSD (medians of
BDE varying between 79.2 and 86.2 for different Hamiltonians and solvation models, and
between 0.279 and 0.320 in case of maxSD).

3.2. Hydroxyl Group Classification and Regression Model Construction

For hydroxyl group classification as involved or not in radical scavenging (referenced
further as “active” or “inactive”), we chose the simplest and the most easily interpretable
method—a threshold classification. Bearing in mind that TEAC values are roughly phenolic
equivalents, we assumed that the TEAC sum over all tested compounds represented the
number of active OH-groups in the dataset and the rest of the OH-groups, up to their total
number in the dataset, were inactive. Thus, the threshold value of the electronic parameters
could be defined (Figure 2). Total OH-groups of interest were 265, and the TEAC sums
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were 133.98 and 128.08 for ABTS•+ and DPPH•, respectively. Accordingly, we assumed
to have 134 active vs. 131 inactive OH-groups in the ABTS•+ dataset, and 129 active vs.
136 inactive OH-groups in the DPPH• dataset. Thus, the values corresponding to the 134th
(ABTS•+) or 129th (DPPH•) sorted parameters were used as thresholds for distinguishing
between active or inactive OH-groups in each compound in the datasets. Any OH-group
with a parameter value less or equal to the threshold was classified as active, and vice
versa. The number of active OH-groups in each molecule was then used as an independent
variable in a simple linear regression with the TEAC value as a dependent variable.
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Figure 2. Cumulative graph of the hydroxyl groups (red) and of TEAC values (purple) over all
compounds in the ABTS•+ (solid line) and DPPH• (dotted line) datasets. The thresholds defined are
shown in green lines. For graph clarity, compounds are sorted by the number of OH-groups and by
antiradical capacity, and their names are omitted on the graph (the names and numerical data are
provided in Supplementary Table S1).

Having quite large datasets, we were in a position to check how the calculated thresh-
olds behave with increasing the number of compounds used for their calculation. Our
assumption was that by increasing the number of compounds used for the threshold calcu-
lation, the threshold values should converge to the final value obtained with all compounds.
Otherwise, the final threshold value would be random and of no significant quality to
perform any reasonable classification.

The convergence test was performed using “sliding” approach—subgroups of com-
pounds were formed consisting of 10, 20, 30 . . . 80 compounds each and starting with the
1st, 2nd, 3rd . . . 88th compound, and thresholds were calculated for each subgroup. During
the subgroups’ formation, the compounds were sorted by the OH-groups’ number and
antiradical capacity; thus, each group contained a very different number of OH-groups.
The results of these experiments are shown in Figure 3. It can be seen that while BDE
thresholds converge decently, maxSD convergence is somewhat unsatisfactory. Thus, we
extracted separately maxSD on C- and O-atoms and checked the convergence of classifica-
tion thresholds calculated from maxSDO and maxSDC. The results presented in Figure 4
clearly show that the poor maxSDO thresholds convergence is responsible for unsatisfac-
tory convergence of “unseparated” maxSD thresholds, while maxSDC thresholds converge
considerably better. Thus, in the further modeling experiments, we used maxSDC and BDE
×maxSDC as classification parameters. The threshold values obtained for BDE, maxSDC,
and BDE ×maxSDC are shown in Table 1.
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Table 1. Thresholds for distinguishing between active and inactive hydroxyl groups for BDE, maxSDC,
and BDE ×maxSDC classification parameters obtained in different semi-empirical simulations for
ABTS•+ and DPPH• assays.

Hamiltonian Parameter

Thresholds

Vacuum COSMO

ABTS•+ DPPH• ABTS•+ DPPH•

AM1
BDE 86.2 86.0 82.6 82.0

maxSDC 0.286 0.283 0.278 0.274
BDE ×maxSDC 25.5 25.2 23.8 22.7

PM6
BDE 84.8 84.3 80.8 80.2

maxSDC 0.315 0.313 0.303 0.300
BDE ×maxSDC 28.0 27.5 24.5 24.0

PM7
BDE 85.8 85.2 82.4 82.0

maxSDC 0.296 0.294 0.298 0.292
BDE ×maxSDC 27.1 26.5 25.1 24.5

RM1
BDE 83.8 83.5 79.2 79.1

maxSDC 0.299 0.296 0.291 0.290
BDE ×maxSDC 25.7 25.7 24.3 24.1

Applying these thresholds, we split the OH-groups into classes, putatively active or
inactive in antiradical capacity assays (Figure 5). In order to check the classification accuracy,
we built ordinary linear regression models with the number of active groups in the tested
molecules as an independent variable and compared their squared correlation coefficients
r2 and slopes to those of the linear regression model using the total number of phenolic
hydroxyl groups as an independent variable (Supplementary Table S1). The correlation
coefficients, which reflect goodness-of-fit of the entire model, increased slightly: in the case
of the ABTS•+ assay from 0.817 for total OH-groups model to 0.856, 0.836, and 0.832 for
BDE, maxSDC, and BDE ×maxSDC classifications, respectively, and in the case of DPPH•

assay from 0.807 for total OH-groups model to 0.827, 0.831, and 0.823 for BDE, maxSDC,
and BDE × maxSDC classifications, respectively. The slopes, which reflect the classification
accuracy for each individual structure, were increased more than the correlation coefficients,
approaching 1.0: in the case of the ABTS•+ assay from 0.692 for total OH-groups model to
0.940, 0.894, and 0.877 for BDE, maxSDC, and BDE ×maxSDC classifications, respectively,
and in the case of the DPPH• assay from 0.677 for total OH-groups model to 0.936, 0.877,
and 0.858 for BDE, maxSDC, and BDE × maxSDC classifications, respectively. These
observations clearly indicated that classification of the individual OH-groups based on
electronic parameters pertinent to them increased the accuracy and prediction quality of
the regression models of antiradical assays studied. However, none of the models based on
active group numbers has r2 exceeding 0.9, while some multiple linear regression (MLR)
models based on OH-group numbers (total or vicinal) plus BDE [17,18,20,32] or on EVA
vector descriptors [50] are reported to possess r2 higher than 0.9, thus suggesting the
necessity for further optimization of the proposed models.

3.3. Optimization of the Classification/Regression Models

To explore further the plausibility of the OH-groups classification approach, we tested
more classification parameters—alone and in combination. These were reactivity-related
electronic parameters, often used to describe the kinetic aspects of radical scavenging
reactions [9,51,52]—PA, ETE, IP, and PDE, and their multiplication products with BDE,
maxSDC, and BDE × maxSDC. For IP, only combined classification parameters were
used, since being an integral molecular descriptor, it can contribute to intermolecular
classifications rather than to the intramolecular ones. In the case of parameters, exhibiting
also negative values (PDE in simulations with COSMO corrections), they were offset
by a fixed amount (30 kcal/mol) to render all values positive. Such an offset did not
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affect threshold classifications but was necessary for the construction of correct composite
descriptors. The threshold convergence was assessed for the reactivity-related descriptors
and their combinations with radical-stability-related parameters, and the convergences
were satisfactory for all of them. Two collections of simple-regression models were built
(149 models per assay, including those based on nOHtotal) and their correlation coefficients
and slopes were analyzed (Figure 6).
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Molecules 2022, 27, 2084 10 of 18

Obviously, faulty classifications were present in the collections (colored in red and
orange in Figure 6), which was expected—since most antiradical capacity assays, including
ABTS•+ and DPPH•, are designed to achieve the reaction completion [8,53], it is not
reasonable to expect a sensible classification using reactivity-related parameters. The
opposite results should be quite suspicious and could mean that any decrease (uniform or
not) of the independent variable figures may increase the regression accuracy.

Furthermore, the classification/regression models with internal predictive ability
(assessed by the LOO, cross-validation correlation coefficients, q2

LOO) higher than that
of the models based on the total OH-group number, were analyzed with respect to the
nature of their classification parameters and to the simulation conditions used for their
calculation. In the two model collections (296 models, excluding those based on nOHtotal),
there were 105 models (35%) with q2

LOO better than those of nOHtotal-based models (49 for
the ABTS•+ assay and 56 for the DPPH• assay). Among them, only two models were
based on the classification with the reactivity-related descriptor (ETE), which underlined
the expected leading contribution of phenoxyl radical-stability-related parameters in the
classification of the OH-groups for subsequent regression modeling of antiradical capacity
assays. Of the remaining 103 models, 31 were obtained by classifications based only on
radical-stability-related parameters, and 72 were obtained by classifications based on com-
bined descriptors, including both radical-stability- and reactivity-related parameters. This
suggests that accounting for the (poly)phenols reactivity is also of significant importance in
classification/regression modeling of antiradical capacity assays.

No substantial differences were observed between the different simulation conditions
used for classification parameter calculation: 42% of the highly predictive models were
obtained using parameters calculated with COSMO solvation corrections, 58%—without,
28% and 24% of the highly predictive models were obtained using parameters calculated with
AM1 and RM1 Hamiltonians, 20% and 29%—with PM6 and PM7 Hamiltonians, respectively.

Inspection of the best ten models for each assay (with the highest q2
LOO and slopes

closest to 1.0) showed that 20% of them were based on BDE-related classification, another
20% on maxSDC-related classification, and 60% on BDE × maxSDC-related classification in
both assays. Only one of these models was based on classification by combined radical-
stability-related descriptors alone (BDE × maxSDC in case of DPPH• assay), all other
classification descriptors also included reactivity-related parameters (60% PA, 10% ETE,
and 25% IP). The dominance of BDE × maxSDC-related and PA/ETE-reactivity-related
parameters in the classification descriptors among the models with the best accuracy is
not surprising—BDE ×maxSDC reflects the radical stability of both mono- and polyphe-
nols [25–29] and PA and ETE are relevant to the SPLET reaction, which is assumed operative
in the ABTS•+ and DPPH• assays [51,54,55].

In contrast to the even distribution of COSMO- and vacuum-calculated classification
parameters in the collection of 105 highly predictive models, 85% of the best models used
classification parameters obtained in simulations without COSMO solvent corrections.
Distribution of the classification parameters obtained in AM1/RM1 or in PM6/PM7 simu-
lations followed the one in the collection of 105 highly predictive models—they were split
almost equally (11 and 9, respectively).

The models with the highest q2
LOO (Table 2) were based on BDE × PA classification

for the ABTS•+ assay and on BDE × maxSDC × PA classification for the DPPH• assay. The
q2

LOO values of these models were higher than those of nOHtotal-based models by about
0.07, and their slopes were closer to 1.0 compared to the slopes of nOHtotal-based models
by about 0.18.
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Table 2. Models with the highest internal predictive ability obtained for ABTS•+ and DPPH• assays,
compared to those obtained without OH-group classification. For q2

LOO calculations, all thresholds
were recalculated for each LOO model.

Assay Simulation Type Classification Parameter Model (n = 88)

ABTS•+
PM6, vacuum BDE × PA TEAC = 0.206 + 0.871 × nOHactive

r2 = 0.887, q2
LOO = 0.875

– – TEAC = −0.562 + 0.692 × nOHtotal
r2 = 0.817, q2

LOO = 0.802

DPPH•
RM1, vacuum BDE ×maxSDC × PA TEAC = 0.206 + 0.859 × nOHactive

r2 = 0.864, q2
LOO = 0.860

– – TEAC = −0.582 + 0.677 × nOHtotal
r2 = 0.807, q2

LOO = 0.792

Up to this point we confirmed our hypothesis that building simple-regression models
of antiradical capacity of (poly)phenols based on the number of “active” OH-groups, as
classified by the electronic parameters pertinent to individual groups, could provide a
better statistical quality compared to models built with the total number of OH-groups in
the (poly)phenolic molecules. We analyzed the stability descriptors used for OH-group
classification and demonstrated that spin densities over carbon atoms only should be
used for this purpose. We showed that combining stability with reactivity descriptors
improved the classification accuracy in general, but we were not able to obtain classifi-
cation/regression models with the statistical quality of the best reported MLR models.
It should be noted, however, that the datasets used in the reported MLR modeling bore
much less structural diversity than the dataset used in the present study—they consisted
exclusively of flavonoids [18,19] or simple phenolics [17,32]. Thus, our further modeling
experiments considered splitting of the used dataset in two, less chemically diverse parts.

3.4. Testing of Classification/Regression Modeling on Less Chemically Diverse Datasets

As described above, our dataset, extracted from Cai et al., 2006 [16], consisted of
hydroxycinnamic and hydroxybenzoic acids, flavanols, flavonols, chalcones, flavones,
flavanones, isoflavones, condensed tannins, stilbenes, curcuminoids, coumarins, furo-
coumarins, lignans, anthra- and naphthoquinones. We were reluctant to use the stan-
dard selection of flavonoids, since some of them were more similar to non-flavonoid
compounds than to the rest of flavonoids (e.g., chalcones to stilbenes and lignans), and
vice versa, some non-flavonoid compounds bore significant similarity to flavones (con-
densed tannins and coumarins). Thus, we split the dataset based on presence of chro-
man/chromene/chromanon/chromanol [56] moiety in the (poly)phenol structure. The
“chromans” subgroup consisted of flavanols, flavonols, flavones, flavanones, isoflavones,
condensed tannins, coumarins, and furocoumarins (40 compounds). The “non-chromans”
subgroup consisted of hydroxycinnamic and hydroxybenzoic acids, chalcones, stilbenes,
curcuminoids, lignans, and anthra- and naphthoquinones (48 compounds). Information for
individual compounds participance in each of the groups is provided in Supplementary
Tables S2 and S3 and the SDF files.

For each of the two structural subgroups the procedures described in 0 and 0 were
repeated and the results are shown in Figure 7 and provided in Supplementary Tables
S2 and S3. As illustrated in Figure 7, the separation of classifications of OH-groups into
faulty and satisfactory, observed for the complete dataset, was preserved in both subgroups.
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In the non-chromans group, there were 93 models (31%) with q2
LOO better than those

of nOHtotal-based models (36 for the ABTS•+ assay and 57 for the DPPH• assay). Among
them, only 5 models were based on classification with a reactivity-related descriptor alone
(3 on ETE, 2 on PA), 24 models were built on classifications based on radical-stability-related
parameters alone, and 64 were built on classifications based on combined descriptors,
including both radical stability- and reactivity-related parameters, which is in consonance
with the results obtained for the complete dataset.

Distribution of the simulation conditions used for calculation of the classification pa-
rameters was similar to that observed in the complete dataset: 40% of the highly predictive
models were obtained using parameters calculated with COSMO solvation corrections,
60%—without, 22% and 18% of the highly predictive models were obtained using pa-
rameters calculated with AM1 and RM1 Hamiltonians, 26% and 34%—with PM6 and
PM7 Hamiltonians, respectively.

Inspection of the best ten models for each assay (with the highest q2
LOO and slopes

closest to 1.0) showed that 55% of them were based on pure BDE classification, 30%—on
BDE × PA, and 15%—on BDE × ETE classifications. Notably, none of the models with the
best accuracy in the non-chromans subgroup was built on maxSDC-related classification.
This could be explained by the higher proportion of monophenols and inactive diphenols in
this subgroup as compared to the complete dataset (58% vs. 45%), and correspondingly, the
higher weight of BDE in determination of the radical stability [25,26]. Exclusive presence
of PA and ETE reactivity-related parameters in combined classification descriptors in this
group of models is in accordance with SPLET mechanism dominating in the ABTS•+ and
DPPH• assays [51,54,55].

The distribution of COSMO- and vacuum-calculated classification parameters used in
the best 20 models was similar to that in the collection of 93 highly predictive models (35%
vs. 65%, respectively). Distribution of classification parameters obtained in AM1/RM1 or
in PM6/PM7 simulations was also similar to that in the collection of the highly predictive
models (30% vs. 70%, respectively).

The models with the highest q2
LOO (Table 3) were based on BDE × PA classification

for both ABTS•+ and DPPH• assays. The q2
LOO of these models were higher than those

of nOHtotal-based models by about 0.22, their slopes were not substantially closer to
1.0 compared to the slopes of nOHtotal-based models—the difference was less than 0.01.
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Table 3. Models with the highest internal predictive ability obtained for ABTS•+ and DPPH• assays
using non-chromans subgroup of compounds, compared to those obtained without OH-groups
classification. For q2

LOO calculations, all thresholds were recalculated for each LOO model.

Assay Simulation Type Classification Parameter Model (n = 48)

ABTS•+
PM6, vacuum BDE × PA TEAC = 0.220 + 0.809 × nOHactive

r2 = 0.813, q2
LOO = 0.755

– – TEAC = −0.677 + 0.803 × nOHtotal
r2 = 0.649, q2

LOO = 0.545

DPPH•
PM6, vacuum BDE × PA TEAC = 0.257 + 0.746 × nOHactive

r2 = 0.777, q2
LOO = 0.769

– – TEAC = −0.622 + 0.736 × nOHtotal
r2 = 0.624, q2

LOO = 0.539

In the chromans group there were 142 models (48%) with q2
LOO higher than those of

nOHtotal-based models (66 for the ABTS•+ assay and 76 for the DPPH• assay)—a proportion
substantially higher than in either non-chromans group, or in the complete dataset. Among
them, only 4 models were based on classification with a reactivity-related descriptor
alone (ETE), 37 models were built on classifications based only on radical-stability-related
parameters alone, and 101 were built on classifications based on combined descriptors,
including both radical stability- and reactivity-related parameters, which is similar to the
results obtained for the non-chromans group and the complete dataset.

Again, no substantial differences were observed in the simulation conditions used for
classification parameter calculation: 47% of the highly predictive models were obtained
using parameters calculated with COSMO solvation corrections, 53%—without; 26% and
23% of the highly predictive models were obtained using parameters calculated with
AM1 and RM1 Hamiltonians, 21% and 30%—with PM6 and PM7 Hamiltonians, respectively.
In general, these proportions did not differ much from those observed in the complete
dataset and in the non-chromans group.

Inspection of the best ten models for each assay (with the highest q2
LOO and slopes

closest to 1.0) showed that none of them were based on BDE-related classification, 40% were
based on maxSDC-related classification, and 60% on BDE ×maxSDC-related classification.
Thirty-five percent of these models were based on classification by radical-stability-related
descriptors alone (maxSDC or BDE × maxSDC), the remaining 65% of the classification
descriptors also included reactivity-related parameters (25% PA, 5% ETE, 25% IP, and
10% PDE). Distribution of SPLET- and SET-PT-related parameters, unlike those in the non-
chromans group and in the complete dataset, was almost even, which does not allow linking
their contribution to the mechanisms of radical scavenging reactions in the ABTS•+ and
DPPH• assays. The lack of pure BDE-related classification descriptors could be explained by
the lower proportion of monophenols and inactive diphenols in this subgroup as compared
to the complete dataset and the non-chromans (30% vs. 45% and 58%), and correspondingly,
the higher weight of spin density vs. BDE in determination of the radical stability [26].

The distribution of COSMO- and vacuum-calculated classification parameters used
in the best 20 models was similar to that in the collection of 142 highly predictive models
(45% vs. 55%, respectively). The distribution of the classification parameters obtained in
AM1/RM1 or in PM6/PM7 simulations, however, differed significantly from that in the
collection of the highly predictive models (75% vs. 25%, respectively).

The models with the highest q2
LOO (Table 4) for both ABTS•+ and DPPH• assays

were based on maxSDC × IP classification. Since the IP is assumed to be the most funda-
mental reactivity descriptor defining phenols’ reactivity [57–59], its presence in the most
successful classification parameters identified in this study is reasonable. The q2

LOO of
these models were higher than those of nOHtotal-based models by about 0.10, their slopes
were closer to 1.0 compared to the slopes of nOHtotal-based models by about 0.25. The
magnitudes of improvement of correlation coefficients and slopes for the most accurate
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classification/regression models in the chromans subgroup were about 1.5 times higher
than the magnitudes observed in the complete dataset, and the accuracy of these models
reached the desirable zone of r2 and q2

LOO higher than 0.9 and slopes between 0.9 and 1.1.

Table 4. Models with the highest internal predictive ability obtained for ABTS•+ and DPPH• as-
says using chromans subgroup of compounds, compared to those obtained without OH-group
classification. For q2

LOO calculations, all thresholds were recalculated for each LOO model.

Assay Simulation Type Classification Parameter Model (n = 40)

ABTS•+
AM1, COSMO maxSDC × IP TEAC = 0.100 + 0.954 × nOHactive

r2 = 0.950, q2
LOO = 0.948

– – TEAC = −0.734 + 0.697 × nOHtotal
r2 = 0.876, q2

LOO = 0.855

DPPH•
AM1, COSMO maxSDC × IP TEAC = 0.154 + 0.932 × nOHactive

r2 = 0.935, q2
LOO = 0.925

– – TEAC = −0.718 + 0.684 × nOHtotal
r2 = 0.854, q2

LOO = 0.829

There were distinctive differences between the most accurate classification/regression
models of the two compound subgroups with less chemical diversity than the original
dataset. First, radical-stability-related descriptors in the combined descriptors with the
highest classification performance did not overlap between the non-chromans and chro-
mans subgroups (Figure 8). All best classifying descriptors for the non-chromans group
include BDE, and none of them maxSDC, while the opposite is true for the chromans
group—all best classifying descriptors included maxSDC, and 40% of them do not include
BDE. Next, the best classifying descriptors in the non-chromans group were obtained in
simulations without solvent corrections, while those in the chromans group were obtained
in simulations with COSMO corrections. Finally, there were distinct patterns of models’
accuracy improvement for each of the subgroups—while the correlation coefficients im-
proved more for the non-chromans models than for the chromans models (3 vs. 1.5 times
when compared to the nOHtotal-based models), the slopes of the non-chromans models did
not improve substantially in comparison to the nOHtotal-based models (Figure 7).
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The first difference could be explained with the higher proportion of monophenols in
the non-chromans subgroup and the different electronic parameters describing the radical
stability in mono- and polyphenols, as already commented earlier in this section. It has,
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however, an implication on the possibility of building “universal” classification/regression
models explaining the antiradical capacity of a broad range of structurally diverse phenols—
if the optimal classifying descriptors differ for mono- and polyphenols, it would not be
possible to build “universal” models with broad applicability domains.

As of the second difference, it could be related to the previous one, in the stability-
related classification descriptors for the chromans and non-chromans subgroups. The best
models’ classification descriptors containing BDE were obtained in simulations without
solvent corrections (in the non-chromans group), while those containing maxSDC were
obtained in simulations with COSMO corrections (in the chromans group). Neither in
our data, nor in the available literature did we find an explanation of this difference; thus,
one can only speculate that electronic-energy-dependent parameters (e.g., BDE) are less
sensitive to solvent corrections than charge-dependent ones (e.g., maxSDC).

Considering the third difference, the one in the models’ improvement patterns be-
tween non-chromans and chromans subgroups, we presumed that besides the structural
similarity there should be some other factor(s) determining the changes in the accuracy
of classification/regression models of antiradical capacity of (poly)phenols during the
refinement procedures. One such factor could be the differences in descriptor and response
ranges between the two subgroups of (poly)phenolic compounds. The non-chromans
subgroup consisted almost exclusively of compounds possessing 1 to 4 hydroxyl groups
(98%), and monophenols and diphenols accounted for more than half of the subgroup. In
contrary, compounds possessing more than 4 hydroxyl groups (up to 15 in procyanidin
C1) accounted for 28% of the chromans subgroup, while monophenols and diphenols
accounted for about one third of the subgroup. A similar situation was observed for the
TEAC in both assays—in the non-chromans subgroup they maxed at 3.52 (ABTS•+) and
3.92 (DPPH•), with a single exception of corilagin (7.76 and 6.98 for ABTS•+ and DPPH•,
respectively). In the chromans subgroup the percentage of TEAC values exceeding 3.5 in
each assay was 20% of the data. Therefore, for the non-chromans subgroup, the narrow
descriptor and response ranges inevitably exaggerate the noise contribution to the statistical
modeling procedures, thus explaining the worse accuracy of the models in this subgroup.

Up to this point, neither of our models based on the number of “active” hydroxyl
groups classified as such by the electronic parameters pertinent to the individual OH-groups
has a broad applicability domain. Moreover, the differences in best classifying parameters
for subgroups dominated by different phenolic populations (mono- vs. polyphenols) do not
support expectations to obtain “universal” classification/regression models, able to explain
the antiradical capacity of a broad range of structurally diverse phenols. However, building
models over a less chemically diverse dataset containing only chroman moiety-possessing
compounds, we were able to obtain classification/regression models with the statistical
quality of the best reported MLR models (q2

LOO > 0.9), indicating good classification
accuracy over this subset of (poly)phenolic molecules. The models’ slopes and Y-axis
intercepts were closer to one and zero, respectively, than those of unclassified models, thus
indicating good classification accuracy over the hydroxyl groups of the single polyphenolic
molecules. The differences in the models’ improvement patterns suggest that domination
of the original dataset by compounds with a small number of hydroxyl groups and small
TEAC exaggerates the contribution of the noise to the statistical procedures, thus lowering
the classification accuracy of the “universal” models.

4. Conclusions

In the present work we showed that a classification based on easily interpretable de-
scriptors, i.e., calculated electronic properties pertinent to the individual hydroxyl groups,
could provide an accurate estimation of the number of OH-groups able to scavenge or-
ganic radicals ABTS•+ and DPPH• in widely used antiradical capacity assays, despite the
limitations and assumptions of the approach detailed in the Introduction. We identified a
characteristic spin density parameter, namely the maximal spin density on carbon atoms of
the phenoxyl radical, as a reliable radical stability descriptor.
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We showed that combining two radical stability descriptors, BDE and maxSDC, pro-
vides more accurate classification of the hydroxyl groups as “active” than that using
only a single stability descriptor in the group of structurally diverse phenols. In order
to increase the classification accuracy, we combined stability-related descriptors with
reactivity-related ones and ascertained that combined stability/reactivity descriptors (e.g.,
maxSDC × IP) provide even more accurate classification than a combination of stability de-
scriptors only. Refinement of classification/regression models over less chemically diverse
phenols showed that the accurate classification of the OH-groups is achieved by different
radical stability descriptors in monophenols (BDE) and polyphenols (maxSDC), confirming
conclusions about the drawbacks of estimation of radical-stabilization enthalpies by BDE
alone [26]. The accurate classification of OH-groups resulted in the building of highly
predictive simple-regression models of the endpoints from ABTS•+ and DPPH• antiradical
capacity assays, with q2

LOO values approaching 0.95.
Having extensive published data only available on antiradical capacity assays per-

formed in polar media, we could not evaluate the full significance of the solvation models
in simulations used to calculate classification descriptors. However, decent results obtained
with descriptors calculated in vacuum provide encouragement that this classification ap-
proach could be successfully used with assays performed in non-polar media. The level
of theory used in this study (semi-empirical calculations in molecular orbital package
MOPAC2016) provides reliable classifications combined with a low computational cost,
confirming conclusions of previously published MLR modeling results of antiradical ca-
pacity using the same computational methods [18,29]. Pilot experiments with DFT level
of theory calculations of classification descriptors provide indications that classification
accuracy could be improved, but it is questionable whether the computational cost of DFT
methods is reasonable for QSAR modeling.

In general, our models can be useful tools for the estimation of antiradical activity of
various (poly)phenols, including non-tested and virtual ones, and could meet the demand
for further and more profound estimation of antioxidant properties of biologically active
compounds from this chemical class.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules27072084/s1, Supplementary Tables S1 to S3: The compounds’
total OH-groups, OH-groups classified as active in radical scavenging reactions of ABTS• and DPPH•

antiradical capacity assays by BDE, maxSDC, and BDE × maxSDC classification descriptors and
respective models’ correlation coefficients and slopes. The presented exemplary data are obtained
in AM1 simulation without COSMO solvent effect corrections for complete dataset (Table S1), non-
chromans subgroup (Table S2), and chromans subgroup (Table S3). Supplementary SDF files with
molecular structures optimized by AM1 simulation in vacuum (AM1.vacuum.sdf) and with COSMO
solvation model (AM1.cosmo.sdf). In addition to structures, OH-group positions and calculated
electronic parameters (BDE, maxSDC, IP, PDE, PA, ETE) are provided. The electronic parameters are
expressed in kcal/mol, except for maxSDC, which is expressed as a fraction.
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18. Amić, D.; Lučić, B. Reliability of Bond Dissociation Enthalpy Calculated by the PM6 Method and Experimental TEAC Values in

Antiradical QSAR of Flavonoids. Bioorg. Med. Chem. 2010, 18, 28–35. [CrossRef]
19. Lien, E.; Ren, S.; Bui, H.; Wang, R. Quantitative Structure-Activity Relationship Analysis of Phenolic Antioxidants. Free Radic. Biol.

Med. 1999, 26, 285–294. [CrossRef]
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