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In order to reach the intelligent recognition, the deep learning classifiers adopted by radar waveform are normally trained with
transfer learning, where the pretrained convolutional neural network on an external large-scale classification dataset (e.g.,
ImageNet) is used as the backbone. *ough transfer learning could effectively avoid overfitting, transferred models are usually
redundant andmight not generalize well. To eliminate the dependence on transfer learning and achieve high generalization ability,
this paper introduced neural architecture search (NAS) to search the suitable classifier of radar waveforms for the first time.
Firstly, one of the innovative technologies in NAS called differentiable architecture search (DARTS) was used to design the
classifier for 15 kinds of low probability intercept radar waveforms automatically.*en, a method with an auxiliary classifier called
flexible-DARTS was proposed. By adding an auxiliary classifier in the middle layer, the flexible-DARTS has a better performance
in designing well-generalized classifiers than the standard DARTS. Finally, the performance of the classifier in practical ap-
plication was compared with related work. Simulation proves that the model based on flexible-DARTS has a better performance,
and the accuracy rate for 15 kinds of radar waveforms can reach 79.2% under the − 9 dB SNR which proved the effectiveness of the
method proposed in this paper for the recognition of radar waveforms.

1. Introduction

In modern electronic warfare, the classification of radar
waveforms is one of the pivotal technologies in radar
countermeasures and reconnaissance systems. It is also an
important basis for judging the threat of enemy weapons
[1, 2]. However, with the application of various new radar
systems based on low probability of intercept (LPI) tech-
nology, traditional classification could not meet the needs of
actual electronic warfare any more.

Researchers convert the waveform into two-dimensional
time-frequency image by Choi–Williams distribution
(CWD) time-frequency analysis [3] or other techniques and
then send it to different models to achieve continuous
upgrading of recognition capabilities. Due to the specific
properties, different machine learning models can have
different results even facing the same input [4]. Compared
with other neural networks [5–7], the convolutional neural
network (CNN) has a better performance in the processing

of image, including radar and sonar images, facial images,
and hand gesture images [8–10]. *erefore, it also has been
widely used in the recognition of radar waveforms
[7, 11–20].

*ere are two options for the CNN used in the research.
First, according to different tasks, researchers design the
CNN [14–17] independently. Kong et al. [14] take 12 kinds
of radar waveforms as the target object and then debug the
hyperparameters of the CNN repeatedly. After performing a
lot of experiments, it achieved a better recognition accuracy
than the same period model. However, designing a model
from scratch requires researchers to try mistakes or set the
parameters randomly. However, the performance may not
be satisfactory. In order to avoid the tedious work manually,
in recent years, people would like to choose the second
option—transferring the CNN [21] that have been pre-
trained on external large-scale classification data (such as
ImageNet [22]), LeNet [23], AlexNet [23–26], VGGNet [27],
GoogLeNet [28–30], ResNet [28], DenseNet [31], and so on).
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In the latest study [31], researchers transferred the DenseNet
as a classifier to reinforce the recognition accuracy in low
signal-to-noise ratio (SNR). *e accuracy of 8 kinds of
waveforms can reach 93.4% at − 8 dB SNR. However,
Ghadimi et al. [30] pointed out that when they tried to
transfer GoogLeNet which has been pretrained by almost 12
million images, evaluated by 50,000 images, and tested by
100,000 images, the differences between the pretrained
datasets and the target datasets would increase the risk of
overfitting too. *e author faced the same tedious adjust-
ment work when trying to transfer GoogLeNet for 9 kinds of
radar waveforms. It can be seen fromTable 1 that researchers
have tried many ways to improve the accuracy rate of the
radar waveforms. However, most of them only consider the
accuracy of the classification algorithm and lack consider-
ation of other performance indicators (such as model build
time and misclassification rate) [35].

It can be seen that although transfer learning can solve
the design problem of the model, there are two important
issues that have been ignored. One is that the transferring
model does not meet the requirements of transfer learning
strictly. It is pretrained on an external large-scale optical
image dataset which has a big gap to the radar waveform
images obtained through time-frequency transformation;
second, in order to have a better fitting ability to the huge
dataset, the depth of the model is constantly deepening.
However, it may be overfitting when faced to the smaller
dataset such as radar waveform images. In general, it may
not be the best choice.

To eliminate the dependence on transfer learning and
achieve high generalization ability, we introduced the neural
architecture search (NAS) [36] to the recognition of radar
waveforms for the first time to design the classifier auto-
matically. NAS is an algorithm that can automatically learn
neural networks. It can design a network from the beginning
which has the good performance so that it can be compa-
rable to the expert level in some tasks [37]. By comparing the
architecture search based on evolutionary algorithms [38] or
reinforcement learning [39], we chose the differentiable
neural network architecture search represented by differ-
entiable architecture search (DARTS). DARTS turns the
search space into a continuous space, has high search effi-
ciency, and is the fastest search algorithm currently [40].
However, due to the approximate solution of the bilevel
optimization problem, DARTS also faces difficulties such as
unstable search results or performance degradation in the
verification stage [41, 42]. In recent years, some improve-
ment methods have also been explored [43, 44], but the
methods were just suited for the specific tasks which could
not be used generally. To solve the problem, we proposed a
method with an auxiliary classifier (called flexible-DARTS)
for architecture search which has the wide range for ap-
plications. By adding auxiliary classifiers in different output
sizes of features, the improved method not only can reduce
the structural difference between the search stage and the
verification stage but also the optimization efficiency is
higher as the propagation capability of loss value is stronger.

*e main contributions of this paper can be summarized
as follows:

(1). It is the first time to explore the method of im-
proving radar signal waveform classification with
the help of NAS

(2) To solve the problem of instability shown in DARTS,
we propose a new method of architecture search
with an auxiliary classifier called flexible-DARTS

(3) *e two methods are verified on the experimental
platform, and the data are compared with the pre-
vious research

*e main structure of this article is as follows: Section 2
introduces DARTS and the flexible-DARTS proposed in this
article and compares the performance of the two. *rough
experiments in Section 3, the excellent performance of the
network architecture based on the flexible-DARTS is in-
troduced, and its practicability to radar waveform recog-
nition is also proved through the improvement of
recognition accuracy rate. Finally, the conclusions of this
paper are drawn in Section 4.

2. Methods

*e concept that using DARTS to design the classifier for
radar waveforms is firstly presented in part one. Besides, the
inadequacy of DARTS is pointed out in part one too. *en,
the flexible-DARTS with an auxiliary classifier proposed in
this paper is offered in part two.

2.1. Standard DARTS. DARTS obtains a cell through the
training dataset, which is composed of input nodes, inter-
mediate nodes, output nodes, and edges. Suppose each cell
has two input nodes and one output node, for the con-
volutional network, the two input nodes are the output of the
first two layers of cells. After multiple trainings, DARTS will
form a large network. Hyperparameter can control the
number of cells that connect to form the whole network.*e
whole process can be summarized: Figure 1(a) shows the
initial form of the cell in the network, assuming that there
are 4 nodes in a cell. In Figure 1(b), all the lines between
nodes are connected. Between each two nodes is a mixed
candidate operation, and each operation corresponds to a
probability value. Figure 1(c) shows that, during the training
process, the bilevel optimization problem is solved while
optimizing the mixed probability and weight. Figure 1(d)
shows that with the largest retention probability, the op-
eration forms the final cell [40].

To make the search space continuous, we use softmax to
relax the mixed weight of the operation. *e specific scheme
is detailed in [40]. *e mixed operation between any set of
nodes (i, j) is weighted by conditional probability as

o
(i,j)

(x) � 􏽘
o∈O

exp α(i,j)
o􏼐 􏼑

􏽐o′∈Oexp α(i,j)

o′􏼐 􏼑
o(x). (1)

*e conditional probability weight of the mixed operation
is parameterized by the |O| dimensional vector α(i,j). *rough
the model of formula (1), the problem of architecture search
can be simplified to a learning problem of a set of continuous
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variables α � α(i,j)􏼈 􏼉. *e process of solving the problem is
shown in Figure 1. Ltrain represents the training set loss. Lval
represents the validating set loss. After the operation is re-
laxed, the structural parameters α and weight w can be jointly
learned. Similar to reinforcement learning or evolutionary
algorithms, DARTS regards the performance of the verifi-
cation set as the final reward or goodness of fit. *e goal of
DARTS is to minimize the loss of the verification set by using
the gradient descent method to optimize.

A two-step method, adjusting w first and then adjusting
α, and so on until convergence, is used in DARTS [40].
When the structural parameters of the outer layer change,
the weight of the inner layer model must be recalculated.
*is process is very complex. Liu et al.[40] proposed an
approximation scheme. *e specific implementation algo-
rithm for iterative optimization of w and α using gradient
descent is shown in Figure 2.

According to the description, we can find that the
updating process is the way to optimize w and α iteratively.
*e first-order approximation is a gradient descent opti-
mization of the network weight w, whereas the second-order
approximation means that when the gradient is updated on
α, w is updated again, which makes w∗ (α) definitely more
accurate. In summary, the task of architecture search in
DARTS can be summarized in two steps. *e first step is to
use DARTS for architecture search and to optimize the two
types of computing units through the loss of the verification
set; the second step is to build a network with optimized
computing units, train on the training set from scratch, and
validate its performance on the validating set. Although
under the premise of gradient optimization, DARTS
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Figure 1: *e process in DARTS search space.

Table 1: *e related works in classification of radar waveforms.

Type Main idea

Improving in preprocess
Designing new features [19, 32]

Improving the TFD algorithm [15, 33]
Make the picture clearer [18, 29]

Improving the classifier

Structure expansion [6, 7, 16, 25]
Designing the CNN manually [14–16]

Replacing the fully connected layer (FC) with other structures [20, 24, 32]
Transferring learning [23, 24, 26–31, 33, 34]

Initialization

For each edge (i, j) in node, a mixed operation
o–(i, j)is established, and each such mixed
operation is parameterized by the 
corresponding α(i, j)

Convergence
determination

Update the architecture parameters with the 
following formula α ,

If using the first-order approximation, ξ=0°

▽αLval (w − ξ▽wLtrain (w, α), α)

Update the network weight w
according to the α and the training
data to the gradient ▽αLval (w, α) of w.

From the learned α , we get the 
final network architecture.

End

Yes

No

Figure 2: Workflow for optimizing w and α, using gradient
descent.
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achieves excellent architecture search performance. How-
ever, there are still four problems when using DARTS for
architecture search:

(1) *e search space of the differentiable architecture is
insufficient, and the searchable architecture remains
simple

(2) Search results are unstable and easily affected by the
initial values and the learning times

(3) *e consumption of hardware resources is still high
(4) Performance may degrade when the architecture of

the search is moved to validation sets

In order to reduce the adverse impact of the above
contradictions shown in results, we proposed an improved
search algorithm called flexible-DARTS. By adding an
auxiliary classifier in the search stage, the flexible-DARTS
has a better performance both in searching and validating.

2.2. "e Proposal of Flexible DARTS. As the fastest search
algorithm up to now, DARTS always consumes a huge
memory of the GPU during the search time. Sometimes, the
ability of gradient backpropagation might be reduced. We
referred to the NASNet experiment. Figure 3 shows the
application of the standard DARTS algorithm in the large-
scale ImageNet. It could be seen that we needed to design
two reduction levels manually to reduce the image size to
56× 56 before we use the searched cells for classification
tasks. When searching, DARTS has 8-level cells and does not
set the auxiliary head. However, when it comes to verifi-
cation, the number of cell levels might be increased to 20
(four intermediate nodes are set up for each level of cell). It is
an obvious contradiction.

It can be seen that when the size of the data goes to be larger
or the amount of training data becomes bigger, the perfor-
mance of DARTS will face a big challenge. *e network needs
to be deeper to help extract better features, with the difficulty of
searching becoming complex.*erefore, DARTS has chosen to
adopt the plan which has been used in the GoogleNet called
Inception.*e problem of vanishing gradients can be solved by
outputting additional features in the intermediate stage. It
means that, in the architecture validation, the auxiliary clas-
sifier is introduced into the two-third level (when the feature
map size is 8× 8). However, in this case, DARTS uses auxiliary
classifiers when validating but does not use auxiliary classifiers
when searching, which might aggravate the structural differ-
ence between searching and validating (it alsomay reflect in the
difference at the number of layers).

From this, we found that the standard DARTS has the
following two directions to improve when searching, vali-
dating, and transferring to the target dataset. One is to shrink
the structural difference during searching and validating, and
the other is to reduce the manually designed network archi-
tecture. GoogleNet (also known as Inception V1) [45] research
paper mentions: “On the classification task, the powerful
performance of the shallower network shows that the features
generated by the middle layer of the network are extremely
discriminative.” By adding auxiliary classifiers to these middle

layers, the discriminative power of the low-stage classifier can
be improved, which not only overcomes the problem of
gradient disappearance but also realizes the regularization.
*erefore, GoogleNet uses a two-level auxiliary classification in
the middle layer and adds two losses to overcome the dis-
appearance of the gradient return. *is can effectively reduce
the disappearance of the gradient (the jump connection in
ResNet is used to reduce the gradient explosion). However,
experiments show that the influence of the auxiliary network is
relatively small (about 0.5). It means that adding an auxiliary
classifier during training can achieve the same effect.

According to the abovementioned analysis, we proposed
an algorithm, flexible-DARTS, which adopts an auxiliary
classifier flexibly in searching time. Because of the manual
part in the feature extraction of large-size images in DARTS,
we discarded the manual part when facing large-size data-
sets. *e cell architecture searched by flexible-DARTS was
adopted in the whole process of feature extraction. In order
to adapt to the requirements in architecture searching for the
large-size image dataset, different search spaces have been
used for the normal group and the reduction group. In
addition, auxiliary classifiers have been added in the ar-
chitecture to narrow the gap between the network archi-
tecture during searching and testing. In order to find the
architecture with auxiliary classifiers which is the most
suitable one for radar waveforms, we compared the per-
formance in classification using different auxiliary classifiers.
*ree kinds of auxiliary classifier architecture are shown in
Figure 4.
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Figure 3: *e workflow of standard DARTS during validating. *e
gray part represents the data or feature map, the green part rep-
resents the searched reduction unit, the blue part represents the
searched standard unit, and the red part represents the hand-
designed reduction unit.
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*e architecture of the auxiliary classifier is described in
Figure 5. It has four layers that contain one average pooling
layer, two convolutional layers, and one fully connected
layer.

3. Experiment

In this section, the experiment is divided into five parts. In
part one, radar waveform datasets used in this study is
introduced briefly. In part two, the model based on flexible-
DARTS is compared with the model based on standard
DARTS and the model based on 2CNN3 which is designed
manually. In part three, the recognition capability of the
model based on flexible-DARTS is discussed with related
work. Besides, the confusion matrix is offered in part four to
prove the experimental results are compared with Baidu
EasyDL.

3.1. Dataset Representation. In the research, we have
studied 15 kinds of waveforms, including LFM, NLFM,
Costas, BPSK, five polyphase codes (including Frank, P1,
P2, P3, and P4 codes), four multitime codes (including T1,
T2, T3, and T4 codes), and two composite modulations
(LFM/BPSK and 2FSK/BPSK), as shown in Table 2. On the
assumption that the received signal would be interfered by
the additive white Gaussian noise (AGWN), the carrier
frequency has been regarded as the center frequency of the
signal bandwidth in this paper. *erefore, the discrete-
time sample model of the receiver output signal can be
expressed as

y(k) � x(k) + w(k) � a(k)e
jθ(k)

+ w(k), (2)

where k is the index value that sequentially increases with the
sampling interval, x(k) is the ideal discrete signal after
intermediate frequency sampling, w(k) is AGWN, and a(k)

is the nonzero constant instantaneous signal envelope within
the pulse interval. All the simulations in this article assigns
a(k) � 1. θ(k) is the instantaneous phase of the sampled
signal, which can be expressed by instantaneous frequency
f(k) and instantaneous phase offset ϕ(k):

θ(k) � 2πf(k) kTs( 􏼁 + ϕ(k), (3)

where Ts is the sampling interval of the signal. In reality,
we usually change the instantaneous frequency (frequency
modulation) and instantaneous phase offset (phase
modulation) of the signal to form different emission
waveforms.

In our research, the original image was converted into an
image of size 64 × 64 by downsampling. On the premise of
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not losing too much information and meeting the needs of
the classifier, we have reduced the consumption of the
processor. *e radar signals used in this paper were con-
verted by CWD to obtain time-frequency images of fifteen
types of signals in a noise-free environment, as shown in
Figure 6.

3.2. Searching Results of the Two Algorithms in Methods.
*e dataset was generated in a simulation with 3 dB steps
ranging from − 9 dB to 9 dB. 15 kinds of signals had been
generated to 800 samples, respectively, in different SNRs.
*en, the samples generated above were allocated to the
searching data and the validating data at a ratio of 3 :1.
*erefore, the searching data had 63,000 samples. *e
validating data had 21,000 samples. *e model number of
the CPU was Intel Xeon E5-2603. *e model number of the
GPU was Nvidia 1080Ti. *e simulation framework was
built by using Pytorch160.

Before the formal experiment, we used the three schemes
in Figure 4 to search the architecture. After integrating the
three indicators of videomemory demand, search speed, and
evaluation accuracy, the third improved architecture which
was added an auxiliary branch architecture at the position of
the 8× 8 feature map shown in Figure 4(c) was finally de-
cided to be used.

*e standard DARTS and flexible-DARTS were used to
search the architecture for the searching data of the radar
waveform. It would be stopped when the validating per-
formance exceeds 99%. *e search results on radar wave-
forms indicate that the FL-DARTS, where the
hyperparameter is 1.2MB, is powerful to design a better
generalized classifier, of which the hyperparameter is about
one-half of the DARTS-designed classifier where the
hyperparameter is 2.3MB. *e performance curves during
searching time are shown in Figure 7.

It can be seen from above figures that the flexible-
DARTS is superior to the standard DARTS whether in
searching speed or in training stability.*e standard DARTS
requires 38 epochs to complete the search even results might
be very unstable. *e flexible-DARTS only requires 17
epochs to complete the search, and the results are obviously
stable. *e searching results proves that the addition of the
auxiliary classifier can enhance the stability of the search
time. Besides, it can improve the searching efficiency and
help to find the model with excellent performance. Figures 8
and 9 show the cells obtained by the standard DARTS and
flexible-DARTS.

3.3. Comparison about the Classification Performance.
*e cells shown in Figures 8 and 9 are the results of the
searching part. After searching, it is time for them to be
trained by the whole data. *e performance during training
is shown in Figure 10.

We used standard DARTS, flexible-DARTS, and the
previous research [46] (manually designed, represented by
2CNN3 which consists of four convolutional layers, four
pooling layers, two fully connected layers, and one dropout
layer, stride is 1) for validating. *e results are shown in
Figure 11.

It can be seen from Figure 11 that in terms of overall
recognition accuracy rate, the flexible-DARTS is superior to
the standard DARTS and 2CNN3. Under the − 9 dB SNR, the
DARTS with the auxiliary classifier proposed in this paper
has a recognition accuracy rate of 79.2% for the 15 kinds of
radar waveforms, which is about 5% higher than that of the
standard DARTS 74.6% and 2CNN3 (73.5%). Compared
with 2CNN3, the DARTS improves its recognition accuracy
rate by 1% at − 9 dB SNR. For Frank, P1, P3, T2, and LFM-
BPSK signals, the recognition accuracy rate of the three
shows the same trend as the overall recognition accuracy

Table 2: 15 radar signal waveforms (mostly LPI).

Modulation type f(k) ϕ(k)

LFM f0 + B(kTs)/τpw Constant
NLFM fc + a1(kTs) + a2(kTs)

2 Constant
Costas fj Constant
BPSK Constant 0, π
Frank Constant 2π/M(i − 1)(j − 1)

P1 Constant − π/M[(M − (2j − 1))][(j − 1)M + (i − 1)]

P2 Constant − π/2M(2i − 1 − M)(2j − 1 − M)

P3 Constant π/ρ(i − 1)2

P4 Constant π/ρ(i − 1)2 − π(i − 1)

T1 Constant 2π/Nps􏽪Nps/2πmod 2π/Nps􏽪􏼐Nsi(kTs) − jτpw)jNps/τpw􏽫, 2π􏽮 􏽯􏽫

T2 Constant 2π/Nps􏽪Nps/2πmod 2π/Nps􏽪􏼐Nsi(kTs) − jτpw)(2j − Nsi + 1/τpw)Nps/2􏽫, 2π􏽮 􏽯􏽫

T3 Constant 2π/Nps􏽪Nps/2πmod 2π/Nps􏽪NpsB(kTs)
2/2τpw􏽫, 2π􏽮 􏽯􏽫

T4 Constant 2π/Nps􏽪Nps/2πmod 2π/Nps􏽪NpsB(kTs)
2/2τpw − Npsfc(kTs)/2􏽫, 2π􏽮 􏽯􏽫

LFM-BPSK fc + B/τpw(kTs) 0, π
2FSK-BPSK fci 0, π
Note. mod a, b{ } is the remainder between a and b. ⌊α⌋ is the largest integer less than or equal to α. M and ρ are the number of encoding phase, but the
difference is that ρ has to take the ability that can open square values. i and j are the iterative integer values from 1 to M.Nps is the number of phase state.Nsi is
the number of step frequencies. fc is the fixed carrier frequency value. fn, fm, and fci, respectively, represent different frequency jump sequences of
corresponding signals, where n � 1, 2, . . . , 5, m � 1, 2, . . . , 6, and i � 1, 2. τpw is the pulse width. a1 and a2 are constants.
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Figure 6: CWD time-frequency characteristic diagram of 15 typical radar signals given in Table 2 in a noise-free environment. (a) BPSK.
(b) Frank. (c) LFM. (d) NLFM. (e) Costas. (f ) P1. (g) P2. (h) P3. (i) P4. (j) T1. (k) T2. (l) T3. (m) T4. (n) LFM-BPSK. (o) 2FSK-BPSK.
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rate. *e introduction of flexible-DARTS is higher than that
of the standard DARTS and 2CNN3 which is the lowest. For
P4 and T4, the standard DARTS has better performance
under low SNR. For T1, T3, and LFM signals, the method of
using the automatic search architecture is better than the
manually designed network under low SNR. For BPSK, P2,
T1, T4, Costas, and NLFM signals, the three methods have
similar performance. In general, DARTS with the auxiliary
classifier can achieve better recognition performance under
low signal-to-noise ratio, which further proves the effec-
tiveness of the method.

3.4. "e Confusion Matrix about Radar Signal. Previous
research [18] found that, even if the network performance is
good enough (it means that the network’s recognition ac-
curacy rate of the trained dataset had reached to a high level
and the recognition accuracy rate to most of the waveforms

can reach 99%), there are still some signals that are easily
confused. *e similarity between the waveforms is high (or
the similarity between the converted time-frequency images
is high) and the difference of the extracted features is not
obvious. Confusion caused by the signal similarity is the
main reason for classifier errors. Figure 12 is the confusion
matrix of 2CNN3. It can be found that under the training
conditions of the dataset in this article, the characteristic
images of the P1 signal and the P4 signal are very easily
confused signals, and there is also a slight confusion between
the T1 signal and the T3 signal. Figure 13 is the confusion
matrix of the recognition of each single signal. From the
picture we can see that the anticonfused ability of the
classifier based on the flexible-DARTS has been improved
even in low SNR. *e comparison shows that the flexible-
DARTS has an excellent performance in improving the
recognition of easily confused waveforms. For the easily
confused P1 and P4, the recognition effect of P1 has been
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Figure 7: Performance curves during architecture searching. (a) Standard DARTS. (b) Flexible-DARTS.
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Figure 11: Continued.
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improved significantly, and the accuracy rate has increased
from 84% to 98.5%, nearly 15%. Furthermore, there is no
confusion between T1 and T3. However, the recognition
accuracy rate for P4 which has only increased from 69% to
71.5% is still not ideal. *erefore, for radar waveform de-
tection under low SNR, it is still necessary to adopt ap-
propriate signal extraction methods to improve the
recognition accuracy.

3.5. Comparison with RelatedNetworks. Linh et al. [47] used
the single shot multibox detector (SSD) to generate multiple
default candidate boxes to achieve a reasonable selection for
the effective pixel area of the time-frequency image. When
SSD retains the characteristics of the time-frequency image
signal, the invalid pixels are eliminated, so that the results
obtained are greatly improved when compared with the
concurrent work. *e datasets used in the literature [47]
included 12 kinds of radar waveforms (BPSK, Frank, P1, P2,
P3, P4, T1, T2, T3, T4, LFM, and Costas). *e same dataset

was produced through simulation from − 9 dB to 9 dB with
3 dB steps. 12 kinds of signals had been generated to 800
samples, respectively, in different SNRs. *e whole dataset
has 67200 samples. *erefore, we compared the classifica-
tion based on flexible-DARTS with the literature [47]. *e
simulation results of the recognition accuracy rate are shown
in Figure 14.

It can be seen from Figure 14 that the classifier based on
flexible-DARTS (referred to as flexible-DARTS) has a better
performance than the SSD method (referred to as SSD)
proposed in the literature [47]. *e accuracy rate of the
flexible-DARTS is higher than that of the SSD under each
SNR especially under − 9 dB SNR, where the overall accuracy
rate of the flexible-DARTS which is higher than 80% is about
6% more than that of the SSD. Signal BPSK, Frank, P3, T1,
and T2 have the same tendency with the overall accuracy
rate. For P1, P2, and T3, although the accuracy rate of the
flexible-DARTS is slightly lower at − 9 dB SNR than that of
the SSD, the performance would exceed significantly to SSD
when the SNR is increasing. For P4 and T4, the performance
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of SSD is better. For LFM and Costas signals, the perfor-
mance of the two classification networks is equivalent. It can
be seen from Figure 14(m) that the overall recognition
accuracy rate of the flexible-DARTS is better than that of the
SSD.

In addition to comparing with the abovementioned
literature, our research was also compared with Baidu
EasyDL. EasyDL is a customized AI training and service
platform developed by Baidu Brain, which supports a
one-stop AI development process from data management
and data annotation, model training, and model de-
ployment. Images, text, audio, video, and other data can
be published to API, SDK, localized deployment, and
software- and hardware-integrated products after
EasyDL processing, learning, and deployment. *e
overall recognition result of EasyDL for the same dataset
is shown in Figure 15. In the classification model eval-
uation report in Figure 15, the top 1–5 refers to the

identification of data, and the model will give multiple
results according to the level of confidence. Under
normal circumstances, the recognition result with the
highest confidence level is used, that is, the result of the
top 1. As can be seen in the figure, the comprehensive
accuracy rate of EasyDL classification results is 95%,
which is lower than 95.89% of flexible-DARTS. Also, in
the accuracy rate of a single signal, the flexible DARTS
has a more excellent performance.

As a common platform, EasyDL can be transferred to
solve most of the problems easily we met in our work. But
from the results, it can be seen that transferring may not be
the best choice when the requirement becomes more precise.
As shown in Figure 15, it can be proved that the network
obtained through automatic architecture search has more
powerful feature extraction capabilities. *e model designed
for target datasets specifically shows an outstanding ad-
vantage even if the space becomes complicated.
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Figure 12: Confusion matrix of 15 typical radar signal waveforms in 2CNN3 at − 3 dB.
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Figure 13: Confusion matrix of 15 typical radar signal waveforms in flexible-DARTS at − 3 dB.
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Figure 14: Continued.
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4. Conclusion

In order to solve the dependence on transfer learning, this
paper introduces neural architecture search into the rec-
ognition of radar waveforms, using differentiable architec-
ture search (DARTS) to design the recognition model.

Besides, in view of the unstable search results of DARTS and
the performance degradation when validating, the difference
of the model architecture between the search and validation
has been studied. We proposed an optimized algorithm with
the auxiliary classifier called flexible-DARTS. After com-
paring the performance of the multilevel auxiliary classifier
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Figure 14: *e comparison of recognition accuracy rates at three methods. (a) BPSK. (b) Frank. (c) P1. (d) P2. (e) P3. (f ) P4. (g) T1. (h) T2.
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by integrating the three indicators of model memory re-
quirements, search speed, and evaluation accuracy, we de-
cided to add an auxiliary classifier when the feature map is
8×8. Compared with the standard DARTS, the flexible-
DARTS has an excellent stability when searching the model
architecture. Besides, the search time of the flexible-DARTS
is cut in half. Furthermore, the flexible-DARTS can help to
find a model with powerful capabilities shown by the ac-
curacy rate.*e classifier of the 15 radar waveforms searched
by the flexible-DARTS is about 5% higher than that of the
standard DARTS at − 9 dB SNR. In addition, we compared
the network with other studies, including 2CNN3 [46] and
classification based on SSD [47] and Baidu EasyDL. From
the comprehensive recognition accuracy rate of all the re-
sults of 15 radar signals, the method in this paper is better
than all of the three. *e obvious increase in the resolution
proves that the automatic architecture search can obtain a
better-performing classifier. *is shows that the transfer
learning is not the best choice further, and the network
matching the dataset obtained through the neural archi-
tecture search will have stronger practicality in the future.
However, the improvement of the model performance based
on the flexible-DARTS only depends on the improvement of
the DARTS algorithm itself. It is due to the fact that it cannot
find the exact location of the feature extraction, which makes
it unable to integrate with other classification algorithms to
improve its performance. It leads to a certain restriction on
its future use.
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