
964  |  	﻿�  Evolutionary Applications. 2019;12:964–976.wileyonlinelibrary.com/journal/eva

 

Received: 12 April 2018  |  Revised: 22 November 2018  |  Accepted: 25 November 2018

DOI: 10.1111/eva.12771

O R I G I N A L  A R T I C L E

A function‐valued trait approach to estimating the genetic 
basis of size at age and its potential role in fisheries‐induced 
evolution

Jin Gao1 |   Stephan B. Munch2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd

1Department of Ecology and 
Evolution, Stony Brook University, Stony 
Brook, New York, USA
2School of Marine and Atmospheric 
Sciences, Stony Brook University, Stony 
Brook, New York, USA

Correspondence
Jin Gao, Centre for Fisheries Ecosystems 
Research, Fisheries and Marine Institute of 
Memorial University of Newfoundland, St. 
John's, Newfoundland and Labrador, Canada
Email: jin.gao@mi.mun.ca

Present Address
Jin Gao, Centre for Fisheries Ecosystems 
Research, Fisheries and Marine Institute of 
Memorial University of Newfoundland, St. 
John's, Newfoundland and Labrador, Canada

Stephan B. Munch, National Marine 
Fisheries Service, Southwest Fisheries 
Science Center, Santa Cruz, California, USA

Funding information
National Science Foundation, Grant/Award 
Number: OCE‐0623322; The publication 
cost was funded by the Memorial University 
Libraries Open Access Author Fund

Abstract
Natural selection is inherently a multivariate phenomenon. The selection pressure on 
size (natural and artificial) and the age at which selection occurs is likely to induce 
evolutionary changes in growth rates across the entire life history. However, the co‐
variance structure that will determine the path of evolution for size at age has been 
studied in only a few fish species. We therefore estimated the genetic covariance 
function for size throughout ontogeny using Atlantic silversides (Menidia menidia) as 
the model system. Over a 3‐year period, a total of 542 families were used to estimate 
the genetic covariance in length at age from hatch through maturity. The function‐
valued trait approach was employed to estimate the genetic covariance functions. A 
Bayesian hierarchical model was used to account for the unbalanced design, unequal 
measurement intervals, unequal sample sizes, and family‐aggregated data. To im‐
prove mixing, we developed a two‐stage sampler using a Gibbs sampler to generate 
the posterior of a well‐mixing approximate model followed by an importance sampler 
to draw samples from posterior of the completely specified model. We found that 
heritability of length is age‐specific and there are strong genetic correlations in length 
across ages that last 30 days or more. We used these estimates in a hypothetical 
model predicting the evolutionary response to harvesting following a single genera‐
tion of selection under both sigmoidal and unimodal patterns of gear selectivity to 
illustrate the potential outcomes of ignoring the genetic correlations. In these sce‐
narios, genetic correlations were found to have a strong effect on both the direction 
and magnitude of the response to harvest selection.
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1  | INTRODUC TION

The effects of harvest can lead to important, potentially irrevers‐
ible, evolutionary changes in life‐history characteristics (Haugen 
& Vøllestad, 2001; Conover & Munch, 2002; Law, 2007; Enberg et 
al., 2011). Fishing reduces overall survival to later life stages and 
typically removes larger individuals, thereby selecting for earlier 
maturation and smaller adult size (Law, 2000). At the same time, 
natural selection favoring larger fish is very strong, particularly 
during the early life history (Perez & Munch, 2010), leading to the 
hypothesis that larval fish should grow as fast as possible (Leggett 
& Deblois, 1994). Thus, the rate and direction of fishery‐induced 
evolution will depend on the balance of these opposing forces of 
selection, the amount of standing genetic variation in the popula‐
tion, and the degree to which size early and late in life are geneti‐
cally correlated.

Knowledge of both the phenotypic and genetic aspects of vari‐
ation is essential to understanding the potential for contemporary 
evolution (Kirkpatrick & Lofsvold, 1992; Grant & Grant, 1995). 
Heritability, or the ratio of additive genetic variation to total pheno‐
typic variation, is widely used as an index of evolutionary potential. 
Scalar estimates of heritability for size at age in fishes range widely 
(reviewed by Gjedrem, 1983; Law, 2000) but tend to cluster around 
0.26, similar to other important life‐history traits (Mousseau & Roff, 
1987). Although studies of fisheries‐induced evolution often assume 
a single value for heritability, these estimates may be highly age‐spe‐
cific. For example, in rainbow trout (Salmo gairdneri), heritability for 
length and weight ranged from 0.13 at age 2.5 years to 0.38 at age 
4 years (McKay, Ihssen, & Friars, 1986). In Atlantic silversides, her‐
itability of size at age is 0.1 at hatch and increases to 0.25 by age 
10 days (Gao & Munch, 2013). Although the heritability of size in 
fishes tends to be fairly modest, there is clearly a substantial genetic 
component to growth and we should expect size trajectories to re‐
spond to harvest selection.

Models of fisheries‐induced evolution have typically used a 
specific function relating size and age (e.g., von Bertalanffy). When 
growth is allowed to evolve in these models, it is usually a single 
parameter that evolves rather than the shape of the growth trajec‐
tory (e.g., Andersen & Brander, 2009). Implicit in this approach are 
the assumptions that the shape of growth trajectories is highly con‐
strained and that selection on size at one age will affect size at all 
other ages. The adequacy of these assumptions is not well tested, 
but could be addressed by measuring the genetic correlations be‐
tween size at different ages. When genetic correlations are weak or 
absent, harvest selection can only be opposed by natural selection 
acting at the same age.

Moreover, genetic correlations can place constraints on evolu‐
tion beyond those implied by a single heritability estimate (Blows & 
Hoffmann, 2005; Kirkpatrick, 2009). For example, in rainbow trout, 
genetic correlations in body weight between different ages are 
positive and range from 0.57 to 0.93, decreasing with the interval 
between two ages (Su, Liljedahl, & Gall, 2002). These correlations 

are substantial enough that the response to harvest selection will 
depend on the balance of selection across multiple ages. In this case, 
scalar estimates of heritability would be insufficient to predict either 
the rate or direction of evolution.

One approach to modeling the influence of genetic correlations 
on the evolution of size at age in harvested populations might be to 
treat size at a set of discrete ages as a vector‐valued trait. In studies 
of multivariate evolution, the additive genetic covariance matrix, G, 
conveniently summarizes the genetic relationships among a suite of 
traits and is a central parameter in determining response to selection 
(Lande, 1979; Agrawal, Brodie, & Rieseberg, 2001). For a vector‐val‐
ued trait, the predicted response to selection is a multivariate gener‐
alization of the breeders’ equation: the change in mean trait values (Z̄) 
in the next generation is given by ΔZ̄=G�, where � =∇

Z̄
ln[W̄] is the 

selection gradient vector of mean fitness with respect to the trait 
mean (Lande, 1979; Lynch & Walsh, 1998). At a specific age, say ti, 
the predicted response to selection is ΔZ̄(ti)=Gi,i𝛽i+

∑
j≠i Gi,j𝛽j, which 

is the sum of the direct response and the indirect effects of selection 
on other ages. In the presence of strong genetic correlations, or a 
large number of correlated traits, the indirect effects can outweigh 
the direct response. In this case, predicting evolution from a scalar 
heritability estimate may underestimate the rate of change or even 
get the sign wrong.

Despite the potential utility of a multivariate approach, age is 
really continuous and discretizing age to obtain a vector‐valued 
trait may introduce artifacts. Genetic variation in traits with a con‐
tinuous index such as age can instead be modeled via a function‐
valued trait approach (FVT) (Griswold, Gomulkiewicz, Heckman, & 
Promislow, 2008; Kingsolver & Gomulkiewicz, 2003; Kirkpatrick 
& Lofsvold, 1992; Stinchcombe & Kirkpatrick, 2012), which is 
a continuous generalization of classical multivariate methods 
(Lande, 1979). The FVT approach treats size as function of age and 
therefore attempts to estimate a covariance function rather than 
a covariance matrix. For classical multivariate traits, there is no a 
priori structure to the dependence among size at each age. In con‐
trast, continuity and smoothness require that the sizes at nearby 
ages be highly correlated. Thus, one of the main advantages of the 
FVT approach is that it retains information about the ordering and 
spacing of a set of data points, while this information is ignored in 
a classical multivariate analysis.

The FVT approach has been applied in many areas of evolution‐
ary ecology (reviewed by Stinchcombe & Kirkpatrick, 2012). Some 
examples include the study the evolution of reproduction and mor‐
tality trajectories in Drosophila (Jaffrezic, Thompson, & Hill, 2003), 
the evolution of thermal performance curves in caterpillars (Izem & 
Kingsolver, 2005), and the evolution of growth trajectories in liz‐
ards (Ragland & Carter, 2004) and fishes (Kirkpatrick & Lofsvold, 
1992). Thus, the FVT framework can, in principle, be used to pre‐
dict the evolutionary effects of harvesting on growth (for a theo‐
retical treatment see, e.g., Dieckmann, Heino, & Parvinen, 2006). 
However, in order to do so in practical application, we need an es‐
timate of the genetic covariance function. To our knowledge, no 
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study has estimated the G function across the entire range of life 
stages in a fish species.

We used Atlantic silversides (Menidia menidia) as a model organism 
to investigate the genetic basis of growth trajectories over the entire 
growing season from birth through maturation. M. menidia is an annual 
fish (Conover & Ross, 1982) commonly found from northeast Florida to 
the Gulf of St. Lawrence (Johnson, 1974). Over this range, silversides 
exhibit countergradient variation in growth (Present & Conover, 1992; 
Hice, Duffy, Munch, & Conover, 2012). The heritability of size at ma‐
turity is fairly high (~0.2), at least for fish from New York (Conover & 
Munch, 2002). Although Munch, Walsh, and Conover (2005) estimated 
realized co‐heritability for size from hatch to 190 days, there is as yet 
no estimate of the genetic covariance function for size in M. menidia.

In this study, we developed a FVT trait approach to model the ge‐
netics of size at age in Atlantic silversides. To do so, we apply a FVT 
analysis based on the classical animal model (Lynch & Walsh, 1998). 
We use the results to calculate the heritability of length at age using 
estimated genetic and phenotypic covariance functions. By parti‐
tioning variance among sires and dams separately, we estimated the 
age dependence of maternal contributions to size. Finally, to illus‐
trate the value of the FVT approach for fisheries‐induced evolution, 
we use our results to predict the response to size‐selective harvest 
under two hypothetical patterns of gear selectivity. To evaluate the 
importance of genetic correlations for fisheries‐induced evolution, 
we evaluated the response to selection under two alternative mod‐
els for the genetic covariance of length at age.

2  | METHODS

We begin by describing the model organism and the experiments con‐
ducted to estimate the genetic contributions to size at age. Following 
this, we introduce the quantitative genetic model that we used to ana‐
lyze the size at age data. Finally, we insert these results into a model to 
predict the evolutionary response to size‐selective harvesting.

2.1 | Study system

Atlantic silversides were collected during the peak of the breed‐
ing season (end of May to beginning of June) from two sites on the 
north shore of Long Island (Poquott, East Setauket, New York, and 

Flax Pond, Old Field, New York; 40°57′49″ N, 73°8′19″ W) and two 
south shore sites (Great South Bay and Shinnecock Bay, New York; 
40°51′10″ N, 72°29′27″ W). The north shore and south shore sites 
exchange only a limited number of migrants each year (Clarke, Munch, 
Thorrold, & Conover, 2010), ensuring that the parents from the dispa‐
rate locations are at most distantly related. Adults were transported 
back to the Flax Pond Marine Lab, Old Field, New York (FPML), where 
they were housed overnight in separate tanks and strip‐spawned the 
following day.

Because space constraints prevented us from rearing >500 
families simultaneously, the study was carried out in three batches 
using adults collected on May 1, 2008, June 1, 2008, and May 24, 
2009. The first round of experiment was focused on estimating ge‐
netic and maternal contributions to the early life history and lasted 
15 days (Gao & Munch, 2013). Batches 2 and 3 were maintained for 
176 and 273 days, respectively. As described below, the data from 
these three batches are combined in a Bayesian analysis, which ac‐
counts for batch effects separately in each round. Each of the three 
spawning batches consisted of several complete‐factorial blocks. 
To limit the relatedness among parents, the north shore males were 
only mated to the south shore females (and vice versa) and no par‐
ents were used in more than one block. Because the numbers of fish 
of each sex captured in each field collection were beyond our con‐
trol, there were differences in the breeding design among batches. 
Table 1 reports the number of sires and dams per block for each 
batch as well as the total number of blocks per batch. Note that the 
total number of families (Table 1) analyzed is always less than the 
maximum (sires × dams × blocks) due to unsuccessful spawning or 
limited hatching and rearing success.

To create each family block, eggs were stripped from a female 
and distributed across several Petri dishes lined with fiberglass 
screening and a shallow layer of seawater. At the same time, milt 
from each male was stripped into a small beaker and diluted with 
UV‐sterilized seawater. Milt from each sire was then distributed 
among the Petri dishes for each female, such that within a block all 
males were mated with all females. After allowing 20 min for the 
fertilized eggs to harden, eggs from each family were transferred 
to an aerated 18‐L bucket immersed in a previously designated 
seawater bath. To avoid possible confounding of the family and 
bath effects, families were assigned to baths in a stratified‐ran‐
dom manner such that each family block was guaranteed to occur 
in multiple baths.

At 15 days posthatch, the fish in each family were split into two 
replicates with 30 fish in each replicate and assigned to different 
baths. Once the fish reached ~25 mm in standard length (roughly 
30 days posthatch), each individual was injected with a Visible 
Implant Elastomer Tag (Northwest Marine Technology) underneath 
the skin adjacent to the dorsal fin. After tagging, fish from each fam‐
ily were subdivided into two groups and transferred into randomly 
selected 3,785‐L polyethylene tanks. There were 15 such tanks in 
total, and each tank contained individuals from ~9 families. As with 
sea tables, tank assignments were stratified by family such that no 
family occurred in only one tank allowing us to separate family and 

TA B L E  1   The breeding design and sample sizes for each of the 
three spawning batches

Batch Ns Nd Nb F t

1 3 4 10 97 4

2 3 10 5 147 16

3 3 5 11 133 11

Ns and Nd are the numbers of sires and dams used to construct each 
complete‐factorial block. Nb is the total number of blocks reared in the 
batch, and F is the number of surviving families that are included in the 
analysis. The number of total families for each family is indicated by t.
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tank effects. Overall, 542 families of fish were reared over the 3‐
year period.

Throughout the experiment, the seawater was maintained at 
21°C (±1.2°C). During the larval period, fish were fed to satiation 
daily using a combination of dry feed (Otohime larval feeds, Reed 
Mariculture) and freshly hatched Artemia nauplii (Brine Shrimp 
Direct). During the juvenile and adult stages, fish were fed a com‐
bination of dry food (Otohime juvenile and adult feeds, Reed 
Mariculture) and frozen adult brine shrimp. Further details of the 
rearing protocol are described in Present and Conover (1992).

2.2 | Length measurements

During the larval stages from days 1 to 15, the fish were measured 
using several approaches, including digital photography (batches 1 
and 2) and calipers (batch 3). Repeated measurements of 100 indi‐
viduals indicated that there are no systematic biases in any of the 
measuring approaches and that they each had comparable levels 
of precision. During the juvenile and adult stages, the lengths all of 
the fish in each replicate were estimated using digital photography. 
Specifically, a 100‐megapixel digital camera (Canon 40D with Canon 
60 mm Macro lens) was used to photograph the fish from a fixed 
height at a shutter speed of 1/250 s. Larvae were held in a Petri 
dish with a shallow layer of water and photographed from 55 cm. 
Juveniles and adults were held in an 18‐L bucket with a 4 cm layer of 
water and photographed from a fixed height of 140 cm. The images 
were then measured in Image Pro Plus 6.0 (Media Cybernetics).

2.3 | Statistical analysis

The results of the three rounds of experiments were combined via 
Bayesian modeling. Silversides are an obligate schooling fish that 
require ample swimming space and do not grow normally in isola‐
tion. However, space constraints limited the number of tanks we 
could use and several hundred fish were reared in each tank. Since 
only eight tag colors were available, individual fish could not be 
tracked throughout the study. Therefore, although we have sizes 
of each fish in each family at every measurement, we have no way 
to rigorously connect individual identities through time. In addi‐
tion, not all individuals survived to the end of the experiment so 
that the numbers of individuals in each family were not constant. 
To circumvent these difficulties, we develop novel methods for es‐
timating the genetic covariance function from these family‐level 
data (see Supporting Information). We note that this is, in effect, a 
repeated‐measures design with longitudinal data for each family. 
An appropriate statistical framework for such data must account 
for persistent differences among families, which is captured in the 
function‐valued trait approach.

2.4 | FVT analysis

The classic animal model (Lynch & Walsh, 1998) uses a linear com‐
bination of fixed, genetic, and environmental effects to approximate 

the trait value. In keeping with the literature on function‐valued 
traits, we assume that an individual's growth trajectory can be de‐
scribed as

where μ is the grand mean growth trajectory and βi represents the 
fixed effect of either sea table (ages 0–30 days) or tank (ages 30–
276 days) estimated independently at each time point. The grand 
mean and fixed effect functions were piecewise linear, effectively 
taking independent values at each age for which we had data. The gs 
and gd functions represent the genetic contributions of the sire and 
dam, respectively, and ϵ represents the unexplained “environmental” 
contributions to size.

Using the silverside data, our main interest is in estimating the 
genetic covariance function for sires, Cs

(
t,t�

)
=E

[
gs (t) gs

(
t�
)]

 and the 
environmental covariance function, C�

(
t,t�

)
=E

[
� (t) �

(
t�
)]

. The cova‐
riance function for dams, Cd

(
t,t�

)
=E

[
gd (t) gd

(
t�
)]

, is also of interest 
but includes both genetic and maternal effect contributions to off‐
spring (Lynch & Walsh, 1998).

The parental effects are modeled as Gaussian processes 
using a Legendre polynomial basis expansion. Specifically, 
gs (t)=

∑K

k=1
hk (t) �s,k and gd (t)=

∑K

k=1
hk (t) �d,k where the hks are the 

polynomial basis functions and the γs are the basis expansion co‐
efficients (To avoid confusion with the heritability which is tradi‐
tionally denoted h2, basis functions will always have a subscript). 
The environmental deviation term is modeled similarly, using the 
same basis set. Note that the basis expansion approach to modeling 
a function‐valued trait is equivalent to a classical multivariate ap‐
proach, albeit in the abstract “trait space” of the basis coefficients. 
As such, the basis coefficients are assigned their own covariance 
matrices, which we denote by Cs, Cd, and E for the genetic contri‐
butions of sires, dams, and the environmental basis coefficients. 
The number of basis functions, K, determines the maximum rank 
of the inferred covariance functions and is equivalent to the effec‐
tive number of “traits” in the analysis. We tested models where K 
ranged from 2 to 8. Similar results were found for both K = 7 and 8, 
with AIC favoring K = 7 (see Supporting information Table S1 and 
Figure S1). Although it is possible that higher order polynomials 
would fit better, the models with K = 7 and 8 already explain 91% 
of the variance in length. To avoid overfitting, we therefore restrict 
the analysis to 7 basis functions for the remainder of the paper. 
Further details of the model specification and the Gibbs sampler 
used to construct posteriors are in the Supporting Information, and 
the convergence plot is shown in Supporting information Figure S2.

Once the parameters were estimated, we used Cs, Cd, and E to 
construct the genetic and environmental covariance functions and 
used these to find the age‐specific heritability and maternal contri‐
bution. To go from the covariance matrix for the basis coefficients 
back to the corresponding covariance function, we apply the basis 
expansion to get C

�
t,t�

�
=
∑K

k=1

∑K

l=1
hk (t) hl

�
t�
�
Ck,l.

(1)yi (t)=� (t)+�i (t)+
1

2

[
gdi (t)+gsi (t)

]
+�i (t)
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To evaluate how representative a single estimate of heritabil‐
ity would be for the whole size trajectory, we calculated the her‐
itability at age using the diagonal elements of the genetic and 
phenotypic covariance functions. Specifically, we calculated 
h2 (t)=Cs (t,t) ∕Cp (t,t), where the phenotypic covariance func‐
tion is given by Cp

(
t,t�

)
=

3

4
Cs

(
t,t�

)
+

1

4
Cd

(
t,t�

)
+Ce

(
t,t�

)
 (Lynch & 

Walsh, 1998). The maternal effects contribution are calculated 
as m (t)=

1

4
[Cd (t,t)−Cs (t,t) ]∕Cp (t,t). Note that in the case where 

the genetic variances from the sire and dam are identical, we may 
write the heritability for size at age t in the more familiar way with 
h2 (t)=Vg (t) ∕

[
Vg (t)+V� (t)

]
 with Vg (t)=Cs (t,t) and V� (t)=Ce (t,t).

2.5 | Response to size‐selective mortality

To illustrate the role of genetic covariances across ages and the 
potential utility of the function‐valued trait approach for fisher‐
ies‐induced evolution, we used the estimated genetic covariance 
functions to model the evolutionary response to size‐selective har‐
vesting. For clarity, we simplify Equation 1 in the subsequent model 
by dropping the fixed effects and assuming that sire and dam genetic 
contributions have the same variance, so that

The trajectory of fisheries‐induced evolution depends strongly on 
both gear selectivity (Andersen & Brander, 2009) and the size depen‐
dence of natural mortality (Jørgensen & Fiksen, 2010). Since our pur‐
pose here is to highlight the relevance of treating size as a FVT, we do 
not exhaustively evaluate the implications of different selectivity pat‐
terns. Rather we consider idealized versions of the two most com‐
monly used gear selectivity patterns: sigmoid and unimodal 
(Kuparinen, Kuikka, & Merilä, 2009). For the sigmoid model, gear se‐
lectivity is modeled as Q (y)= [1+exp (−s (y−�)) ]−1 where y is length, 
and the parameters θ and s govern the inflection point and slope at 
inflection, respectively. For the unimodal model, we used 

Q (y)=exp
[
−(y−�)2∕w

]
 where φ and w govern the most catchable 

size and the width of the selectivity curve, respectively. In both cases, 
the maximum catchability is 1. We also assume that there is some size‐
dependent natural mortality, which decays exponentially with length 
and is given by N (y)=exp

[
−b

(
y−y0

)]
 where y0 is the size at hatch and 

b controls the rate at which natural mortality declines with size.
In the analyses presented here, we set θ to 95 mm and s to 0.15/

mm for the sigmoid model, φ = 80 mm and w = 150 mm2 for the uni‐
modal model, and y0 = 7 mm and b = 0.01/mm for the natural mortal‐
ity model. Putting these together, total mortality at length y is given 
by M (y)=mN (y)+ fQ (y) where m and f scale the overall rates of nat‐
ural and fishing mortality, respectively.

We assume that as a cohort ages, it experiences multiple rounds 
of selection from both natural and fishing mortality. However, to 
keep the model analytically tractable, we assume that fitness is de‐
termined by survival to maturation. Although size is a major determi‐
nant of fecundity in fishes (Barneche, Robertson, White, & Marshall, 

2018), we do not have data on the covariance between fecundity 
and size at earlier ages and consequently choose to focus specifically 
on survival. This model characterizes the silverside life cycle fairly 
well prior to maturation and would be a reasonable approximation 
for other semelparous species. We note that this model does not 
apply to harvested populations with overlapping generations. The 
fitness calculation in such a case requires a more elaborate analysis, 
which will be the subject of a subsequent publication. Nevertheless, 
we believe that this model adequately illustrates how different as‐
sumptions on the genetic covariance can affect the predictions of 
models of fisheries‐induced evolution.

With these assumptions, the fitness of a given size trajectory, y(t) 
is found by integrating mortality from birth to reproduction, that is,

We note that it would be relatively simple to include reproductive 
output, φ in this semelparous model, for example, 
W (y)=�exp

{
−

T∫
0

M
[
y (t)

]
dt

}
. However, fecundity is typically size 

dependent and likely to covary with size at several ages due to trade‐
offs between growth and reproduction (Stearns, 1992). Since we do 
not have data on the genetic covariance between fecundity and 
length at age, we eschew making assumptions about this and restrict 
our attention to survival to maturation.

One approach to determining the evolutionary response is to 
evaluate Equation 3 by simulation which is particularly helpful for 
visualizing the fitness of different length trajectories. To do so, 
we simulated 1,000 length trajectories drawn from the Gaussian 
process in Equation 2 based on our estimates of the covariance 
functions. We then evaluated fitness for each trajectory directly 
using Equation 3. However, it is difficult to connect simulations to 
existing analytical results (e.g., the breeder's equation) or extract 
deeper insight into the effects of genetic covariances on fisher‐
ies‐induced evolution. To help clarify the role of genetic covari‐
ances, we approximate fitness with a quadratic form. This is the 
theoretical approach most often used in the multivariate evolution 
literature (see, e.g., Tufto 2017) and permits analytical calculation 
of the selection differential, gradient, and response to selection. 
To do so, we use a second‐order Taylor expansion of the mortality 
rate around the mean size at age, that is,

For sake of completeness, note that had we included fecundity in our 
fitness model and assumed that fecundity is solely a function of size at 
maturation, say �

[
y
(
T
)]

, we would modify the quadratic form as 

(2)y (t)=� (t)+g (t)+� (t)

(3)W (y)=exp

⎧
⎪⎨⎪⎩
−

T

∫
0

M
�
y (t)

�
dt

⎫
⎪⎬⎪⎭

(4)W (y)∼exp

⎧
⎪⎨⎪⎩
−

T

∫
0

M
�
� (t)

�
+M�

�
� (t)

� �
y (t)−� (t)

�
+
1

2
M��

�
� (t)

�
[y (t)−� (t) ]2dt

⎫
⎪⎬⎪⎭
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Wf (y)∼exp
{
ln
{
�
[
�
(
T
)]}

+ (��∕�)
[
y
(
T
)
−�

(
T
)]
+ (���∕�− (��∕�)2)[y (t)−� (t) ]2

}
W (y) 

where φ′ and φ″ represent the first and second derivatives of fecundity 
evaluated at the mean length at time T and W (y) is the approximate 
fitness from Equation 4. Since fecundity is typically allometric in length, 
that is, ϕ = cyd, �

�

�
=

d

y
, and �

��

�
−
(

��

�

)2

=−
d

y2
. Moreover, the covariance 

between fecundity and length at age would then be driven by the co‐
variance between terminal size and the length at earlier ages. However, 
this is a simplifying assumption that we do not pursue any further.

Using the basis expansion, y (t)−� (t)=
∑K

k=1
hk (t) (�k+�k), 

Equation 4 can be rewritten as a quadratic form in terms of the basis 
coefficients. To simplify notation, let zk be the sum of genetic and 
environmental components for the kth coefficient, that is, zk = γk + εk 
Plugging this in to Equation 4, we get

where M̄= ∫ T
0
M (𝜇 (t))dt is the total mortality for the mean size tra‐

jectory, m(1)
k

= ∫ T
0
M� (� (t)) hk (t)dt is the projection of mortality gradi‐

ent on the kth basis function, and m(2)
k,l

=
T∫
0

M�� (� (t)) hk (t) hl (t)dt is 

the projection for the second derivative.
Recall that before selection E (zk) = 0 and the covariance matrix 

for z = {z1, …, zK}T is given by P = Cs + E (since we have assumed that 
Cs = Cd). Moreover, since the basis coefficients are multivariate nor‐
mal, we can use the standard formulae for multivariate evolution to 
find that the mean for z = {z1, …, zK}T after selection is

and the mean in the following generation is given by

where m(1) is the vector of first‐derivative projections, that is, m(1) 
={m(1)

1
,… ,m

(1)
K

}T m(2) and is the matrix of second‐derivative projec‐
tions whose (k,l)th element is m(2)

k,l
.

Inserting these results into the basis expansion, we find that 
the change in mean length at age t following selection is given by 
Δȳ∗ (t)=

∑K

k=1
hk (t) z̄

∗
k
 and the evolutionary response, that is, the 

change in the population mean in the next generation, is given by 
Δȳ (t)=

∑K

k=1
hk (t) Δz̄k. We used these approximations to calculate the 

response to selection for both the sigmoid and unimodal gear selectiv‐
ity. To examine the relative importance of fishing versus natural mor‐
tality, we repeated these calculations over a range of values for m and f.

2.6 | Alternative assumptions about genetic 
covariances

In order to clarify the role of the genetic covariances in the re‐
sponse to selection, we consider two alternative models for 
the genetic basis of body size. In the first alternative model, we 

assume that size at age has constant heritability. As we show 
below, this is analogous using a single evolving trait to model fish‐
eries‐induced evolution. The second alternative treats the size at 
each age as an independent character. Although we are unaware 
of analogues for this second assumption in the fisheries‐induced 
evolution literature, this model is the opposite extreme in terms 
of genetic constraints. Hence, the FVT approach based on the es‐
timated genetic covariances is intermediate between these two 
alternatives.

For our first genetic alternative, heritability is constant across 
ages. But in order to make the results directly comparable with our 
baseline model, we constrain the phenotypic variance at age, Vp (t), 
to be the same as for our baseline model by setting Vg (t)= h̄2Vp (t), 
where h̄2 is the mean heritability over all ages. Note that this implies 
that the environmental variance is V𝜖(t)= (1− h̄2)Vp(t) . To connect 
this with the general model, note that this is precisely the same as 
rewriting Equation 2 as

where g̃ and 𝜖 are constants representing the genetic and envi‐
ronmental components, scaled such that V(g̃)= h̄2 Moreover, this is 
equivalent to setting K = 1 and using single basis function given by 
h1 (t)= [Vp (t) ]

1∕2. Since K is analogous to the number of traits in the 
analysis, we refer to this as the “single‐trait” model.

The genetic and environmental covariance functions for the sin‐
gle‐trait model are Cs

one (
t,t�

)
=V (g̃) [Vp (t)Vp

(
t�
)
]1∕2 and 

C𝜖

one (
t,t�

)
=V (𝜖) [Vp (t)Vp

(
t�
)
]1∕2. This implies the correlation (both 

genetic and environmental) between size at any pair of ages is 1. 
Moreover, since there is only one component in this model, Equation 6 

and 7 reduce to: Z̄∗ =−m(1)∕
[
1+m(2)

]
 and Δz̄= h̄2z̄∗ where 

m(1) =
T∫
0

M� (� (t)) [Vp (t) ]
1∕2dt and m(2) =

T∫
0

M�� (� (t)) [Vp (t) ]
1∕2dt. 

Hence, the response to selection in the single‐trait model is deter‐
mined by a weighted average of the selection applied to each age.

At first glance, the single‐trait model might seem like an unrea‐
sonably oversimplified abstraction. To put it into a more familiar con‐
text, consider what happens if we assume von Bertalanffy growth 
in length, dL

dt
=a−bL, where a represents anabolic processes and 

bL represents catabolic processes (e.g., Vincenzi, Mangel, Crivelli, 
Munch, & Skaug, 2014). Assume that there is genetic variation in 
the anabolic term such that a= ā+ag+a𝜀. Integrating from an ini‐
tial size of 0, we get L(t) = a (1 − e‐bt)/b. Decomposing a into ge‐
netic and environmental components and making the analogy with 
Equation 3, we have 𝜇 (t)= ā

(
1−e−bt

)
∕b, g (t)=ag

(
1−e−bt

)
∕b, and 

� (t)=a�
(
1−e−bt

)
∕b, from which we can derive the covariance and 

other functions. For example, the genetic covariance in size at age 
is E

[
g (t) g

(
t�
)]
=
[
Var

(
ag
)
+Var

(
a�
)] (

1−e−bt
) (

1−e−bt
�)
∕b2 and the 

variance in length at age t is Vp (t)=
[
Var

(
ag
)
+Var

(
a�
)] (

1−e−bt
)2
∕b2 . 

Putting these together, the heritability for size at age is constant at 
h2=Var

(
ag
)
∕
[
Var

(
ag
)
+Var

(
a�
)]

. From this, we can see that under 
some circumstances, assuming genetic variation in a single parame‐
ter is the same as using Equation 8. Note that things are not always 
this simple; assuming genetic variation in b would also have resulted 

(5)W (y)∼exp

{
−M̄−

∑K

k=1
m
(1)
k

zk−
1

2

∑K

k=1

∑K

l=1
zkzlm

(2)
k,l

}

(6)z̄
∗ =−

[
P
−1

+m(2)
]−1

m(1)

(7)Δz̄=CsP
−1
Z̄
∗

(8)y (t)=𝜇 (t)+(g̃+𝜖) [Vp (t) ]
1∕2
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in a rank 1 covariance function, but without the tidy additive decom‐
position in Equation 1, 2, and 8.

For our second alternative genetic model, we assume that the 
size at each age is an independent trait. Although this is physiolog‐
ically impossible, it is the polar opposite of the single trait alterna‐
tive in terms of evolutionary flexibility. Under this model, we keep 
the genetic and environmental variances the same as in our base‐
line model, but force the covariances to be 0. Under this model, the 
age‐specific heritabilities are the same as for the baseline model and 
evolution of size at each age follows a univariate breeders equation, 
that is, Δȳ (t)=h2 (t) Δȳ* (t).

3  | RESULTS

The growth trajectories from each of the three experimental 
batches are presented in Figure 1. The growth trajectories are as‐
ymptotic as is typically observed in fish. The estimated sire and dam 
contributions tend to cluster closely together in early ages while the 

variance among them increases with time (Figure 2). The inferred 
sire covariance function is somewhat smaller than the dam covari‐
ance overall, suggesting the presence of maternal effects (Figure 3 
Cs and Cd).

The genetic correlation among ages varies through time. Although 
it is the genetic covariance that determines the rate and path of evo‐
lution in response to a given form of selection, changes in scale may 
make it difficult to think about. For instance, if length at age was 
given by L = bt, the covariance in length 2 days apart would be Var(b)
[t2 +2t]. This covariance clearly increases with age obscuring the fact 
that the lengths at all ages are perfectly correlated. The genetic cor‐
relation function circumvents this by scaling out the change in vari‐
ance through time, for example, Rs

(
t,t�

)
=Cs

(
t,t�

)
∕
[
Cs (t,t)Cs

(
t�,t�

)]1∕2 
(Figure 3). The pattern in Rs indicates that size at similar ages are 
more correlated than size at ages that are far apart. There is a weak 
negative correlation between lengths at early ages and ages ~150–
200 days. This is less pronounced in the correlations estimated from 
dam effects (Figure 3d), suggesting mitigation through maternal 
contributions.

F I G U R E  1   Growth trajectories over 
the entire lifespan. The three rounds 
of experiments are plotted together. 
The error bars indicate 95% confidence 
intervals. The first batch only lasted for 
15 days posthatch and is overlapping with 
the other two batches at the beginning of 
the trajectories
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F I G U R E  2   The estimated genetic 
effects for individual sire (red) and dam 
(black)
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The genetic and maternal contributions to length varied with 
offspring age. Heritability throughout the lifespan is plotted in 
Figure 4a. Heritability was small (0.08) at hatch and peaked at 0.25 
on day 100. Following day 100, heritability decreased steadily. The 
heritability at day 200 is roughly 0.15 (with 95% confidence interval 
from 0.07 to 0.29), which is generally consistent with previous find‐
ing that the realized heritability was ~0.2 at age 190 days (Conover 
& Munch, 2002). The maternal contribution was overall quite low. 
The estimated maternal contribution to initial size was 0.005, which 
increased to 0.088 at 135 days and then declined (Figure 4b).

3.1 | Response to selection

Our hypothetical sigmoid and unimodal selectivity curves gener‐
ated qualitatively different responses to selection. Under sigmoid 

selectivity, simulated length trajectories with the greatest fitness 
are those that stop growing by 80 mm, at which point the fishing 
mortality is still less than 20% of its maximum (Figure 5b,f). In con‐
trast, our unimodal selectivity example favored length trajectories 
that grew slower than average prior to 50 mm and rapidly thereaf‐
ter, ending up larger than average by day 270 (Figure 5e). To see 
why this was so, we can change variables in (3) to get 

ln
[
W (y)

]
=−

y(T)∫
y(0)

M [y] � (y)dy where τ(y) = [dy/dt]−1 is the time spent 

at size y. Hence, all else being equal, we expect evolution to favor 
growth trajectories that minimize the time over which an individ‐
ual is exposed to harvesting.

The predicted evolutionary responses to a single generation of 
selection under these two gear selectivity patterns depend heavily 
on the genetic covariance between size at different ages. Under our 

F I G U R E  3   Contour plots of the 
estimated genetic variance–covariance 
function and the corresponding 
correlation functions. The variance–
covariance function and corresponding 
correlation functions for sire covariance 
functions are shown in (a) and (b). The 
variance–covariance function and 
corresponding correlation functions for 
dam effects are shown in (c) and (d). Zero 
contour line is shown in black
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F I G U R E  4   Heritability estimates 
(a) and maternal contributions (b) over 
the entire duration. The solid line is the 
average heritability over time, and the 
upper and lower dashed lines indicate the 
95% credibility interval. The lower interval 
of maternal contributions remains zero
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sigmoid selectivity scenario and the full genetic covariance model, 
offspring length is predicted to increase for the youngest fish up to 
about 40 days and decrease at all ages thereafter in a roughly par‐
abolic manner (Figure 5d), consistent with the fitness for the simu‐
lated trajectories. The single‐trait model misses the increase in size 
in young fish, predicting that size will decrease at all ages. Compared 
to the full covariance, the single‐trait model overestimates the mag‐
nitude of the decrease up to about 100 days and underestimates 
it thereafter. The response to selection for the independent traits 
model is negligible except for the oldest ages.

Under our unimodal selectivity scenario and the full genetic co‐
variance function, the predicted response is somewhat more com‐
plicated (Figure 5c). Offspring length is predicted to decrease in 
fish less than ~180 days with a maximum decline of about 0.25 mm 
in length at age ~100 days. For fish older than ~180 days length is 
predicted to increase. Again, this prediction is consistent with the 
fitness of simulated trajectories. In contrast, the single‐trait model 
predicts that size should increase at all ages, more for older fish. The 
response to selection for the independent traits model is negligible 
except for the oldest ages.

We repeated these calculations for a range of values for m and F 
to evaluate the relative importance of natural and harvest selection 
(Fig. 6). In the scenarios we tested, the predicted responses to se‐
lection are much more sensitive to changes in F than m for both the 
sigmoid and unimodal gear selectivity patterns.

4  | DISCUSSION

4.1 | Genetic covariance function

Both parametric and nonparametric methods have been developed 
to estimate the covariance functions, such as least‐square estimates 
(Kirkpatrick & Heckman, 1989; Kirkpatrick, Hill, & Thompson, 1994), 
restricted maximum likelihood (Meyer & Hill, 1997), and random 
regression (Meyer, 1998). Several advantages exist when combin‐
ing the function‐valued trait approach with a Bayesian hierarchical 
model. The method used in this study guarantees the positive defi‐
niteness of the covariance matrices and easily provides credibility 
intervals. It does not require a balanced design or fixed measure‐
ment intervals and also provides a straightforward path to combin‐
ing multiple datasets.

The genetic variance in length increased with age in both addi‐
tive and maternal estimates. Since fish increase in size with age, the 
net effect of both genetic and nongenetic factors on growth accu‐
mulates through time, leading to this increasing trend in variance 
(Figure 2). The pattern for heritability was somewhat more compli‐
cated, with low values at both early and late ages and a peak of about 
0.3 at 100 days. This variation in heritability with age is consistent 
with observations in other species (e.g., McKay et al., 1986; Wilson, 
Hutchings, & Ferguson, 2003) and suggests that a single heritability 
estimate can be quite misleading.

F I G U R E  5   Simulation results using 
estimated genetic variance–covariance 
functions and hypothetical gear selectivity 
curves. The a, c, and e panels show 
the unimodal selectivity curve (a), the 
predicted changes in mean size over one 
generation under full covariance function 
(blue), constant heritability (green) and 
independent traits (red) (c), and simulated 
phenotypic changes (e) under unimodal 
selectivity. The b, d, and f panels show 
the sigmoid selectivity curve (b), the 
predicted changes in mean size over one 
generation under full covariance function 
(blue), constant heritability (green) and 
independent traits (red) (d), and simulated 
phenotypic changes (f) under unimodal 
selectivity. The fishing mortality used 
is 0.0545, and natural mortality used is 
0.0109
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Size at age in silversides tends to be highly autocorrelated over in‐
tervals of 30 days or more. In particular, we found evidence of strong 
positive genetic correlations, particularly among ages 30–150 days. 
Interestingly, size early in life was negatively correlated with size over 
150–200 days, indicating that fast‐growing juveniles tended to be‐
come smaller than average adults. These results are consistent with 
those in other species. In Soay sheep (Ovis aries), genetic correlations 
among ages were estimated for free‐living individuals from birth to 
5 years old and positive covariances were found throughout ontog‐
eny (Wilson et al., 2007). Similarly, in juvenile brook charr (Salvelinus 
fontinalis), significant positive genetic correlations for length at age 
were found (Wilson et al., 2003). Together, these findings suggest 
great evolutionary potential in response to intensive selection, albeit 
in potentially constrained directions.

4.2 | Implications for fisheries‐induced evolution

In order to determine the importance of genetic correlations to 
modeling fisheries‐induced evolution, we estimated the response 
to a single generation of harvest selection under sigmoid and uni‐
modal gear selectivity patterns in this semelparous fish. Although 
the specific magnitude of effects obviously depends on the choice 
of m, F, and the shape parameters of gear selectivity, several impor‐
tant observations emerged from these numerical experiments. The 
first is that the assumed shape of the gear selectivity function is im‐
portant in shaping the response. In this model, a unimodal pattern 
of selectivity strongly favors fish that can grow rapidly through the 
window of high catchability. This is consistent with the theoretical 
predictions on evolution under slot limits (Dieckmann et al., 2006). 
In contrast, under sigmoid selectivity, we found that juvenile growth 
is relatively unaffected but that maximum size is likely to be sharply 
reduced.

The second observation to emerge from this exercise is that 
under both selectivity scenarios results were much more sensitive 
to changes in fishing mortality than to changes in natural mortality. 

This result depends both on the amount of genetic variation for size 
at age estimated in the experiment and the cumulative exposure to 
each source of mortality assumed in the selection model. Growth 
is fastest during the early life history, so individuals tend to rapidly 
outgrow the interval of high natural mortality. In contrast, slow 
growth among older fish prolonged their exposure to harvest selec‐
tion, particularly under sigmoid selectivity. Hence, even if m and F 
were the same, the cumulative impact of fishing would be greater. 
Although this model is fairly contrived, we expect that, all else being 
equal, these intuitively reasonable results should be reasonably 
general.

The final observation from these calculations is that genetic cor‐
relations have a substantial impact on the outcome. The “single‐trait” 
model, analogous to allowing a single growth parameter to evolve, 
represents the strongest constraints on the possible paths of evolu‐
tion. Using this model, selection is averaged over the entire life his‐
tory. Consequently, size across all ages can only increase (decrease) 
if the net selection is positive (negative). This is clearly different than 
what was observed with the full covariance function under unimodal 
selectivity, where the shape of the growth trajectory changed such 
that length at some ages increased while others decreased. In light 
of this, we suggest that future simulations of fisheries‐induced evo‐
lution would benefit from a more flexible representation for the ge‐
netic basis of growth.

In contrast, treating length at each age as a sequence of inde‐
pendent traits virtually eliminated any response to selection in this 
modeling exercise. Given previous theory on how genetic correla‐
tions can constrain evolution (Roff, 1996; Lynch & Walsh, 1998), this 
was initially somewhat counterintuitive. However, the change mean 
length at age is the sum (integral) of both the direct effects of selec‐
tion at that age and the indirect effects of selection on correlated 
ages. When selection acts in the same direction over all correlated 
ages, the net effect will, in general, be considerably greater than the 
direct effect alone. Among older fish in our model, size at age is very 
strongly correlated for ~60 days (30 days in either direction) over 

F I G U R E  6   Simulation results using the complete combination of fishing mortality of (0.0109, 0.0264, 0.0418, 0.0573, 0.0727) marked on 
the figure. Each F has five separate simulations using natural mortalities of (0.0018, 0.0059, 0.01, 0.0141, 0.0182)
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which selection is always in the same direction. In retrospect, we 
should have expected the response using the full covariance func‐
tion to be on the order of 60 ×  greater than the response in the 
independent traits model.

Compared to most of the commercial species with overlapping 
generations and size‐dependent fecundity, our model is oversim‐
plified. However, it does illustrate that the response to selection 
on body size depends heavily on the particular ages over which 
selection acts and that this is driven by a combination of the size 
specificity of selection and the time spent at a given size. This is 
particularly relevant since rapid evolution of harvested popula‐
tions has been widely documented (Haugen & Vøllestad, 2001; 
Conover & Munch, 2002; Law, 2007; Enberg et al., 2011) and 
tends to focus on the largest (and slowest growing) individuals in 
a given cohort.

4.3 | Caveats on the function‐valued trait approach

Although not our main focus, we close with some caveats regard‐
ing implementation and interpretation of FVT analyses. Our in‐
tention here is to save future practitioners from the making same 
time‐consuming mis‐steps we did. In keeping with most recent lit‐
erature on function‐valued traits, we used a basis function expan‐
sion to approximate the trait shape. Although all reasonable basis 
sets are complete in the limit as K → ∞ (i.e., can take on almost any 
shape), statistical approaches invariably truncate the expansion to 
some relatively small number of functions. As noted by Griswold 
et al. (2008), the efficiency and suitability of a given basis set 
depend heavily on the nature of the data. To avoid the problem 
of overfitting, Griswold et al. (2008) suggested thoroughly com‐
paring the efficiencies of the different basis sets (defined as the 
number of basis functions needed to achieve a given level of ap‐
proximation accuracy). This is a sound recommendation that we 
reiterate.

Griswold et al. (2008) found that the cosine basis was the most 
efficient for the growth trajectories they analyzed. Though clearly 
not a problem in their analysis, we found that some care must be 
taken to avoid introducing artifacts to the inferred covariance func‐
tions. We had initially used hk (t)=cos (πkt) as a basis with k = 0,1, … K 
and found that we could match the growth trajectories reasonably 
well with K = 4. However, the variance at time t is given by 

V (t)=
4∑

k=1

σ2
k
cos2 (πkt), which is clearly a periodic function. It is an 

open question whether the resulting pattern of local minima and 
maxima correspond to anything biological. It seems more likely to us 
that the resulting peaks and troughs in variance are artifacts of using 
a truncated basis.

Importantly, similar artifacts can arise in any truncated basis 
expansion. To illustrate this, we plot the inferred genetic cor‐
relation using Legendre polynomials with K ranging from 2 to 8 
(Supporting information Figure S1). With only two basis functions, 
length is perfectly correlated for all ages greater than 100 days. 

This changes markedly when we move to four basis functions and 
the long‐range correlations vanish. As we move from 4 to 8 basis 
functions the range of ages that are highly correlated narrows 
progressively.

In addition, we note that fixing K places a hard upper bound 
on the rank of the estimated genetic covariance function. This 
is the same thing as determining a priori the number of “traits.” 
As our model for the response to selection demonstrates, set‐
ting K too small may artificially limit the predicted paths that 
evolution may take. An alternative approach to using model 
selection to determine the number of basis functions would be 
to make K fairly large and use a prior (or penalty function, de‐
pending on your statistical persuasion) that shrinks coefficients 
toward zero. In this way, we might avoid potential biases in the 
evolutionary inferences drawn using the function‐valued trait 
approach.
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