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Novel targeted agents to inhibit DNA repair pathways to sensitize tumors to irradiation
(IR) are being investigated as an alternative to chemoradiation for locally advanced
human papilloma virus negative (HPV-negative) head and neck squamous cell
carcinoma (HNSCC). Two well-characterized targets that, when inhibited, exhibit potent
IR sensitization are PARP1 and DNA-PKcs. However, their cooperation in sensitizing
HPV-negative HNSCC to IR remains to be explored given that PARP1 and DNA-Pkcs
bind to unresected stalled DNA replication forks and cooperate to recruit XRCC1 to
facilitate double-strand break repair. Here, we show that the combination of the DNA-
PK inhibitor NU7441 and the PARP inhibitor olaparib significantly decrease proliferation
(61-78%) compared to no reduction with either agent alone (p < 0.001) in both SCC1
and SCC6 cell lines. Adding IR to the combination further decreased cell proliferation
(91-92%, p < 0.001) in SCC1 and SCC6. Similar results were observed using long-
term colony formation assays [dose enhancement ratio (DER) 2.3-3.2 at 4Gy, p < 0.05].
Reduced cell survival was attributed to increased apoptosis and G2/M cell cycle arrest.
Kinomic analysis using tyrosine (PTK) and serine/threonine (STK) arrays reveals that
combination treatment results in the most potent inhibition of kinases involved in the
CDK and ERK pathways compared to either agent alone. In vivo, a significant delay of
tumor growth was observed in UM-SCC1 xenografts receiving IR with olaparib and/or
NU7441, which was similar to the cisplatin-IR group. Both regimens were less toxic
than cisplatin-IR as assessed by loss of mouse body weight. Taken together, these
results demonstrate that the combination of NU7441 and olaparib with IR enhances
HPV-negative HNSCC inhibition in both cell culture and in mice, suggesting a potential
innovative combination for effectively treating patients with HPV-negative HNSCC.

Keywords: DNA repair, DNA damage, PARP inhibitors, DNA-PK inhibitors, non-homologous end-joining,
homologous recombination
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INTRODUCTION

Current organ preservation treatment strategies for patients
with head and neck squamous cell carcinoma (HNSCC) involve
concurrent chemoradiation, which enhances radiation (IR)-
induced DNA damage. Repair of this damage utilizes either
single-strand break (SSB) or double-strand break (DSB) repair
pathways. We and others have previously shown that inhibition
of poly (ADP) ribose polymerase-1 (PARP1), a member of
the SSB base excision repair pathway, is a potent sensitizer
of tumor cells to IR (Nowsheen et al., 2011b; Swindall et al.,
2013) in HNSCC cells.

Similarly, inhibition of deoxyribonucleic acid protein kinase
catalytic subunit (DNA-Pkcs), a key player in the DSB non-
homologous end joining (NHE]) repair also radiosensitizes cells
(Azad et al,, 2014; Ying et al., 2016; Brown et al, 2017; Lee
et al., 2019). NHE] is involved in "80% of DSB repairs induced
by radiation in cancer cells (Kakarougkas and Jeggo, 2014),
and DNA-Pk,, inhibitors, such as the oral inhibitor M3814, can
potentiate the antitumor activity of IR in HNSCC cell lines in vivo
(Zenke et al., 2020).

Previous work shows that PARP1 and DNA-Pkgs bind
unresected stalled DNA replication forks and cooperate to recruit
XRCCI1 to facilitate DSB repair (Spagnolo et al., 2012; Azad
et al., 2014; Ying et al, 2016; Fok et al, 2019). Additionally,
combined inhibition of PARP1 and DNA-PK may increase
genomic instability due to differing mechanisms by each inhibitor
(Foketal., 2019). Combination of PARP1 and DNA-PK inhibitors
has also been shown to decrease cell growth by 20% in vitro and
60% in vivo in HNSCC cell lines compared to monotherapy of
either agent (Fok et al., 2019). Because unrepaired IR-induced
DNA damage may also cause replication stress and mitotic
catastrophe (Mahaney et al., 2009), we hypothesized that, due
to the crosstalk of these pathways, combining DNA-PK and
PARP inhibitors could potentiate IR-induced damage leading to
enhanced IR sensitivity in HNSCC cells.

To test this hypothesis, we investigated the in vitro and
in vivo effects of the DNA-PK inhibitor NU7441 and the PARP
inhibitor olaparib with irradiation in HPV-negative HNSCC
cell lines. Indeed, combining NU7441 and olaparib with IR
significantly reduced cell survival compared to IR with either
agent alone. Cytotoxicity was due to increased apoptosis and
G2/M cell cycle arrest. Mechanistically, kinomic analysis revealed
that combination treatment resulted in the greatest inhibition
of kinases involved in the CDK and ERK pathways compared
to either agent alone. A significant tumor growth delay was
observed in vivo in UM-SCCl1 xenografts receiving IR with
olaparib and/or NU7441. These results support the further testing
of combining DNA-PK and PARP inhibitors with irradiation in
patients with HNSCC.

MATERIALS AND METHODS

Cell Lines and Inhibitors
The HPV-negative UM-SCC1 and UM-SCC6 cell lines were
obtained courtesy of Dr. Thomas E. Carey (University of

Michigan, Ann Arbor, MI). UM-SCCl-luciferase was obtained
from Dr. Eben Rosenthal (Stanford University, Stanford, CA,
United States). These cell lines have been previously described
(Weaver et al.,, 2015; Zeng et al., 2017). UM-SCC1 and UM-
SCC6 cell lines were maintained in DMEM growth medium
(Sigma) supplemented with 10% FBS (SAFC Biosciences) and
1% penicillin/streptomycin (Gibco). The DNA-Pkcs inhibitor
NU7441 (Tocris Cat #3712) was used at 0.5 pM in vitro and
2, 4, and 8 mg/kg in vivo. The PARP inhibitors olaparib (LC
laboratories Cat #763113-22-0) was used at 3 WM in vitro and
25 mg/kg in vivo. MK4827 (Selleckchem Cat #52741), another
PARP inhibitor, was used at 100 nM in vitro. Cisplatin was used
at 4 mg/kg in vivo.

Measurement of Cell Proliferation

Cell proliferation assays were performed as described previously
(Weaver et al., 2015; Zeng et al., 2017). Briefly, cells were
seeded in 24-well plates and harvested at 72 and 96 h after
treatment. Cells were washed with PBS, trypsinized, and
diluted 1:20 in isotonic saline solution (RICCA Chemical,
catalog #7210-5). Diluted cells were counted using a
Beckman Z1 Coulter particle counter. Cell counts were
represented as cells/mL.

Colony Formation Assay

Clonogenic survival was assessed by the colony formation
assay as described previously (Nowsheen et al, 2011b,
2012; Zeng et al, 2017). Cells were treated accordingly and
remained undisturbed for 2 weeks. Media was not replaced
throughout the experiment. Cells were fixed and stained in
25% glutaraldehyde/12 mmol/L crystal violet solution, and
the numbers of colonies were counted. Survival fraction
was calculated as follows: (number of colonies counted in
experimental plate/number of cells seeded in experimental
plate)/(number of colonies counted in control plate/number of
cells seeded in control plate). A dose-enhancement ratio (DER)
was also calculated to illustrate the magnitude of radiation
sensitization. The DER is defined as the ratio of the radiation
dose required to obtain a surviving fraction (SF) of 0.5, without
drug pretreatment, to that required to obtain the same SF after
drug pretreatment.

Cell Cycle

Cell-cycle distribution was measured as previously described
(Nowsheen et al, 2011b, 2012; Zeng et al., 2017). Cells
were seeded in 100 mm? dishes and treated accordingly.
Twenty-four and 48 h after treatment, cells were collected,
fixed, treated with RNAse (Sigma, catalog #R-4875), stained
with propidium iodide (PI), and read on FACS Calibur
using Cell Quest. Data were analyzed using ModFit LT
(Verity Software Inc.).

Measurement of Apoptosis

Apoptosis was analyzed using the Annexin V-FITC Apoptosis
Detection kit (BioVision Research Products, 3K101-400)
according to the manufacturer’s instructions and was previously
described (Nowsheen et al., 2011b, 2012; Zeng et al., 2017).
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Western Blot Analysis

Protein was analyzed by SDS-PAGE as previously described
(Nowsheen et al., 2011b, 2012; Zeng et al.,, 2017). The following
primary antibodies from Cell Signaling Technology were used
at manufacturer-recommended dilutions for immunoblotting:
phosphor-(Thr) MAPK/CDK substrate (#2321), phosphor-
erkl1/2 (#9101), total erkl/2 (#9102). Actin (Santa Cruz
Biotechnology, catalog #sc-47778) was included as a loading
control. Species-specific horseradish peroxidase-conjugated
secondary antibodies (Santa Cruz Biotechnology) were used at
1:20,000 dilution.

Kinomic Analysis

Lysates from UM-SCCI1 treated with 2Gy IR, with and without 3
WM olaparib and/or 0.5 uM NU7441, were collected immediately
after treatment and lysed in MPER lysis buffer with Halt’s
protease and phosphatase inhibitors as described previously.
After BCA-based protein quantification, lysates were then
analyzed with 15 pg of protein on the tyrosine (PTK) arrays
and 2 ug of protein on the serine/threonine (STK) arrays
as previously described using a PamStation12 (PamGene, The
Netherlands) (Jarboe et al., 2012; Anderson et al., 2014; Isayeva
et al., 2015). Phosphorylation data was collected over multiple
computer-controlled pumping cycles and exposure times (10-
200 ms) for ~144-196 substrates per array. Comparative
analysis of kinases upstream of altered peptide prediction was
performed in BioNavigator v6.3 using PTK and STK UpKin
PamApps (v 6.0).

Whole chip comparative analysis identified that combined
olaparib and NU7441 altered kinase activity as compared
to IR alone (summarized in Supplementary Table S1).
Olaparib- and NU7441-altered kinases were uploaded to
GeneGo (portal.genego.com, Clarivate Analytics) to identify
biological networks, using indicated maximum node size with an
AutoExpand model, canonical pathways, reactions, metabolites,
and orphan nodes deselected or excluded.

Animal Studies

All animal procedures were approved and in accordance with the
UAB Institutional Animal Care and Use Committee guidelines.
Four-week-old, 20 g, female athymic nude mice (Charles River
Laboratories) were allowed to acclimatize for 1 week before
experiments. For the orthotopic UM-SCC1-luc model, 100,000
cells were injected into the oral tongue, and tumors were imaged
biweekly using a luciferase bioluminescence assay starting at
day 4 after injection. Mice received intraperitoneal injections
of D-luciferin substrate (150 mg/kg) 15 min before imaging,
and luminescence was measured in photons per second. A pilot
study was performed to assess potential dose-related toxicities
of DNA-PK inhibitor NU7441 (2, 4, or 8 mg/kg IP once
daily) in combination with PARP inhibitor olaparib (25 mg/kg,
oral gavage twice a day) and irradiation (2 Gy, twice weekly).
Treatments were given for three cycles over a total of 15 days.
Tumor growth was determined via luciferase, and body weight
or any other signs of treatment-related toxicities were recorded.
The optimal does of DNA-PK inhibitor NU7441 (4 mg/kg)

was selected for the combination treatment in the tumor
growth delay study. Cisplatin (4 mg/kg) was also used as a
comparison control.

Statistical Analysis

Data were analyzed by analysis of variance (ANOVA) followed
by Bonferroni post-test using GraphPad Prism version 4.02
(GraphPad Software, San Diego, CA, United States). Data are
presented as average & SE.

RESULTS

Combining DNA-PK and PARP Inhibition
With or Without IR Inhibits HNSCC

Growth in Cell Culture

The potent radiosensitization properties of DNA-PK and PARP
inhibitors as well as the interactions of DNA-PK and PARP1
in replication stress repair suggest the potential for increased
efficacy by combining these inhibitors with IR. We, therefore,
tested the cell proliferation effects of DNA-PK inhibitor, NU7441,
and PARP inhibitor olaparib with or without IR in UM-SCCI1 or
UM-SCC6 head and neck cancer cells. As shown in Figure 1,
the combination of NU7441 and olaparib without irradiation
significantly decreased proliferation by 60.7% compared to no
reduction with either agent alone in UM-SCC1 (Figure 1A) and
by 78% in UM-SCC6 (Figure 1B) cells at 96 h. The addition
of 4 Gy IR to the combination further reduced cell growth
(UM-SCCI: 60.7 vs. 91.3%, p < 0.001; UM-SCC6: 78 vs. 92%,
p < 0.001). To verify the efficacy of this combination, we
also performed long-term colony-formation assays. As shown
in Figures 1C,D, a 92.2% reduction in clonogenic survival in
UM-SCC1 cells was observed (DER = 3.2 at 4 Gy) and 98.8%
reduction in UM-SCC6 cells (DER = 2.3 at 4 Gy). Similar
inhibition of cell proliferation and inhibition of clonogenic
survival was observed with another PARP inhibitor MK4827
(Supplementary Figure S1).

NU7441 and Olaparib Induce Apoptosis
and G2/M Cell Cycle Arrest

One of the major mechanisms of DNA damage-induced
cytotoxicity by IR is cell cycle redistribution. Therefore, we
next assessed the effects of the various treatments on the cell
cycle at 24 and 48 h post IR (4 Gy). At 24 and 48 h post IR,
minimal changes in cell cycle distribution were observed with
NU7441, olaparib, or IR alone in the UM-SCCI1 cells (Figure 2A).
Interestingly, combining NU7441 with IR resulted in greater
accumulation of SCC1 cells in the G2/M cell cycle compared to
NU7441 alone (13.3 vs. 57.4%, p < 0.001). However, the addition
of olaparib to this combination did not further increase the
percentage of cells in G2/M. Similar results were observed with
MK4827, which revealed that cells treated with IR accumulate in
G2/M, and that is further increased by drug treatment at 12 h
post IR. Cells treated with IR alone recover by 24 h post IR
although combination groups continue to accumulate in G2/M
(Supplementary Figure S2).
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FIGURE 1 | Combination treatment with NU7441 (DNAPK:I), Olaparib (PARPI), and IR suppresses (A,B) cell proliferation and (C,D) clonogenic survival in (A,C)
UM-SCC1, and (B,D) UM-SCC6 head and neck cancer cell lines. For cell proliferation assays, cells were treated with either vehicle or 0.5 pM or 1 WM NU7441 for
16 h, then 3 WM olaparib for 2 h, followed by sham or 2 Gy or 4 Gy IR. Cell numbers were counted at 72 and 96 h after IR using a Beckman Z1 Coulter counter.
Shown is the mean + SEM from at least two independent experiments performed in triplicate; *p < 0.05; **p < 0.01; **p < 0.001. For clonogenic assays, cells
were treated with NU7441 and olaparib accordingly, then followed by 0, 2, 4, and 8 Gy IR. Media was left unchanged for 2 weeks. Cells were fixed, and the number
of colonies were counted. Experiments were performed at least in triplicate. Each group showed statistically significant differences (p < 0.05).
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FIGURE 2 | Cell cycle redistribution 24 and 48 h after IR (4 Gy) with NU7441 (DNAPKI) and Olaparib (PARPI) in (A) UM-SCC1 and (B) UM-SCC6 head and neck
cancer cell lines. Cells were treated with either vehicle or 1 WM NU7441 for 16 h, then 3 WM olaparib for 2 h, followed by sham or 4 Gy IR. Cells were stained with
propidium iodide at 24 and 48 h after IR and analyzed for cell cycle distribution by flow cytometry. Shown is the mean + SEM from at least two independent
experiments performed in triplicate; *o < 0.01; **p < 0.001.
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In contrast, at 24 h post-IR in the UM-SCC6 cells, NU7441
appeared to cause G1 phase accumulation (25 vs. 46%, p = 0.0023,
Figure 2B). This effect was further magnified at 48 h post-IR.
The addition of IR to NU7441 or olaparib or both NU7441 and
olaparib induced G2/M accumulation at 24 h post-IR (18.4 vs.
51.6%, p < 0.001) and was further sustained at 48 h post-IR with
the triple combination (Figure 2B).

To investigate the effects of NU7441 and/or olaparib with and
without IR on apoptosis, we performed annexin V assays. As
shown in Figure 3, NU7441 and olaparib alone did not show a
substantial increase in apoptosis in the UM-SCC1 (Figure 3A)
or UM-SCC6 (Figure 3B) cells. However, in both cell lines, a
statistically significant increase in apoptosis was observed at 24
and 48 h with IR in combination with NU7441 or olaparib
alone, and that is further increased with the triple combination
(UM-SCCI, p = 0.003; UM-SCC6, p = 0.0001).

NU7441 and Olaparib Reduce CDK,
MAPK, and ERK Signaling

We and others have previously reported crosstalk between the
DNA damage response (DDR) and receptor tyrosine kinase cell
signaling pathways (Dittmann et al., 2005, 2008, 2010; Golding
et al., 2007, 2009; Nowsheen et al., 2011a, 2012; Jarboe et al.,
2012). To perform an unbiased analysis of potential alterations
in cell signaling events with our treatments, we performed
kinomic analysis using the PamStation12, which allows for real-
time detection and kinetic data on kinase/substrate interactions.
As shown in Figure 4A, combining NU7441, olaparib, and
IR resulted in inhibition of kinases involved in a network
centering around CDK and ERK. To validate the kinomic
data, we performed western blot analysis in the UM-SCC1
cells treated with various combinations of IR, NU7441, and
olaparib. As shown in Figure 4B, the triple combination
resulted in the greatest reduction of the levels of phospho-
ERK1/2 supporting the kinomic data. The triple combination
also suppressed the levels of phospho-MAPK/CDK substrates
(Supplementary Figure S3).

Combination NU7441, Olaparib, and IR Is
Well Tolerated and Delays Tumor Growth

in HNSCC Xenografts

To test the in vivo effects of NU7441, olaparib, and RT,
tumor growth delay was measured using orthotopic tongue
HPV-negative UM-SCC1 xenografts. An initial pilot dose-
finding study was performed to determine the tolerability and
optimal dose of NU7441 to combine with a fixed dose of
olaparib (Supplementary Figure S4). As shown in Figure 5A,
a significant tumor growth delay was observed in all treatment
groups combined with IR (p < 0.01). Although not statistically
significant, cisplatin-IR trended worse compared to the targeted
therapy combinations with IR (p = 0.075). Body weight increases
were statistically larger with DNAPKi + IR, PARPi + IR, and
combination + IR compared to IR alone or IR plus cisplatin,
suggesting that combinations of targeted agents with IR is better
tolerated compared to cisplatin-IR (Figure 5B).

DISCUSSION

Since the FDA approval of cetuximab in 2006, no targeted
therapeutic combination with IR has been approved for the
definitive treatment of HNSCC. Cetuximab, a monoclonal
antibody against the epidermal growth factor receptor, is shown
to inhibit both NHE] and HR (Dittmann et al., 2005, 2008, 2010;
Nowsheen et al, 2011a, 2012), the 2 major DNA DSB repair
pathways. IR-induced DNA damage repair via NHE] is found
to be stimulated by EGFR nuclear translocation and binding to
DNA-PK (Dittmann et al., 2005). For HR, EGFR is found to
bind BRCA1 (Nowsheen et al., 2011a, 2012). Given the roles
of these key DNA repair enzymes in resolution of IR-induced
DNA damage, the potent radiosensitizing effects of either the
DNA-PK inhibitor or PARP inhibitor in HNSCC is previously
reported (Nowsheen et al., 2011b; Forster et al., 2012; Weaver
et al, 2015; Kwon et al,, 2016; Fok et al, 2019; Lee et al,
2019; Hernandez et al.,, 2020). DNA-PK inhibition is shown
to demonstrate superior radiosensitivity to PARP inhibition in
HNSCC cell lines although their combinatorial effect with IR was
not tested (Fok et al., 2019; Lee et al., 2019).

PARP inhibition is also shown to inhibit EGFR nuclear
translocation following IR, and an induced synthetic lethality is
found with combined EGFR and PARP inhibition (Nowsheen
etal, 2011a,b, 2012). Recent evidence also reveals a cooperation
between DNA-PK and PARPI at sites of replication fork
instability to recruit XRCC1 and coordinate DNA repair at stalled
replication forks to effectively protect, repair, and restart stalled
replication forks (Spagnolo et al., 2012; Ying et al., 2016). These
mechanisms reveal the crosstalk between the EGFR, DNA-PK,
and PARP pathways and their putative roles in NHE] and HR.
They also provide the rationale for testing the combination of
DNA-PK and PARP inhibition with IR.

Differential effects of DNA-PK and PARP inhibitors on
cell cycle distribution are observed between the cell lines.
DNA-PK and PARP inhibitors are shown to increase G2/M
accumulation (Lee et al., 1997; Carrozza et al., 2009; Jelinic
and Levine, 2014; Fok et al, 2019). DNA-PK activity is also
essential for resumption of the cell cycle beyond IR-induced G2
checkpoint arrest, and cells exposed to the DNA-PK inhibitor
AMA37 demonstrate irreversible G2 accumulation (Sturgeon
et al., 2006). We observe a more prominent effect on cell cycle
distribution in the UM-SCC6 cells compared to the UM-SCC1
cells, especially a potential senescence-like phenotype in UM-
SCC6 cells (Figure 2: increased G1, reduced S at 24 h post
IR). Although this is not surprising, due to the heterogeneity
of cancer cell lines, the different effects we observe may be due
to p53 status. As p53 is an important regulator of the DDR
checkpoints (Gadhikar et al., 2013; Dobbelstein and Sorensen,
2015), including the G1/S phase transition, the more pronounced
cell cycle redistribution in the UM-SCC6 cells may be due to
its wild-type p53 status. Furthermore, it is recently reported
that DNA-PK inhibition alone or in combination with PARP
inhibition results in accelerated senescence in irradiated cancer
cells that is dependent on p53 (Azad et al., 2011, 2014).

Interestingly, kinomic analysis of the combination treatments
demonstrates the greatest suppression of CDK and MAPK/ERK
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FIGURE 3 | NU7441 and olaparib with IR increases apoptosis in the (A) UM-SCC1 and (B) UM-SCC6 head and neck cancer cell lines. Cells were treated with
vehicle or 1 WM NU7441 for 16 h, then 3 WM olaparib for 2 h, followed by sham or 2 Gy IR. Cells were harvested at 24 and 48 h after IR and evaluated for Annexin V
positivity by flow cytometry. Shown is the mean + SEM from at least two independent experiments performed in triplicate; *p < 0.05; *p < 0.01; **p < 0.001.
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FIGURE 4 | Kinomic analysis following NU7441, olaparib, and IR reveal suppression of CDK and ERK signaling. (A) Network of kinases altered by

olaparib + NU7441 combination treatment immediately post-IR. Kinases were uploaded by Uniprot ID and overlaid on literature-annotated interactions
(portal.genego.com, Clarivate analytics) in a network model displaying centrally effected nodes (AutoExpand < 50 nodes, CDK/ERK centric). Interactions are
indicated with lines and arrowheads for directionality. Nodes that are circled indicate input data. (B) Phospho- and total ERK status were validated at O and 30 min
after IR via Western blot. Normalized densitometry values for phosphor-ERK1/2 are also shown.

Frontiers in Genetics | www.frontiersin.org 6 September 2020 | Volume 11 | Article 1036


http://portal.genego.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Zeng et al.

DNA-PKi and PARPi Enhance Radiosensitivity

A -e- Control
§ -»- Cisplatin
P 1000+ NU7441
2 - Olaparib
= 7501
T -~ NU7441+Olaparib
S IR
500+ i 4
“E’ -o- |IR+Cisplatin
S -o- IR+
S 250- IR+NU7441
: -o- |IR+Olaparib
g o o~ IR+NU7441+Olaparib
E 7 15 22 28 35 43 50 62 70
Days post injection
-e- Control
B -»- Cisplatin
1.4+ NU7441
.% -%- Olaparib
[ -+~ NU7441+Olaparib
,‘g 0.9- IR
i -o- |R+Cisplatin
= - IR+NU7441
§ 0.4 -e- IR+Olaparib
o -s- IR+NU7441+Olaparib
T T T T T T T T T
6 15 22 28 35 43 50 62 70
Days post injection
FIGURE 5 | The combination of NU7441 (DNAPKI), olaparib (PARP1), and IR (A) reduces in vivo tumor growth of UM-SCC1-Luc orthotopic xenografts and (B) is
well tolerated as measured by body weight. The tongue of athymic nude mice were injected with UM-SCC1 luciferase-expressing cells (UM-SCC1), and tumor
volume was measured by bioluminescence imaging twice weekly. Fold changes in each group are shown normalized to luminescence at the start of treatment on
day 7. Shown is the mean fold change in tumor volume + SEM. N = 5 mice for all treatment group. “*p < 0.01.

pathways. The involvement of these pathways in DNA repair is
previously reported (Golding et al.,, 2007, 2009; Sharma et al.,
2007; Khalil et al., 2011; Dean et al., 2012; Zalmas et al., 2013;
Wang et al., 2018; Liu et al., 2020). Upon DNA damage, CDK2
activates the DNA damage response, and CDK2 knockout or
deficiency increases sensitivity to radiation (Liu et al., 2020).
Furthermore, inhibition of CDK4/6 modulates DNA repair
(Dean et al., 2012). These actions are likely due to reduced E2F-
mediated transcription of DNA repair enzymes (Sharma et al,,
2007; Zalmas et al., 2013; Wang et al., 2018). The MAPK/ERK
pathways also play key roles in DNA repair (Golding et al., 2007,
2009; Khalil et al., 2011). ERK signaling enhances both NHE] and
HR repair that is dependent on ATM, and blockade of ERK1/2
sensitizes cells to IR. Inhibitors of ERK signaling pathways are
shown to block NHE]-mediated DSB repair as demonstrated
through EGFR mutant cell lines by Golding et al.

Our kinomic results also point to potential DNA
repair-independent roles of DNA-PK and PARP, as the
MAPK/ERK and CDK pathways regulate other cellular

processes, including  epithelial-mesenchymal  transition
(EMT). The MAPK/ERK and CDK pathways are implicated
in EMT through various mechanisms (Shin et al., 2010)
[reviewed in Thiery (2002)]. We have previously reported
that, in HNSCC patients, high expression of DNA-PKcs is
correlated with recurrence (Weaver et al., 2016). Preclinically,
knockdown of DNA-PK in HNSCC cell lines reduces
migration and invasion (Weaver et al, 2016). Similarly,
DNA-PK is also shown to stimulate tumor cell invasion
in head and neck cancer cells with a defective Fanconi
Anemia pathway (Romick-Rosendale et al, 2016). A role
of DNA-PK and PARP cooperativity in driving ERG-
mediated gene transcriptional activation of genes involved
in invasion and metastasis is also reported, where the
activity of both enzymes is required in these processes
(Brenner et al., 2011).

Through its interactions with the cytoskeletal machinery,
PARP1 directly regulates cell motility and invasion (Rodriguez
et al, 2013; Rom et al, 2016). PARP1 is shown to
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impact invasion of ovarian cancer cells stimulated by HGF
(Wei et al., 2018). In patients with gastric cancer, high PARP1
expression is shown to be associated with increased depth
of tumor invasion and lymphatic invasion (Liu et al., 2016).
Interestingly, inhibition of PARP reduces motility and invasion
of BRAF-mutated melanoma cells (Rodriguez et al., 2013). These
results suggest the role of DNA-PK and PARP in EMT, and
the connection between DNA-PK, PARP, CDK, and MAPK/ERK
pathways may be a mechanism through which the enhanced
effects of the triple combination are occurring.

Targeting the DDR has been an attractive strategy in cancer
treatment, especially for patients with HR-deficient tumors. In
addition to PARP and DNA-PK inhibitors, ATR, CHKI, and
WEE] inhibitors are under development and being tested in
current clinical trials alone or in combination with chemotherapy
(Brown et al., 2017). Furthermore, combinations of DNA repair
inhibitors, such as with PARP and RAD52 combinations, are
being developed based on exciting preclinical results (Sullivan-
Reed et al, 2018). In this study, we demonstrated that
combining DNA-PK inhibition and PARP inhibition with IR in
HNSCC results in further reduction in cell proliferation and
clonogenic survival. Mechanistically, we show that the triple
combination results in the greatest suppression of ERK and
CDK signaling that is associated with induced G2/M phase
cell cycle accumulation, persistent DNA damage, and increased
apoptosis. The results from this study support the testing of
this combination with IR in a phase 1b trial as a potential
alternative to cisplatin-based chemoradiotherapy to potentially
improve the therapeutic index. Combined inhibition of DNA-PK
and PARP without radiation is currently being tested in a clinical
trial (NCT03907969).
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