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Recent climate change has driven divergent
hydrological shifts in high-latitude peatlands
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High-latitude peatlands are changing rapidly in response to climate change,
including permafrost thaw. Here, we reconstruct hydrological conditions since
the seventeenth century using testate amoeba data from 103 high-latitude peat
archives. We show that 54% of the peatlands have been drying and 32% have
been wetting over this period, illustrating the complex ecohydrological
dynamics of high latitude peatlands and their highly uncertain responses to a
warming climate.

The majority of peatlands are located in high latitudes' and store ca. ~decomposition-driven CO, and methane (CH,) emissions determines
one third of the global soil carbon (C)°>. The balance between the peatland net C budget and subsequently the overall climate feed-
photosynthesis-driven carbon dioxide (CO,) sequestration and back. Peatland water-table position is a decisive factor in this balance.
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Peatland water-table drawdown results in a net increase of greenhouse
gas emissions (mainly CO,) and consequently a positive (warming) net
climate effect’. Conversely, water-saturated peatlands are large CH,
sources, as evidenced in permafrost peatlands under a warming
climate*. Accordingly, understanding the current peatland moisture
status, past successional pathways and their link to climate is impor-
tant. These dynamics can be studied using testate amoebae, which are
hydrology-sensitive biological proxies. Testate amoeba data were
recently used to document a widespread drying of central-European
peatlands®. However, there was no efforts made to compile data from
boreal, subarctic and permafrost peatlands. It is therefore uncertain
whether drying is a more geographically extensive phenomenon that
extends to the subarctic-arctic ecosystems. Our data compilation aims
to resolve how the amplified warming in high latitudes is reflected in
peatland moisture conditions. More than 50% of pan-Arctic peatlands
contain permafrost®, which is thawing in many places”°—despite the
insulative effects of the overlying peat stratum, which slows the rate of
thawing'®. The subsequent development of wetter or drier conditions
depends on local topographic controls, drainage networks, regional
precipitation patterns (geographical and seasonal distribution, fre-
quency, and amount), evapotranspiration, and ice richness of the
permafrost” ™,

Predicting peatland moisture balance using climatic parameters
only may not be reasonable due to the complex interactions with
precipitation-evapotranspiration, runoff, permafrost dynamics, and
autogenic processes’™*, The hydrologically sensitive testate
amoebae, archived in peats, provide an opportunity to study the
contemporary moisture conditions over the period when peat they
occupied was growing at the surface’. Transfer functions based on
local/regional modern training sets of well-established testate
amoeba data and supplemented by robust recent chronologies
enabled us to carry out water-table depth (WTD) reconstructions for
high latitudes, focusing on the past four centuries. This focused
period encompasses the post-Little Ice Age (LIA) warming and
the more recent global warming, for both the timing has varied
regionally.

In this study, we compiled 103 peatland testate amoeba records
across the northern high latitudes, including sites inside and slightly
outside the northern permafrost distribution region, to examine
changes in peatland surface wetness during the last four centuries
(Fig. 1 and Supplementary Fig. 1). We used a comprehensive spatial
collection of available records from different northern peatland types
and permafrost distribution zones (bog, fen, palsa, peat plateau; con-
tinuous, discontinuous, sporadic, isolated permafrost zones), with
approximately half of the sites representing permafrost peatlands.
Most of the site are nutrient-poor systems (Supplementary Data-
sheet 1). Even though different peatland types have distinctly different
testate amoeba communities, hydrology remains the most important
environmental control. When applying applicable transfer functions,
they provide valid hydrological reconstructions'®. WTD reconstruction
was conducted for each record using the best available modern
training sets and transfer functions for testate amoebae, and the
results were standardized to enable spatial comparison’. Those
records that showed a similar hydrological shift over the past four
centuries were grouped together, regardless their geographical loca-
tion. Statistically significant change points in hydrological conditions
(from wet to dry or vice versa) were detected for individual records
and for the compiled groups to capture the timing of major hydro-
logical change (Fig. 2). In order to directly link the observed hydro-
logical successions to climate variables, we compared the
standardized WTD patterns to summer temperature and precipitation
anomalies between modern and pre-industrial periods (1963 to 2012
CE average minus 1851 to 1900 CE average; Fig. 1c-f) followed the
approach used in Swindles et al. (2019)°. This procedure allows us to
include as many records as possible regardless the low temporal

resolution of some of the records. By doing this also the data provide
the best possible spatial perspective.

Results and discussion

Hydrological changes in high-latitude peatlands

We observed three hydrological pathways, i.e., drying, wetting, and
fluctuating, for both peatland clusters, non-permafrost and permafrost
peatlands (Fig. 2). Approximately 54% of the studied peatlands have
shifted towards drier surface conditions since 1800 CE and more
intensively since 1900 CE (Fig. 2a, d), which is in line with the post-LIA
warming. The overall change point to drier conditions was dated to ca.
1950 CE for non-permafrost sites and ca. 1890 CE for the permafrost
compiled group. Approximately 32% of the studied peatlands have
shifted towards wetter conditions (Fig. 2b, e). The overall shifting point
to wetter conditions was dated to ca. 1995 CE for non-permafrost
peatlands and to ca. 1990 CE for permafrost peatlands. Wetting has
been especially intensive since 1900 CE for non-permafrost peatlands
and since 1950 CE for permafrost peatlands. Interestingly, the data
showed that in permafrost peatlands a significant dry shift always
preceded a wet shift (Fig. 2e). Approximately 14% of the studied
peatlands indicated no clear trend, with fluctuating hydrological con-
ditions (Fig. 2¢, f).

Non-permafrost peatlands generally showed spatially exten-
sive drying across the northern high latitudes, apart from north-
eastern Canada, where a wetting trend was more frequently
observed. Permafrost peatlands, however, were more variable, with
some drying, some wetting, and no overall coherent regional pat-
tern was visible (Fig.1a, b). It should be noted that peatlands syn-
thesized here have undergone little or no direct human impact, i.e.,
their surface hydrology was not significantly affected by human
disturbances such as drainage, when compared to, for example,
central European peatlands discussed in Swindles et al. (2019)°. This
implies that climate and/or local topographical forcing are the
predominant hydrological drivers in this study. The dataset is to
some extent biased as there are more non-permafrost records from
northeastern Canada but more permafrost records from northern
Sweden and this might result in regional overestimation to either
wetting or drying trends. Nevertheless, the pattern of diverse timing
of the hydrological shifts between the individual coring points
(Fig. 2) indicates the variability in sensitivity of different regions/
peatlands to climate changes.

Potential links to climate change and permafrost dynamics
The comparison of the reconstructed water table and climate data
suggests that climate, especially summer temperature, has played
an important role in shaping the peatland water table (Fig. 1c-f). The
pattern detected here for non-permafrost peatlands, an extensive
drying, is comparable to that observed for central European
peatlands’. In addition to direct climate forcing, a recent accelera-
tion of peat accumulation might partly explain the drying trend by
disconnecting the peatland surface from the water table". However,
for northeastern Canada a wetting trend has been observed more
often, possibly regulated by the regional climate that shows clearly
less warming in the focused period compared to other regions
(Fig. 1c, d).

Permafrost initiation in the past caused a peat surface uplift and is
probably detected as a dry phase (Fig. 2d, e). Post-LIA warming-
induced increase in evapotranspiration may have strengthened the
surface drying which originally resulted from surface-uplift and
probably mitigated the gradual wetting related to permafrost
thawing™. The level of warming has varied among the regions. In some
areas such as northeastern Canada temperature has increased less and,
when combined with higher precipitation or higher effective moisture
level, may have caused surface wetting in permafrost peatlands. This is
a direct climate forcing rather than permafrost thawing, which is a
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Fig. 1| Study sites and their hydrological responses. Non-permafrost (a, ¢, €) and
permafrost (b, d, f) sites are plotted separately. a, b Reconstructed hydrological

response of 98 records since 1600 CE on the map of northern permafrost zones™.
Literature-based five records are indicated by triangle symbol. ¢, d Reconstructed
standardised water-table depths (WTDs) on the map of summer (June-July-August)
temperature anomaly (°C). e, f Reconstructed WTDs on the map of summer pre-

cipitation anomaly (mm/day). WTDs, temperature and precipitation data presented
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in c-f are values calculated using (1963 to 2012 CE average) minus (1851 to 1900 CE
average). 76 records that have data points for these two periods are shown. Tem-
perature and precipitation data (ca. 2° latitude x 2° longitude grids) are from NOAA-
ESRL and CIRES twentieth century Reanalysis (V2c)*. The coordinates of the study
sites on the maps are adjusted using a ‘ring’ Points Displacement to avoid over-
lapping; the actual coordinates are in the center of each ring and can be found in
the Supplementary Fig. 1 and Datasheet 1.
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Fig. 2 | Standardised water-table depth (WTD) data over the past centuries
compiled into different hydrological response groups. Non-permafrost (a-c)
and permafrost (d-f) sites are plotted separately. A LOESS model is shown as a
blue line, with the gray shading indicating the 95% confidence interval. The age
error scale indicates the chronological precision of each data point (deter-
mined through Bayesian age modelling). Inside-plot arrows indicate the
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estimated hydrological change points (Est. + SE) of the compiled data in each
group. Violin plots show the estimated hydrological change points of indivi-
dual records included in each corresponding group (with few exceptions
addressed in Supplementary Datasheet 1). The age error of the estimated
change points presented in the violin plots was indicated using different
shapes.

consequence of climate warming, i.e., more indirect climate forcing.
To date, it is yet challenging to estimate any one tipping point of
warming that might trigger permafrost thawing, as the local conditions
vary from bottom ground soil conditions to hydrology and vegetation.
The consequent wetting or drying depends on evapotranspiration and
ice richness etc., which further challenges the prediction of hydro-
logical conditions of permafrost peatlands.

The divergent three moisture patterns may occur in the same
region and even in the same peatland, especially if the permafrost is
present. This complex response pattern is well supported by the
records from the Abisko region, Sweden, where replicated sampling
was carried out, and captured different successional stages of local
permafrost peatlands™®. In contrast to permafrost peatlands, non-
permafrost peatlands are more likely to experience a more consistent
ecosystem response pattern’’ as supported by the replicated records
suggesting the same pattern happening simultaneously in several
regions (Fig. 1a). The fluctuating pattern of many records reported
here suggests that the past and recent climate has not yet caused a
state change in hydrological conditions.

Insights into carbon dynamics and future perspective
Generally, our results suggest that the recent climate warming has
caused hydrological shifts in most high-latitude peatlands, high-
lighting its pronounced effect on shaping peatland moisture balance,
and further on driving peatland C balance. It has been reported that a
1-cm water-table drawdown would increase 3.3-5.0 mg CO, m2h™ and
decrease 2.2-3.6 mg CO,-eq m2 h™ (CH,4) to the atmosphere, and the
average sensitivity of CO, and CH, combined was 0.8-2.3 mg CO,-eq
m2 h™? cm™ according to a global scale analysis, including sites from
high-latitudes®. However, it should be noted that the sensitivity of
greenhouse gas fluxes to the magnitude of hydrological changes might
vary among different regions and peatland types. It appears that most
pan-Arctic peatlands are undergoing a drying trend, that may lead to a
decreased C sink capacity>', if not compensated by increased C
uptake from the atmosphere®.

Itis very likely that over the 21st century warming in high latitudes
will continue to be more pronounced than the global average®. Pre-
cipitation is projected to increase, albeit with large regional variability.
Also, extreme events with heavy rainfall and drought are becoming
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more frequent and intense®. It is estimated that about 20% of per-
mafrost zone is experiencing accelerated and abrupt permafrost thaw
that is likely causing wetting conditions*, while gradual permafrost
thaw has been observed across the circumpolar regions”. Both an
increase in precipitation and permafrost thaw might mitigate the
drying pressure caused by warming and increased evapotranspiration.
However, abrupt permafrost thaw in peatlands can result in a rapid
(over years to decades) loss of C from the formerly frozen permafrost
peat, causing these peatlands to be a net source of C to the atmosphere
before post-thaw accumulation returns them to a net sink (centuries to
millennia)'>". The future C sink and source function of peatlands is a
key element in contributing to climate change, but the observed
divergent pathways of peatland hydrological successions further
challenge the projections of high-latitude peatland C sink and source
dynamics. Conversely, it clearly highlights the importance of climate
forcing in peatland succession scenarios. Our study reveals that the
response of high-latitude peatlands to changing climate conditions is
complex. We detect variable ecohydrological trajectories, and in the
future, these will determine the C sink capacity of northern peatlands.
The observed patterns inevitably create challenges for the climate
change modelling community. How to capture the highly heterogenic
successional pathways of northern peatlands needs to be a key
research focus.

Methods

Study sites

In total, 103 sites with suitable data were identified and compiled
(Supplementary Datasheet 1). Of 103, 98 sites were included in the
current data analyses. These analyses were supplemented by five
previously published records (without applicable transfer functions)
presented in the Fig. 1b. The presence of permafrost at the sampling
point indicates the conditions at the time when the samples were
collected.

Chronology

Age-depth models were constructed for each record using chron-
ological data including *C, #°Pb, and other age-equivalent strati-
graphic markers such as '¥Cs and tephra dates. Bayesian age models
were generated for each record to achieve good accuracy and quan-
tification of age errors using the ‘rplum’ package® in R version 3.6.1*
(Supplementary Fig. 2). The age of the midpoint depth of the analysed
sample was derived. Hereafter, all references to ages or years refer to
the maximum probability age at a given depth, as determined from the
age model.

Water-table depth reconstruction

Only records with the dominate testate amoeba taxa presented in the
transfer functions and a minimum total count of ca. 50 reached were
include in water-table depth (WTD) reconstructions. Taxonomic har-
monisation was necessary in order to apply the transfer functions
based on European, North American, Asian and Holarctic training
sites?*?® (Supplementary Datasheet 1). The reconstructions were car-
ried out in R version 3.6.1% using location-specific transfer functions
defined by geographic location of the study site, and different datasets
with and without weak silicic idiosomic tests>”. Based on the outputs
(Supplementary Figs. 3 and 4), the Holarctic transfer function that
contains the most abundant data was selected for European and North
American sites, and Asian transfer function for Asian sites, unless
otherwise specified in Supplementary Datasheet 1. The reconstruc-
tions run on the data without the weak silicic idiosomic tests were used
for subsequent analyses.

Hydrological response analysis
The 98 peat records were divided into six groups based on the
presence of on-site permafrost and the recent hydrological

response trend. A LOESS smoothing function®® with a span value
(degree of smoothing) setting of 0.2 was applied for the compiled
six groups. Change-point analysis was performed on the compiled
groups and individual records to detect the overall and local
breakpoints of the linear trend of hydrological conditions over
time using the package ‘Segmented™ in R version 3.6.1”. The
temporal span used in this analysis was 1600 CE to present. In cases
that no segmented linear breakpoints were estimated, detections
of changes in mean and variance over time were carried out using
the ‘At Most One Change’ and ‘Pruned Exact Linear Time’ methods
using the package ‘Changepoint’® in R version 3.6.1* (Supple-
mentary Datasheet 1).

Climatic data

Temperature and precipitation data representing the period
1851-2012 were from the NOAA-ESRL and CIRES Twentieth Century
Reanalysis (V2c) dataset™ and downloaded from the Earth System Grid
Federation®'. These data are with monthly temporal resolution and
spatial resolution of ca. 2° latitude x 2° longitude. The temperature and
precipitation data were split into two 50-year time periods of
1851-1900 and 1963-2012 respectively for the summer months of June,
July and August. The difference between these two periods was then
calculated and used for producing the maps.

Data availability

The peat record data that support the findings of this study can be
accessed at the WDC for Geophysics, Beijing (https://doi.org/10.12197/
2022GA021).
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