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Abstract

Metastases are the main reason for cancer-related deaths. Initiation of metastases, where

newly seeded tumor cells expand into colonies, presents a tremendous bottleneck to metas-

tasis formation. Despite its importance, a quantitative description of metastasis initiation and

its clinical implications is lacking. Here, we set theoretical grounds for the metastatic bottle-

neck with a simple stochastic model. The model assumes that the proliferation-to-death rate

ratio for the initiating metastatic cells increases when they are surrounded by more of their

kind. For a total of 159,191 patients across 13 cancer types, we found that a single cell has

an extremely low median probability of successful seeding of the order of 10−8. With increas-

ing colony size, a sharp transition from very unlikely to very likely successful metastasis initi-

ation occurs. The median metastatic bottleneck, defined as the critical colony size that

marks this transition, was between 10 and 21 cells. We derived the probability of metastasis

occurrence and patient outcome based on primary tumor size at diagnosis and tumor type.

The model predicts that the efficacy of patient treatment depends on the primary tumor size

but even more so on the severity of the metastatic bottleneck, which is estimated to largely

vary between patients. We find that medical interventions aiming at tightening the bottle-

neck, such as immunotherapy, can be much more efficient than therapies that decrease

overall tumor burden, such as chemotherapy.

Author summary

We propose a stochastic model of metastasis formation, encompassing the release of cells

from a growing tumor, their settlement at a distant site and their impact on patient out-

come. We put forward a theory of the extreme bottleneck that this process encounters at

the settlement step. We derive equations for several clinically relevant quantities as func-

tions of primary tumor size for patients who underwent surgery: the probability of metas-

tasis occurrence and of metastasis detection, the risk of death due to cancer, and the
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survival time. The model is fit to epidemiological data for 13 cancer types, and used to pre-

dict the impact of different treatment options on patient outcome.

Introduction

Metastases are responsible for 90% of deaths from cancer [1, 2]. The formation of metastases is

a multi-step process, in which tumor cells spread from the primary site and colonize distant

organs [3]. It can be divided into three phases (Fig 1a). The first phase consists of tumor cell

entry into the vascular system (intravasation), transport in the blood, and exit from the vascu-

lar system to a secondary organ (extravasation). This step may or may not be preceded by the

acquisition of genetic or epigenetic alterations in the primary tumor [4–6]. Experimental data

suggests that the tumor cells that are shed from the primary site are already equipped with

metastatic abilities [7–9]. Recent findings support that metastatic tumor cell dissemination

begins in early [10, 11], rather than late stage of the disease. The first phase of metastasis for-

mation is highly efficient, as the released tumor cells deal remarkably well with the obstacles of

delivery to distant organs and their infiltration [4, 5, 12–14]. In contrast, the second phase—

metastasis initiation—is extremely inefficient [4, 6, 15, 16]. Relative to the huge numbers of

cells that disseminate during the long period of primary tumor growth, only very few of them

successfully form distant metastases [12, 17]. This bottleneck is commonly understood as the

lack of compatibility of the seeded tumor cells with the soil they encounter in the affected

organ [4, 18, 19]. In mice models, the metastatic seeding potential was observed to increase

with the size of tumor cell clumps [20], which was recently confirmed for human circulating

tumor cell clusters [21]. In the last phase of metastasis formation, successfully initiated colonies

form micrometastases and, subsequently, clinically detectable macrometastases [6].

The metastatic process has been previously modeled using various mathematical

approaches. In their pioneering work, Liotta and colleagues proposed a series of mathematical

models of the metastatic process in mice [22–24]. They also first described that larger

implanted tumor clumps have a larger chance to seed metastases [20]. That finding was not

taken into account in theoretical models developed since then. Hartung et al. [25] modeled

primary and metastatic growth in mice, assuming that metastatic cells are constantly released

from the surface of the growing tumor with a given rate. In the branching process model of

metastasis formation by Avanzini and Antal, the metastatic lesions are initiated at a rate which

depends on the size of the primary tumor [26]. Michor et al. [27] proposed a constant popula-

tion size Moran process model of evolutionary emergence of pro-metastatic mutations in the

primary tumor. This model was later extended to account for expanding tumor size and the

cell release probability [28], and was put into a clinical context [29, 30]. Haeno et al. [30] fitted

parameters of this model to primary and metastatic cell count measurements determined

post-mortem in pancreatic cancer patients. Benzekry et al. [31] modeled the non-linear depen-

dence of the probability of metastatic relapse on primary tumor size, finding that between-

patient variability of intrinsic metastatic potential is a key parameter, and suggesting that

tumor size alone has a limited utility as a predictor of metastatic recurrence. None of the previ-

ous studies accounted for the metastatic bottleneck explicitly. Haeno et al. [29, 30] implicitly

identified the rate-limiting step with the emergence of pro-metastatic mutations in the primary

tumor. Cisneros and Newman [32] proposed a stochastic process model of metastasis coloni-

zation depending on a constant corresponding to proliferation-to-death ratio. In contrast to

the here presented model, that model assumed, rather than predicted, a switching behavior of
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the probability that the metastatic colony survives, did not account for bottleneck variability,

and was not fit to patient data (see S1 Text for a detailed comparison of the models).

The mechanism behind metastasis initiation and the bottleneck that is encountered at this

phase remain poorly understood [6]. A quantitative characterization of the metastatic bottleneck

may facilitate more efficient cancer treatment strategies, as it presents a natural point of attack of

this fatal disease. Our metastasis bottleneck model is motivated by size-dependent seeding strat-

egies seen in ecology. For example, plants produce either large numbers of small seeds or smaller

numbers of large seeds, which have higher chances of survival in stressful conditions [33]. Simi-

larly, Leptothorax ants form larger colonies to survive harsh winter weather, which are divided

into smaller nests during the summer [34]. The general Allee effect was described, amounting to

a positive correlation between population size and individual fitness [35]. The Allee principle

was previously suggested to govern cancer cell population growth kinetics at low densities [36].

The Allee effect is likely to also play a role in metastasis initiation, because out of an extremely

large number of attempts only very few metastatic seedings are successful [6], and the success

probability depends on the colony size, as determined experimentally [20, 21]. Once accompa-

nied by more of their own kind, the tumor cells should benefit from a more friendly, tumor-like

microenvironment and are less vulnerable to restrictive conditions at the secondary site.

Accordingly, in the model, the bottleneck of metastasis formation results from a stochastic

Fig 1. Modeling metastasis formation process and its bottleneck. a Three phases of metastasis formation. In phase 1, tumor cells are constantly

released into the blood stream. Given that larger tumors can release more cells over time, they have a higher chance to develop metastases. Thus, a

dependency of metastasis probability and patient outcome on tumor size is expected. The bottleneck is the metastasis initiation in phase 2. b Stochastic

birth-and-death process of metastasis initiation. For each cell in the forming colony, the ratio of its proliferation rate λi to its death rate μi depends on

the total number of cells i with a proportionality constant 1

b. c The bottleneck severity b is the critical colony size for metastasis initiation. The

probability of colony survival starting from i cells is lower than 0.5 (gray horizontal line) when i< b and larger than 0.5 when i> b, and increases

rapidly when i crosses b. b = 17, red, is the most common median bottleneck estimated for cancers we analyzed (Fig 4d). d Model parameters on a

timescale. From tumor onset to diagnosis, the tumor grows and releases cells. Once a metastasis is successfully initiated, it takes a cancer-specific

average number of years δ0 until it becomes lethal. The initiated metastases grow on average δ1 years to become large enough to be detectable by

screening. With a certain probability, decreasing with metastasis age, and parametrized by the expected age a when metastases become irremovable,

treatment may remove metastasis. Also due to treatment, time to death is prolonged by a constant h.

https://doi.org/10.1371/journal.pcbi.1008056.g001
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process of metastatic colony initiation (phase 2) where the ratio of proliferation to death rates of

cells in the colony increases with its size (Fig 1b). With increase of the colony size this stochastic

process of colony initialization undergoes a rapid but smooth transition from a subcritical to a

supercritical process when passing a critical colony size (Fig 1c).

To validate our model and hypotheses and to be able to make predictions based on epide-

miological data, we make the following assumptions. First, since larger tumors release more

cells in total over their lifetime, they should have higher chances to seed metastases and there-

fore result in poorer prognosis. Tumor size itself is indeed an important factor of the standard

tumor/node/metastasis (TNM) cancer staging system [37], which is important for prognosis

and treatment decision making. Studies analyzing the dependence of metastasis incidence on

tumor size date back to the 1980’s [38]. Importantly, breast cancer patient survival was

observed to become independent of tumor size upon occurrence of metastases [39]. This

observation further supports the causative, and not only correlative, dependence of metastatic

incidence on tumor size. Similarly to previous studies, we assume exponential primary tumor

growth [29, 30], that tumors release metastatic cells from their surface [25], and that surgery

removes the source of metastatic seeding [31]. Based on these assumptions and on our stochas-

tic model of the metastatic bottleneck, we derive analytical expressions for metastasis probabil-

ity, metastasis detection and cancer death probabilities, and any quantile (for example,

median) time to death as functions of primary tumor size at diagnosis. Our expressions closely

fit to and are predictive of epidemiological data for thirteen different cancer types. Our results,

predictions, and estimated parameters quantitatively characterize the metastatic bottleneck

and indicate that it is a promising therapeutic target.

Methods

We introduce a mathematical model of the tumor growth, extravasation, and intravasation,

the metastatic bottleneck, as well as the metastasis probability and clinical outcome (Fig 1).

Mathematical model of tumor growth, extravasation, and intravasation

To describe the first and efficient phase of metastasis formation, we assume that as the primary

tumor grows, it continues to release cells from its surface (Fig 1a). Primary tumor growth is

modeled as an exponentially increasing spherical volume with the doubling time set to con-

stants measured for different cancers (S1 Table). The per-cell per-year release rate is fixed to

match experimental data, showing that a tumor of one gram contains about 109 cells [40] and

that such a tumor sheds around 1.5 × 105 cells per day [22]. The extravasation probability is

fixed to 0.8, based on experimental observations in mice [12].

Mathematical model of the metastatic bottleneck

To model the second phase of metastasis initiation, we rely on the observations that (i) it is

extremely inefficient [4, 6, 15, 16] and (ii) metastatic propensity increases with colony size

[20, 21]. Seemingly in contrast to the second assumption, in large enough metastatic colo-

nies with high enough density, cells undergo necrosis due to local overcrowding, and their

proliferation rate is expected to decrease and the death rate is expected to increase. In the

case of metastasis initiation, however, the situation is the opposite. At the alien secondary

site, tumor cells in the starting colony lack their usual surrounding in the primary tissue and

are attacked by the immune system. The larger the colony, the less vulnerable are its cells to

these restrictive conditions. Accordingly, our model is an inhomogeneous birth-death pro-

cess, where the ratio of proliferation (λi) to death (μi) rates of each individual cell depends
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on the colony size i with a proportionality constant 1/b

li

mi
¼

i
b
: ð1Þ

We refer to the parameter b as the bottleneck severity (Fig 1b). The larger the severity b, the

stronger the metastatic bottleneck. Indeed, the larger b, the smaller the proliferation to

death rate ratio. Let

pi ¼
li

li þ mi
ð2Þ

denote the jump probability from state i to i + 1, and 1 − pi the probability for the jump

from i into i − 1. The jump probability fully describes the stochastic dynamics of the popula-

tion. For large jump probability pi the colony size will likely increase in the next step, while

for small pi it will likely decrease. The critical colony size is reached when this probability

passes 1/2. Inserting the rates in relation described by Eq (1) into Eq (2), we find that the

critical size is equal to dbe. This branching process has a single absorbing state i = 0, corre-

sponding to colony extinction.

We refer to the probability s1 of never reaching the absorbing state starting from a single

initial cell as the metastasis success probability, given by s1 = exp(−b) (S1 Text). Hence, the

metastasis success probability exponentially approaches 0 with rate equal to the bottleneck

severity b. To make the dependence of s1 on the bottleneck severity b explicit, in further con-

siderations we will use the notation s1(b). The probability of colony survival (not going

extinct), starting from any number of cells i> 1 reads si(b) = FPois(i − 1; b), where FPois(i; b)

denotes a cumulative Poisson distribution function with parameter b (S1 Text). Thus, as the

colony size passes the critical number of i = dbe cells, the probability of survival from i cells

si(b) passes 0.5, rapidly switching from small to large values (Fig 1c).

It is of course not possible that the proliferation to death ratio goes to infinity with increas-

ing colony size. In S1 Text we show that a model assuming a truncation to a constant ratio

after the colony grows large, would yield only negligibly different probabilities of colony sur-

vival. In addition, we present theoretical extension of the model to a more general case, where
li
mi
¼ i

b Þ
a

�
, with addition of parameter α. We discuss a possible scenario where the cells on the

colony surface are more vulnerable to alien microenvironment, leading to value α = 1/3.

Let t be the time from from the onset of the tumor to the time of diagnosis. At this time

point, the primary tumor has released a very large number N(t) of cells that can be regarded as

independent trials to initiate metastases, each with very small success probability s1(b). The

number of metastases is thus Poisson distributed with rate N(t) � s1(b), and the probability of

having at least one successfully initiated metastasis at time t is

Mðt; bÞ ¼ 1 � exp½� s1ðbÞ � NðtÞ�: ð3Þ

Modeling patient outcome

To model post-surgical patient outcome, we make the following assumptions (Fig 1d). We

assume that complete removal of the primary tumor by surgery eliminates the source of

new metastatic seeding, that treatment may remove the metastases and prolong lifespan,

and that the first successful metastasis results in patient death. We ignore potential second-

ary seeding from (micro-)metastases, which may be present at the time of the surgery. We

assume that such secondary seeding does not affect the patient outcome, which instead
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depends on the first metastasis that was not removed by treatment. Once metastasis initia-

tion succeeds in one site of the body, it takes an average time δ0 for metastasis to become

lethal. An average time δ1 is required for the metastases to grow large enough to be detect-

able at diagnosis. Removal of metastases by systemic therapy is less probable as they grow,

and the time when the metastases become irremovable is exponentially distributed with

expectation a. Finally, we consider that treatment prolongs survival of patients on average

by h years. Thus, the average time to death from the first acquired metastasis, which was

later not removed by treatment is δ0 + h. The parameters δ0, δ1, a, h are deterministic. In

contrast, the bottleneck severity b may vary between metastatic colonies and individual

patients. We model this variability by assuming that the bottleneck severity is log-normally

distributed with parameters μ and σ. The six quantities δ0, δ1, a, h, μ, and σ differ for each

cancer type. They are the free parameters of the model and the derived analytical expres-

sions for (i) the probability of cancer death, (ii) the probability of metastasis detection, (iii)
the quantile times to cancer death for all patients, and (iv) the quantile times to cancer

death for the subset of patients with detected metastases.

Below, we introduce the equations describing the dependency of important clinical vari-

ables on tumor size at diagnosis. Their full derivations are presented in S1 Text.

Post-surgical cancer death probability for patients diagnosed with given tumor size.

Let t(d) denote the time that elapsed from the onset of the tumor to the time point when it is

diagnosed with diameter d. t(d) is easily computed with the assumptions of exponential growth

of the primary tumor and its spherical shape (S1 Text). We first observe that patients present-

ing with a tumor of size d should not have developed metastases before t(d) − δ0. This accounts

for the trivial fact that the diagnosed patient is alive at the time of diagnosis. Furthermore,

post-surgical therapy, most commonly chemotherapy, may eradicate some of metastases that

could be life-threatening without treatment. Parameter a corresponds to the expected age of

metastases when they become irremovable by treatment. For a given bottleneck severity b, let

M(t; a, b, δ0) denote the metastasis probability at time point t conditioned on the event that up

to time point t(d) − δ0 no successful metastasis has been created and that successful metastases

were not removed by treatment after the diagnosis (derived in S1 Text):

Mðt; a; b; d0Þ ¼ 1 � exp½� s1ðbÞNðt; a; d0Þ�; ð4Þ

where N(t; a, δ0) is the number of such metastatic seeding attempts that happened after t(d) −
δ0, but also early enough to become irremovable by treatment.

Finally, we account for the fact that the bottleneck may vary between metastatic colonies

and individual patients. Such variability is expected due to multiple biological factors that

may affect the bottleneck, such as differences in genetic makeup and metastatic potential

between tumor cells, and in the microenvironment between the various organs within the

body where they try to seed, as well as in immune system strength and metabolic rate between

patients. We model this variability of the bottleneck severity b by assuming that it is a random

variable with log-normal density f(b; μ, σ) with the cancer-specific parameters: location μ and

scale σ. The cancer death probability at time t is thus obtained by marginalizing over the dis-

tribution of the bottleneck severity

Mðt; a; d0; m;sÞ ¼

Z 1

0

Mðt; a; b; d0Þf ðb; m; sÞdb: ð5Þ
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Finally, to compute the dependence of cancer death probability on tumor size at diagnosis, we

calculate

Mðd; a; d0; m; sÞ ¼

Z 1

0

M½tðdÞ; a; b; d0�f ðb; m;sÞdb: ð6Þ

Metastasis detection probability for patients diagnosed with given tumor size. We

assume that each metastasis needs a mean time δ1 till it reaches a detectable size. Let t1(d) = t
(d) − δ1 and δ1 < δ0. We obtain metastasis detection probability as a function of tumor diame-

ter

Mðd; d0; d1; m; sÞ ¼

Z 1

0

M½t1ðdÞ; b; d0�f ðb; m; sÞdb; ð7Þ

where M[t; b, δ0] is the metastasis probability at time point t, conditioned on the fact that up to

time point t(d) − δ0, where t(d) is the time of diagnosis, no successful metastasis has been cre-

ated (S1 Text). Thus, the metastasis detection probability depends on the parameters δ0, δ1, μ,

and σ. Metastasis detection does not depend on the parameter a, since we assume the screening

for metastases occurs at diagnosis, before any treatment that could remove metastases.

Quantile time to death from patients diagnosed with given tumor size. We consider

the q-th quantile time to death of cancer for patients who (a) had a surgery following the diag-

nosis with diameter d, and (b) will indeed die of cancer. With xq being the root of the equation

(S1 Text)

Z 1

0

Mðxq; a; b; d0Þ

M½tðdÞ; a; b; d0�
f ðb; m; sÞdb ¼ q; tðdÞ > xq � t0ðdÞ: ð8Þ

the quantile time to death is given by

Qðd; q; a; d0; h; m;sÞ ¼ xq þ d0 � tðdÞ þ h; ð9Þ

where h is an additional treatment-related parameter that accounts for the increase of patient

survival due to therapy after detection of the tumor. Thus, the expression for the quantile time

to death depends on the cancer-specific parameters a, δ0, h, μ, and σ, where the dependence on

a, μ, and σ is introduced via xq.
Quantile time to death from cancer for the subset of patients with detected metastases

at diagnosis with given tumor size. For the subset of patients with detected metastases, the

quantile time to death should be computed conditioning on the fact that the metastases origi-

nated before t1(d) = t(d) − δ1 (otherwise they would not have been detectable) and after t0(d) =

t(d) − δ0 (otherwise the patient would have died prior to diagnosis). Reasoning analogously to

above, we solve

Z 1

0

Mðx0q; a; b; d0Þ

M½t1ðdÞ; a; b; d0�
f ðb; m; sÞdb ¼ q; t1ðdÞ > x0q � t0ðdÞ ð10Þ

for x0q, and the quantile time to death for patients with metastases detectable at diagnosis is

then given by

Q0ðd; q; a; d0; h; m;sÞ ¼ x0q þ d0 � tðdÞ þ h: ð11Þ
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Predicting impact of treatment decisions

To estimate the impact of surgery delay δ for a fixed bottleneck severity b and given tumor size

d at diagnosis, we compute the difference of metastasis probability (equivalently, probabilities

of cancer death; given by Eq 4), with and without the delay

Dðd; d; a; b; d0Þ ¼ M½tðdÞ þ d; a; b; d0� � M½tðdÞ; a; b; d0�: ð12Þ

Similarly, the marginal impact of surgery delay for a given tumor size at diagnosis, marginal-

ized over possible bottleneck severities, is computed using using Eq 5 as the difference

Dðd; d; a; d0; m; sÞ ¼ M½tðdÞ þ d; a; d0; m; s� � M½tðdÞ; a; d0; m; s�: ð13Þ

Next, we model the increase of chemotherapy efficiency as an increase of the average metasta-

sis age when the metastasis becomes irremovable by treatment, i.e., by multiplying the parame-

ter a by a factor c1 > 1. To quantify the impact of increased chemotherapy efficiency for a

fixed bottleneck severity b, we compare the cancer death probabilities with and without the

increase,

Dðd; c1; a; b; d0Þ ¼ M½tðdÞ; c1 � a; b; d0� � M½tðdÞ; a; b; d0�: ð14Þ

Similarly, the marginal impact of increased chemotherapy efficiency is evaluated as

Dðd; c1; a; d0; m;sÞ ¼ M½tðdÞ; c1 � a; d0; m; s� � M½tðdÞ; a; d0; m; s�: ð15Þ

Finally, we predict the impact of the increase of the metastasis bottleneck severity by a factor c2

> 1. Such an increase would correspond to the mechanism of action of vaccines, where we

would be able to strengthen the defense of the immune system against the initiation of the met-

astatic colonies. For a fixed initial bottleneck severity b, the impact is evaluated as the differ-

ence between the cancer death probability for increased b and for b unchanged

Dðd; c2; a; b; d0Þ ¼ M½tðdÞ; a; c2 � b; d0� � M½tðdÞ; a; b; d0�: ð16Þ

To compute the marginal impact of increased bottleneck severity, we evaluate the difference

of the cancer death probability for increased median of the bottleneck distribution and for the

median unchanged

Dðd; c2; a; d0; m; sÞ ¼ M½tðdÞ; a; d0; log ðc2Þ þ m; s� � M½tðdÞ; a; d0; m; s�: ð17Þ

Since the median of the log-normal distribution is given by exp(μ), the new distribution of the

bottleneck parameter has location parameter log(c2) + μ.

Code availability

The code allowing full reproducibility of all presented results is freely available at https://

github.com/EwaSzczurek/MetastaticBottleneck.

Results

Dependence of clinical outcome on tumor size as observed in

epidemiological data

We systematically analyzed the records of patients selected from the SEER database [41]. The

data included fourteen cancer types from eleven primary sites, namely ductal and lobular

breast, ovarian, endometrial, esophageal, gastric, colon and mucionous colon, rectal, pancre-

atic, non-small cell lung, head and neck, renal, and bladder cancer. We selected a total of
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159,191 patients with a single primary tumor that was surgically removed without prior treat-

ment and where primary tumor diameter was measured (for details about SEER data and

patient selection see S1 Text and S2 Table).

We first investigated how clinical outcome depends on tumor size. For all cancer types

except for ovarian cancer, we found that the frequency of metastasis detection and of cancer

death significantly increase with tumor diameter (Fig 2a), while median time to death

decreases (Fig 2b left). S3 Table reports significance test results obtained from two-sided

Mann-Kendall trend tests. Ovarian cancer data does not follow this trend, possibly because

ovarian carcinoma has a unique and very efficient way to rapidly spread within the peritoneal

cavity, which differs markedly from the classical pattern of hematogenous dissemination [42].

This deviating behavior further supports the connection between tumor size and metastatic

probability via hematogenous tumor cell dissemination. The difference in trends is even more

pronounced when an average over all non-ovarian cancer cell types is compared against ovar-

ian cancer (S1 Fig). The patients with metastases detectable at diagnosis die of cancer much

earlier than patients without detected metastasis, and their median time to death does not

depend on primary tumor diameter (Fig 2b right). This finding is in agreement with previous

observations made for breast cancer [39].

Model fitting and validation

To estimate the model parameters for each cancer type, we fitted the expressions for metastasis

detection (Eq 7; Fig 3a and S2a Fig, blue curves) and quantile times to death (Eq 9; Fig 3b and

S2b Fig, blue curves) for all patients and eleven different quantiles to the SEER data (see Meth-

ods for equations and S1 Text for model fitting and validation procedure). These expressions

together depend on all six free parameters of our model. The ovarian cancer data was excluded

from this analysis because it did not show dependence of patient outcome on tumor size in the

epidemiological data, which is in contrast to our model assumptions (Fig 2). The model fits

the data extremely well. Fits to other quantile times to death data are similar to the fits to the

median (S3 Fig).

With all parameters estimated, we validated the model by comparing its predictions of can-

cer death probability (predicted using Eq 6) to the corresponding data in the SEER database

(Fig 3a and S2a Fig, red curves). Here, the validation concerns the correctness of Eq 6, as the

model was trained fitting Eqs 7 and 9, without using the information about the fraction of

patients who eventually died of cancer. Cancer death probability, however, is difficult to

Fig 2. Epidemiological data from the SEER database [41] for different cancer types (colors). a The probability of metastasis detection (left) and the

probability of cancer death (right) increase with tumor size at diagnosis. Only ovarian cancer data (black) do not follow these monotonic trends. b

Median time to death for all patients (left) decreases with tumor size at diagnosis, again except for ovarian cancer (black). For the subset of patients who

had metastases detected at diagnosis (right), the median time to death is generally much shorter and is not tumor-size dependent.

https://doi.org/10.1371/journal.pcbi.1008056.g002
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estimate from epidemiological data due to deaths for other reasons. To account for those

deaths, we reported three different estimators for cancer death probability. The upper-bound

estimator treats all deaths as cancer death, the lower-bound estimator treats all patients who

died from other reasons than cancer as alive, and the Kaplan-Meier estimator treats other

deaths as censored (S1 Text). We find that the model predictions are consistent with observed

cancer death frequencies, such that for most cancer types our predictions are very close to one

of its estimators. Cancer death probability is modeled as the probability of having metastasis

that were not removed by treatment after diagnosis. This accounts also for undetectable metas-

tases, and thus the predicted cancer death probability is larger than metastasis detection proba-

bility, in agreement with the data.

Fig 3. Model fit and validation. a,b Fit and validation of our model on the SEER data, exemplary for three cancers, for which we obtained the best,

intermediate, and worse fit, respectively, and for which validation data was available (see S2 Fig for remaining ten cancers). Black points represent

data records, blue lines show fitted, and red lines predicted curves. a Metastasis detection probability (left panel) is compared to cancer death

probability (right). For cancer death probability, up and down-oriented triangles present the upper and lower estimates of that variable from the

data, respectively, while the black dots represent a Kaplan-Meier (KM) derived estimate (S1 Text). The predictions stay within the range of the

estimators. b The median time to death data for all patients, (left panel) was used for model fitting and is tumor-size dependent. For a validation

cohort of patients with metastases detected at diagnosis, the model correctly predicts a much shorter median time to death and that this time is

almost constant across tumor diameters (right). c Independent validation on survival data for two pancreatic cancer cohorts: Autopsy and Adjuvant,

analyzed by Haeno et al. [30] (black, with gray confidence bands). We predict their survival function using our pancreas cancer model, fit solely to

SEER data, and accessing only information about tumor diameters of patients in the cohorts. For both cohorts, our predictions (red) are as close to

the data as predictions obtained from the the Haeno et al. model (orange).

https://doi.org/10.1371/journal.pcbi.1008056.g003
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Furthermore, we predicted the time to death for the group of patients who had metastases

detected at the time of diagnosis (using Eq 11). For these patients, the metastasis must have

originated so early that it had enough time to grow to a detectable size (Methods). The model

accurately predicts the very short median time to cancer death for patients with detected

metastases and that it does not depend on tumor diameter (Fig 3b and S2b Fig, red curves).

Additionally, we validated our model on independent survival data from two pancreatic

cancer cohorts, named Autopsy and Adjuvant [30]. Using our expressions that we fitted to

pancreatic cancer data from the SEER, we very closely predict the survival functions of these

two independent cohorts using only their primary tumor diameters (Fig 3c; S1 Text). Our pre-

dictions are as close to the data as those obtained from the model of Haeno et al. [30], which,

however, was fitted to the Autopsy cohort itself, having access not only to tumor diameters

and clinical information, but also to counts and sizes of metastatic lesions determined at

autopsy.

Characterization of cancer types with model parameter values

The estimated model parameters allowed ranking cancer types by their severity and suscepti-

bility to treatment (Fig 4a). The estimated time intervals from the formation of a successful

metastatic colony to the patient’s death, δ0, are different for different cancer types and range

from 2.6 years for the deadliest up to 12.5 years for the least aggressive cancers. For all cancers,

the estimated parameters δ1, interpreted as the time during which the metastases grow detect-

able, are very close to δ0. This has important implications to model predictions. According to

the model assumptions, patients die on average δ0 (the time for a metastasis to become lethal)

plus h (life prolongation due to treatment) years after the acquisition of the first metastasis,

which was later not removed by systemic therapy, such as chemotherapy. First, the fact that δ1

Fig 4. Estimated model parameters for thirteen cancers. a The estimated time for metastases to become lethal, δ0 (light green) and the time for

metastases to become detectable, δ1 (dark green), are shorter for more aggressive cancers. b The estimated life prolongation due to treatment h (blue) is

very close to the predicted median time to death for patients with metastases detected at diagnosis, averaged over tumor diameters (red; compare Fig

3b). c The expected time of metastases to become irremovable by treatment, a, was estimated to be the upper bound of around 1 year, for seven cancers.

For the remaining six cancers, a is on the order of weeks and the removal probability decreases much faster as a function of metastasis age. d Box plots

showing 25th, 50th (median), and 75th percentiles (vertical bars) and 1.5 interquartile ranges (horizontal line ends) of the bottleneck severity b (x-axis)

for all cancers, ordered by the median severity (y-axis). The median bottleneck severities range from 10 to 21, with the most common median severity

equal 17 cells (the median bottleneck severity was 17 for four cancers, for three it was 18, and for two it was 16). As expected, the variances of the

bottleneck severity distributions are large, indicating strong variability of the bottleneck both within and between patients.

https://doi.org/10.1371/journal.pcbi.1008056.g004
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is close to δ0 indicates that patients with detectable metastases are already at a very late stage of

the disease and without treatment would have died at a time point close to diagnosis and

metastasis detection. Second, the predicted median time to death for those patients is deter-

mined by treatment induced life prolongation h (Fig 4b), in good agreement with the data

(compare Fig 3b). For all cancer types, the estimated prolongation h is much shorter than the

intervals δ0 and δ1, with the largest values of around 1.5 years. The times for the metastases to

become lethal (δ0) and detectable (δ1), as well as life prolongation h tend to be shorter for can-

cer types that are known to be more aggressive, such as pancreatic or esophageal carcinomas.

The expected age a when the metastases become irremovable was either estimated around 1

year (its upper bound; S1 Text) or only several weeks (Fig 4c).

The estimated distribution of the bottleneck severity b provides new insights into the num-

ber of tumor cells critical for successful metastasis initiation. The distribution is similar across

all analyzed cancers, with one outlier, namely colon mucinous cancer (Fig 4d). The most com-

mon median bottleneck is 17 cells, corresponding to a metastatic success probability of only

s1 = 4.1 × 10−8, in agreement with the reported inefficiency of this phase of metastasis forma-

tion. For all analyzed cancers, the estimated bottleneck distribution has a large variance, indi-

cating considerable variability of bottleneck severity within and between patients. To assess

whether this flexibility of the model is necessary to explain the data, we repeated the entire

data analysis, estimating a reduced model with single fixed bottleneck parameter rather than a

bottleneck distribution (see S1 Text). The goodness of fit of the reduced model to the median

survival data is comparable to the fit of the full model (S5 Fig) and the validation performance

on the median survival data for the subset of patients with detected metastases (S7 Fig) is also

similar. In contrast, however, both the goodness of fit to the metastasis detection data and the

validation performance on the cancer death frequency data are worse for the reduced model

(illustrated in S4 and S6 Figs), confirming the key importance of accounting for bottleneck

variability.

Predicted impact of treatment change on patient outcome

Finally, we apply our model to predict impact of treatment decisions on patient survival (Fig 5

and S8 Fig). To this end, we consider how they will impact the probability of cancer-related

death, both for patients with fixed exemplary bottleneck severity values, and for the entire pop-

ulation, where the impact is marginalized with respect to the bottleneck distribution. First, to

evaluate the impact of possible surgery delay, we modified the model by effectively allowing the

tumor to grow and seed the metastases δ = 16 weeks longer than the actual time of diagnosis

(Fig 5a; using Eq 12 for fixed bottleneck severity and Eq 13 for marginalized bottleneck). Sec-

ond, we evaluate the impact of increasing the efficiency of a systemic therapy, such as chemo-

therapy. This was modeled by allowing chemotherapy removing more and larger metastases,

or equivalently increasing the expected age a at which a metastasis becomes irremovable by a

factor c1 = 1.2 (i.e., by 20%) (Fig 5b; Eqs 14 and 15). Third, we evaluate a treatment strategy

resulting in c2 = 1.2 (20%) increase of the median bottleneck severity (Fig 5c; Eqs 16 and 17).

S8 Fig compares the results of the impact predictions for δ = 16 weeks with δ = 8 weeks, as well

as for c1 = 1.2 with c1 = 1.1, and for c2 = 1.2 with c2 = 1.1. In all predictive equations, all other

parameters were fixed to those estimated for the respective cancer types from the SEER data.

The model predicts that the impact of all three treatment decisions is tumor size-dependent,

with lower impact for small and large tumors and larger impact for mid-sized tumors. A simi-

lar behavior, but only for the impact of surgery delay, was reported in mice [31]. Intuitively,

decisions such as delay of surgery or modification of treatment efficacy may not matter for

small tumors, which did not yet succeed to develop metastases, nor for large tumors, which
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already have acquired them. Importantly, different cancer types differ in the primary tumor

sizes that are most sensitive for treatment decisions.

Besides the primary tumor size, our model suggests that the impact of treatment strategies

depends also on the metastatic bottleneck, such that the peak of the impact is different for dif-

ferent bottleneck severities. For example, for fixed bottleneck severities (color curves in Fig 5a

and S8 Fig), the largest predicted increase of cancer death probability due to surgery delay of

16 weeks is for head and neck cancer (S8 Fig): for a bottleneck severity of 16 cells and a tumor

diameter of 0.625 cm, the increase is circa 0.19 and decays to 0 for larger tumors. For the same

cancer type, but bottleneck severity 17, the peak impact of surgery delay is at a tumor diameter

of 1.125 cm. The marginal (w.r.t. the bottleneck distribution) increase of cancer death proba-

bility due to surgery delay of 16 weeks (black curves in Fig 5a) does not exceed 0.05, and is the

largest for pancreatic cancer and a tumor diameter of 0.875 cm. The estimated bottleneck dis-

tributions (Fig 4d) imply that the impact will vary both between and within patients. Since the

individual bottleneck severities are unknown, our estimates of the marginal impact can be

used to indicate how treatment decisions will affect most of the individuals.

We predict that a systemic therapy that would decrease the chances of successful metastatic

colony initiation and tighten the median bottleneck by 20% (Fig 5c), would roughly have a

100-fold higher impact on patient survival than a 20% increase of chemotherapy efficacy (Fig

5b). Across all cancers and diameters, the largest obtainable marginal decrease in cancer death

probability due to increase in chemotherapy efficiency by 20% is 0.01 (for pancreatic cancer

and tumor diameter 1 cm). For a median bottleneck severity increase by 20%, the maximum

Fig 5. Predicted impact of treatment decisions. Change in cancer death probability (y-axis) due to treatment change

depends on tumor diameter (x-axis) and bottleneck severity (colors). Black curves present the change in cancer death

probability, marginalized over the bottleneck severity. Shown for the most impacted cancers: pancreatic (with the highest

marginal impact of surgery delay and chemotherapy boost), breast (with the highest marginal impact of increasing bottleneck

severity) and esophageal cancer (with the highest observed impact overall) (rows). The increase of cancer death probability

due to surgery delay by 16 weeks (a), as well as decrease of cancer death probability due to increase of chemotherapy efficacy

by 20% (b) are both much smaller than the decrease due to strengthening of the metastatic bottleneck by 20% (c). Surgery

delay is modeled by allowing the tumor seed the metastases longer, chemotherapy efficiency boost is modeled by allowing

chemotherapy removing more and larger metastases, while the strengthening the bottleneck is modeled by increasing the

median bottleneck severity parameter.

https://doi.org/10.1371/journal.pcbi.1008056.g005
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marginal decrease of cancer death probability is 0.44, for breast cancer. Caution should be

taken, however, when directly comparing the effects of tightening the metastatic bottleneck to

the effect of boosting the chemotherapy. This is because the corresponding variables—the

expected age at which a metastasis becomes irremovable and the the median bottleneck sever-

ity—have different meanings and live on different scales.

Discussion

In this work, we provide a mathematical model for metastasis initiation, proposing the Allee

effect as an explanation for the metastatic bottleneck. Furthermore, we estimate the severity of

the bottleneck from epidemiological data for different cancers. The presented work extends

current knowledge about metastasis formation in several ways. It is well known that tumor

size influences prognosis, and tumor diameter is an important factor in the TNM staging sys-

tem. The proposed model links tumor size to metastatic probability and provides mathemati-

cal expressions that describe the non-linear dependence of patient outcome on tumor size. We

found that the size of the tumor is also predictive of how much a patient will benefit from a

given treatment. Our model predictions indicate that only patients with not too large or too

small tumors would benefit from additional treatments. Therefore, our model might be useful

to support clinical decision making. In addition, we emphasize the importance to account for

variability of metastasis initiation within and between patients. The model suggests that, apart

from tumor size, also the individual bottleneck severity has a significant impact on patient

response. The model predicts a high potential of treatment aiming at narrowing the metastatic

bottleneck. Such bottleneck treatment would increase the chances of patient survival by reduc-

ing the chances to form a metastasis. Recent advances in immunological cancer treatment led

to clinical trials of anticancer vaccines [43]. A bottleneck shift may be achieved in the future by

such vaccines that strengthen the immune system against forming metastatic colonies, by

reducing the number of circulating tumor cell clusters, or by such drugs that reduce cell adhe-

sion in a cancer cell-specific manner.

We deliberately kept the proposed mathematical model as simple as possible, minimizing

the number of free parameters. Except from modeling the distribution of the bottleneck sever-

ity, which is the most sensitive parameter in the model, other, less sensitive parameters are

fixed to values derived from the literature or estimated as robust summary statistics of time to

events. One example of a fixed parameter is the extravasation probability, which was set to 0.8

based on experiments in mice. Perturbations of this parameter change the results only sightly

(S9 Fig). An example of a robust free parameter in the model is an average time to death from

the acquisition of metastases. The model does not account, or only indirectly accounts for sev-

eral phenomena that were proposed by previous studies. First, the model assumes only seeding

of metastases with single, and not larger clusters of cells. Considering the possibility of seeding

with clusters would result in many additional free parameters in the model, accounting for

per-tumor cell, per-year release rates and extravasation probabilities for the clusters. Future

work is required to address this issue, including experimental specification of parameters and

extension of the model. According to the model, seeding with a cluster of several cells increases

the probability of survival of the seeded metastasis (Fig 1c). Accordingly, we expect that model-

ing the initiation of metastases with cell clusters would result in an increased estimate of the

median bottleneck severity. In this way, the model would compensate for the increase of the

survival probability due to larger seeds by making the critical point harder to reach. The effect

of metastatic latency is incorporated into the parameters of our model that correspond to the

mean time of a metastasis to become detectable or lethal. Finally, our model is less expressive

than several others, describing for example metastasis size distribution [44, 45] or metastatic
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growth. As such, it can be fit to and is predictive of epidemiological data, while more expres-

sive models require model-tailored meticulous measurements of tumor burden. Despite its

simplicity, our model is able to capture and be predictive of a surprising variety of aspects of

clinical outcome. In summary, the presented model is a step forward in the understanding of

metastasis formation, its bottleneck, and its impact on patient outcome.

Supporting information

S1 Fig. Epidemiological data from the SEER database [41] for ovarian cancer compared to

an average of other analyzed cancer types (red). a For the other cancers, on average, the

probability of metastasis detection (left) and the probability of cancer death (right) increase

with tumor size at diagnosis. In contrast, ovarian cancer data do not follow these monotonic

trends. b For the other cancers, on average, the median time to death for all patients (left)

decreases with tumor size at diagnosis, but not for ovarian cancer. For the subset of patients

who had metastases detected at diagnosis (right), the median time to death is generally much

shorter and is not tumor-size dependent.

(PDF)

S2 Fig. Fit and validation of the model on the SEER data, for ten additional cancer types

(rows, ordered by the decreasing goodness of fit, or increasing RMSE), which are not fea-

tured in Fig 3 in the main text. Black points represent data records, blue lines show fitted,

and red lines predicted curves. The model fits the data perfectly. a Metastasis detection proba-

bility (left panel) is compared to cancer death probability (right). For cancer death probability,

up and down-oriented triangles present the upper and lower estimates of that variable from

the data, respectively, while the black dots represent a Kaplan-Meier (KM) derived estimate.

The predictions stay within the range of the estimators. b The median time to death data for all

patients, (left panel) was used for model fitting and is tumor-size dependent. For a validation

cohort of patients with metastases detected at diagnosis, the model correctly predicts a much

shorter median time to death and that this time is almost constant across tumor diameters

(right).

(PDF)

S3 Fig. Summary of the model fit. For thirteen different cancer types, their fit to the data is

measured using root mean squared error (RMSE). The cancer types (rows) are ordered by the

increasing mean RMSE of the fit to quantile time to death data. a Low RMSE values indicate

very good agreement of the model with metastasis detection probability (as visualized also in

Fig 3a in the main text and S2a Fig, blue lines). The largest RMSE is obtained for pancreatic

cancer, for which also the largest absolute metastasis detection probability is recorded (see S2a

Fig). b Similarly good fit is obtained for quantile time to death data, for eleven different quan-

tiles (x-axis). Larger RMSE values than for metastasis detection probability in (a) are due to

the fact that quantile time to death is in measured in years (usually, several) and not probability

values. The fit to 0.5-th quantile (median) is visualized also in Fig 3b in the main text and S2b

Fig. The RMSE for other quantiles is comparable to the RMSE obtained for the median

(0.50-th quantile) time to death data.

(PDF)

S4 Fig. Fit of the reduced model on the metastasis detection data from the SEER database

for thirteen cancer types. The reduced model is the same as the proposed model but with sin-

gle fixed bottleneck severity parameter instead of distribution. Black points represent data rec-

ords, blue lines show the fitted curves. In contrast to the excellent fit obtained by the proposed

model (compare to Fig 3a left in the main text and S2a Fig left), the reduced model obtains a

PLOS COMPUTATIONAL BIOLOGY A metastatic bottleneck model predicts patient outcome and response to cancer treatment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008056 October 2, 2020 15 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008056.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008056.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008056.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008056.s004
https://doi.org/10.1371/journal.pcbi.1008056


worse fit, especially for colon and colon mucinous cancer types.

(PDF)

S5 Fig. Fit of the reduced model on the median survival data from the SEER database for

thirteen cancer types. The reduced model is the same as the proposed model but with single

fixed bottleneck severity parameter instead of distribution. Black points represent data records,

blue lines show the fitted curves. For this data, the reduced model obtained a comparable fit as

the proposed model (compare to Fig 3b left in the main text and S2b Fig left).

(PDF)

S6 Fig. Poor validation of the reduced model on the cancer death frequency data from the

SEER database, for thirteen cancer types. The reduced model is the same as the proposed

model but with single fixed bottleneck severity parameter instead of distribution. Black points

represent cancer death probability derived from the data records: up and down-oriented trian-

gles present the upper and lower estimates of that variable from the data, respectively, while

the black dots represent a Kaplan-Meier (KM) derived estimate. Red lines show predicted

curves. The reduced model performs poorly in predicting the true values observed in the data,

obtaining worse validation performance than the proposed model (compare to Fig 3a right in

the main text and S2a Fig right).

(PDF)

S7 Fig. Validation of the reduced model on the median survival data from the SEER data-

base, for the subset of patients with detected metastases, and eight cancer types. For the

remaining cancers the sample size was too small to compute the medians for more than one

tumor diameter. The reduced model is the same as the proposed model but with single fixed

bottleneck severity parameter instead of distribution. Black points represent median time to

death for patients with metastases detected at diagnosis, derived from the data records. Red lines

show predicted curves. For this data, compared to the proposed model (see Fig 3b right in the

main text and S2b Fig right), the reduced model obtained a comparable validation performance.

(PDF)

S8 Fig. Predicted impact of treatment decisions, for ten additional cancer types (rows,

alphabetically ordered), which are not featured in Fig 4 in the main text. Change in cancer

death probability (y-axis) due to treatment change depends on tumor diameter (x-axis) and

bottleneck severity (colors). Black curves present the change in cancer death probability mar-

ginalized over the bottleneck severity. The increase of cancer death probability due to surgery

delay by either 16 or 8 weeks (solid or dashed lines in a, respectively), as well as decrease of

cancer death probability due to increase of chemotherapy efficacy by 20% (solid lines in b) or

by 10% (dashed lines in b), are both much smaller than the decrease due to strengthening of

the metastatic bottleneck by 20% (solid lines in c) or by 10% (dashed lines in c).

(PDF)

S9 Fig. Results as presented in Fig 3 in the main text but for a model with an altered extrav-

asation probability. a, c, e Metastasis detection probability (left panel) and cancer death prob-

ability (right). b, d, f The median time to death data for all patients, (left panel) and patients

with metastases detected at diagnosis (right). a, b For extravasation probability 0.08. c, d For

extravasation probability 0.4. e, f For extravasation probability 1. Compared to the model with

extravasation probability 0.8, presented in Fig 3, the curves for the model with extravasation

probability 0.08 (10 times smaller) are not as close to the data, but for extravasation probability

0.4 (two times smaller) or 1 (1.25 times larger) they are almost as close.

(PDF)
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S1 Text. Supplementary text. Comparison to a simpler model by Cisneros and Newman. Full

derivation and extensions of the mathematical model of the metastasis bottleneck and patient

outcome, with theoretical model generalizations. Processing epidemiological data. Model fit-

ting and validation. Formulation of the reduced model.

(PDF)

S1 Table. Per-cancer tumor growth rates fixed for thirteen modeled cancer types. For each

cancer type, we list the tumor doubling time in days, denoted D, as found reported (usually as

median or mean value across a measured population) in the cited references. The per year

exponential growth rate r in our model, was then computed from those doubling times as

ln(2) � 365.24/D. For several cancer types, we were unable to find measured doubling times.

For those cancer types, we fixed the corresponding rates to ones measured in the most similar

cancer type. Specifically, for endometrial cancer, we fixed the doubling rate to the rate reported

in another female cancer, breast. For esophageal, gastric and bladder cancer types, we fixed the

rate as reported for colon and rectum.

(PDF)

S2 Table. Overview of analyzed cancer types with minimum follow up times and number

of cases included after filtering from the SEER [41] database. For each cancer type, we pro-

vide a short name that is used throughout the manuscript. For each type, we defined a desig-

nated minimum follow-up time that ensures a sufficient number of patients for calculating

representative statistics of frequency of metastasis detection, frequency of cancer death and

quantile times to death. Generally, the minimum follow up times were a compromise between

the requirement of long monitoring time after diagnosis, and the resulting sample sizes for

each cancer. The minimum follow-up time differs between different cancer types, reflecting

their clinical behavior. For example, for more aggressive cancers, such as pancreatic and

esophageal cancer, which have a poor prognosis, a shorter minimum follow-up time was

allowed. In contrast, for breast cancer, where the ten year survival rate for all stages is nearly

80%, the minimum follow-up was set to 20 years. This still allowed for a very large sample size

of 35949 patients, since breast cancer is one of the most common cancer types.

(PDF)

S3 Table. Significance analysis of the monotonic dependence of clinical variables on

tumor size. For each cancer type (rows), the p-values in a two-sided Mann-Kendall trend

test are reported. Table entries in red contain p-values lower than 0.01. Light red entries con-

tain p-values lower than 0.05. For metastasis detection probability, cancer death probability

and median time to death, the monotonic trend is significant for all cancers, except ovarian

and with exception of cancer death probability for esophageal and median time to death for

colon mucinous cancer. The same results hold for false discovery rate (FDR) computed from

p-values using Benjamini-Hochberg correction for 14 tests (first four columns) or without

correction (last four columns). NA values in the “Median time to death for patients with

mets” column indicate that, due to too small patient sample sizes, there is no such data avail-

able.

(PDF)
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