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Abstract
The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific

hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response.

To date, there have been no studies on the role of ASR genes in delayed flowering time.

Here, we found that the ASR from banana, designated asMaASR, was preferentially
expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflo-

rescence.MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype.

The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater

than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers,

and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantita-

tive real-time PCR (qRT-PCR) analyses revealed that overexpression ofMaASR delays

flowering through reduced expression of several genes, including photoperiod pathway

genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator

genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage);

however, the expression of the autonomous pathway genes was not affected. This study

provides the first evidence of a role for ASR genes in delayed flowering time in plants.

Introduction
Flowering time is crucial for pollination and reproductive success in higher plants [1, 2], which
is regulated through four major pathways, the photoperiod-, vernalization-, autonomous-, and
gibberellic acid (GA)-dependent pathways, in Arabidopsis [3–5]. Photoperiod, or the duration
of light in a given day, is a critical cue that flowering plants utilize to effectively assess seasonal
information and coordinate their reproductive development in synchrony with the external
environment [6]; photoperiod thus controls flowering time by regulating the expression of a
number of key genes, such as CONSTANS (CO), EARLY FLOWERING4 (ELF4), and EARLY
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FLOWERING3 (ELF3) [6, 7]. Flowering in some plants can be stimulated by exposure to long
periods of low non-freezing temperatures, which is known as varnalization, and is regulated by
the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes [4, 8]. However, the autonomous
pathway associated with the GA pathway integrates developmental signals to regulate plant
flowering time [9]. Recent studies have reported that floral regulatory pathways regulate the
expression of floral integrator genes such as SUPPRESSOR OF OVEREXPRESSION OF CO1
(SOC1) and LEAFY (LFY) [10, 11]. In addition, a series of transcription factors including CO,
FLC, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL), and CAPRICE (CPC) con-
trol flowering time by regulating the target genes expression of these pathways [6, 10, 12–14].

The ABA-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic tran-
scriptional factor widely distributed to approximately 20 monocot, dicot, and gymnosperm
plant species belonging to the group 7 of the LATE EMBRYONGENESIS ABUNDANT pro-
teins [15, 16]. It is a small size protein (~13 kDa) localized to both the nucleus and the cyto-
plasm, and contains Zn2+-dependent DNA binding activity at the N-terminus and a nuclear
localization signal at the C-terminus [17, 18]. The number of ASR orthologous genes varies
from 1 to 9 in different plant species [18] but, surprisingly, orthologs have not been identified
in Arabidopsis thaliana and crucifer Thlaspi caerulescens [16]. Several ASR orthologous and
paralogous genes are involved in fruit ripening and in the response to various abiotic stresses,
particulary salt and drought stress tolerance [15–18]. Increasing evidence has also indicated
that ASRs are involved in the regulation of floral development [19, 20]. In lily, ASR orthologous
proteins accumulate only at the later stage of pollen maturation and these levels remain steady
in mature and vital pollen [21]. Tomato ASR1 and ASR4 are expressed in flower organs [19],
and tobacco ASR in vivo binds to a transcription factor bZIP involved in floral development
[20]. Overexpression of the ASR gene affects sugar trafficking, flower development, and fruit
development [18, 20, 22]; however, the role of ASR in regulating plant flowering time has not
been reported.

Banana (Musa spp.), the second ranking fruit crop in the world, has a large, dark purple-red
inflorescence and produces female, male, and bisexual flowers. Bud differentiation and fruit
yield are largely determined by female flowering time. Our previous studies showed that
MaASR enhances drought stress tolerance [16]. In the present study, we found that the overex-
pression ofMaASR in Arabidopsis could result in a clear delayed-flowering phenotype. Micro-
array and quantitative real-time PCR (qRT-PCR) results demonstrated that the expression of a
number of key genes involved in the flowering regulator pathways, including photoperiod-,
vernalization-, GA-pathways, and floral integrator, are down-regulated byMaASR overexpres-
sion to delay flowering time. This study has identified the role of ASR genes in delayed flower-
ing time for the first time, and this finding may enable regulation of flowering time in plant
breeding and a genetic improvement of plant yields.

Materials and Methods

Plant materials
Banana (M. acuminata L. AAA group, cv. ‘Dwarf Cavendish’) (ITC0002) inflorescence was
obtained from a banana plantation (Institute of Tropical Bioscience and Biotechnology, Chi-
nese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China). Roots,
leaves, rhizomes, fruits, and female flowers from the tenth (F10), ninth (F9), eighth (F8), fourth
(F4), and first (F1) cluster of the inflorescence were collected to analyzeMaASR expression. All
materials were separately frozen in liquid N2 and stored at -80°C until later analysis.

A. thaliana (Columbia ecotype) seeds were purchased from the Arabidopsis Biological
Resource Center (Ohio University, Columbus, USA). DH5α Escherichia coli and LBA4404
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Agrobacterium tumefaciens strains were provided by Professor Jiaming Zhang from the Chi-
nese Academy of Tropical Agricultural Sciences. All Arabidopsis seeds were sown on a 1:1:8
mixture (by weight) of vermiculite, perlite, and peat moss, respectively, and were grown at
22°C with 70% humidity and short day condition (SD, 8 h light/16 h dark cycle) illuminated by
Sylvania GRO LUX fluorescent lamps (Utrecht, Netherlands). When A. thaliana produced 12–
14 rosette leaves, they were grown at 70% humidity and long day (LD) condition with 16 h
light/8 h dark cycle to promote flowering.

Cloning, subcellular localization and expression analysis ofMaASR
The full-length cDNA encodingMaASR was amplified with the primers MaASR-F and
MaASR-R (S1 Table) based on the expressed sequence tag (EST) ofMaASR isolated from a
banana fruit cDNA library [23] with the adapter primers Ptr-F and Ptr-R (S1 Table). The
MaASR full-length cDNA sequences were submitted to GenBank (http://www.ncbi.nlm.nih.
gov/Banklt/index.html). Amino acid sequences were compared using the DNAMAN software
package (Version 5.2.2, Canada).

The Open Reading Frame (ORF) ofMaASR was inserted into a pCAMBIA1304-GFP
expression vector to generate a MaASR-GFP fusion protein under the control of a cauliflower
mosaic virus (CaMV) 35S promoter. The recombinant plasmid was transferred to the A. tume-
faciens strain LBA4404 and introduced into Nicotiana benthamiana leaves as described previ-
ously by Goodin et al. [24]. After 48 h of incubation on MS at 25°C, fluorescence was examined
using fluorescence microscopy (LSM700, Carl Zeiss, Germany).

MaASR expression was assayed by qRT-PCR in an iQ5 real-time PCR detection system
(Bio-Rad, USA) using the SYBR ExScript RT-PCR kit (TaKaRa, Japan). A series of primer and
template dilutions were performed to acquire the optimal primer and template concentrations
for amplifying the target genes prior to quantification experiments. Primers that had high spec-
ificity and efficiency on the basis of melting curve analysis were used to conduct quantification
analysis (S1 Table). Moreover, PCR products were sequenced to confirm the specificity of
primer pairs. Amplification efficiencies of primer pairs ranged from 0.9 to 1.1. ACTIN (acces-
sion No. EF672732) and UBQ (accession No. XP009390884.1) that were verified to be constitu-
tive expression and suitable to be used as internal controls were used as reference genes to
normalize transcriptional levels ofMaASR gene (S1 Table). The relative expression levels of
MaASR gene were verified in triplicate and calculated using the 2−ΔΔCT method [25].

Plant transformation and blot analysis of transgenic plants
AMaASR coding region driven by a 35S promoter was inserted into the pBI121 vector by
replacing the β-glucuronidase following digestion with BamHI and SacI. The pBI121-MaASR
was transferred into an A. tumefaciens strain LBA4404. Transgenic Arabidopsis plants were
generated using the floral dip-mediated infiltration method [26]. Homozygous T3 kanamycin-
resistant lines L14 and L38 were used for blot analyses and functional investigation.

Southern blot was used to determine the integration ofMaASR to the A. thaliana genome.
Probes were prepared from the PCR product using primers (50-ccgaggagaagcaccaccac-
30 and 50-gccaccgctgcagcgatctcc tc-30) and were labelled with DIG-dUTP according
to the manufacturer’s instructions (Roche Applied Science, Germany). A Northern blot probe
was labelled using a random primer labeling system (Roche Applied Science, Germany) and
hybridized according to the manufacturer’s instructions (Roche Applied Science, Germany).
Western blotting was performed using MaASR monoclonal antibodies (Abmart, China) diluted
1:500. After hybridization, the membrane was washed and exposed to X-ray film (Kodak Bio-
MaxMS system) according to Miao et al. [27].
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Phenotype observation ofMaASR transgenic plants
Rosette leaves number, bolting, and flowering time ofMaASR transgenic lines L14 and L38
andWT were analyzed according to the methods of Diallo et al. [28]. The statistical analysis is
listed in S2 Table. Vegetative growth, bolting, and flowering phenotype of the transgenic lines
andWT were photographed. Floral organs phenotypic differences of early flowering between
transgenic lines andWT under LD condition were observed using a dissecting microscope
(OLMPUS-SZX12).

Total RNA extraction and cDNA synthesis fromMaASR transgenic lines
andWT
RNAs were isolated fromMaASR transgenic plants L14 and L38 and WT at 14 d and 28 d
under the SD, 14 d and 28 d under the LD condition, respectively, using a plant RNA Kit
(QIAGEN, Germany). The first strand of cDNA was synthesized using a RevertAidTM First
Strand cDNA Synthesis Kit (Fermentas, Ontario) according to the manufacturer’s instruc-
tions. RNA quality was assessed by the fractionation of total RNA on a 1.2% (w/v) agarose gel
and imaged using the GelDox XR system (Bio-Rad, USA). All RNA samples prepared (A260/
A280 ratio = 1.8~2.0; rRNA ratio (28S/18S)>0.9) were suitable for microarray and expres-
sion analysis.

Microarray profiling and data analysis
cDNAs prepared fromMaASR transgenic lines L14 and WT were used for microarray analysis.
Each sample included three biological replicates for L14 (designed as L14-1, L14-2, and L14-3)
andWT (designed as WT1, WT2, andWT3). Labeling and hybridization was performed using
the 29 k Arabidopsis Genome Array (Arabidopsis thaliana Genome Oligo Set Version3.0,
http://www.operon.com) according to the procedure described by Patterson et al. [29]. Con-
trols were also printed on glass slides using a SmartArray microarrayer (CapitalBio Corp.). The
resulting images were analyzed with LuxScanTM3.0 software (CapitalBio Corp.) and identified
using the methods of Miao et al. [30]. DEGs were identified using a P value<0.05, false discov-
ery rate (FDR)<0.05, and a fold change�2.0.

qRT-PCR analysis of flowering-related pathway genes
Primers that had high specificity and efficiency on the basis of melting curve analysis and aga-
rose gel electrophoresis were designed with Primer premier 5.0 software (http://www.
premierbiosoft.com/) and used to conduct quantification analysis (S1 Fig). Primer sequences
of AtFCA, AtFLK, AtFRI, AtGAI, AtLFY, AtRGL1, AtVRN1, AtFLC, AtFVE, AtSOC1, AtCol1,
AtCol2, AtNAP, AtTCH2, AtSEP3, AtCol9, AtCO, AtELF3, AtELF4, AtNGA1, and AtMAF5 are
listed in S1 Table. Amplification efficiencies of primer pairs ranged from 0.9 to 1.1. The AtAC-
TIN and AtUBQ [31] that were verified to be constitutively expressed and suitable for use as
internal controls were as reference genes to normalize transcriptional levels of target genes in
this study (S1 Table). The relative expression of the tested genes with three replicates of each
sample was assessed according to the 2−ΔΔCT method [25].

Statistical analysis
For all generated data, at least three biological replicates were performed for each sample.
Then, one-way ANOVA and Duncan’s multiple range tests were performed at a 5% signifi-
cance level (P values<0.05) using SPSS software (version 13.0). The statistical results were
reported as mean±SD.
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Results

Sequence analysis, subcellular localization and expression pattern of
MaASR in banana female flowers
The cDNA of ASR from banana,MaASR, was 747 bp in length containing a 432 bp open
reading frame (ORF), which encoded a protein of 143 amino acids with a 251 bp 50

untranslated region (UTR) and a 64 bp 30 UTR. The sequences of the clonedMaASR were
registered in GenBank under the accession No. AY628102. Compared to the other ASR
amino acid sequences,MaASR contained a small N-terminal DNA binding site
(HHHRLFHH) and a longer putative nuclear C-terminal localization signal (KRDA-
KNEAEEASGKKHHHHL) (S2 Fig). MaASR protein was localized in the nucleus and plasma
membrane (S3 Fig).

MaASR expression was detected in roots, leaves, rhizomes, female flowers (the first cluster
from the upper inflorescence), and fruits. Female flowers showed the highest levels, along with
roots; the lowest level was found in rhizomes. The level ofMaASR expression in flowers was
approximately 12-fold higher than that in rhizomes (S4 Fig). Significant differences inMaASR
expression were detected in the female flowers from the tenth (F10), ninth (F9), eighth (F8),
fourth (F4), and first (F1) cluster from the upper inflorescence (Fig 1A). At F10, theMaASR
gene began to express and reached a maximum at F1, which was approximately 20-fold higher
than that at F10 and F9 (Fig 1B), suggesting that expression ofMaASR could play a role in
banana female flower development.

MaASR overexpression caused a clear delayed flowering phenotype
Floral organs of two transgenic lines, L14 and L38, were significantly shorter (0.67-fold) than
that of the WT (Fig 2A). The number of sepal and pedicel trichomes in the L14 line was
greater than that of the L38 line. These trichomes are rarely present in the sepal and pedicel
of WT, indicating that floral organ morphological changes in transgenic lines are relavant to
the overexpression ofMaASR. Southern blot showed that L14 and L38 harbored two and one
copies ofMaASR, respectively (S5 Fig). Northern and Western blots confirmed that MaASR
transcripts were present in the two transgenic lines compared to WT in which expression was
absent (S5 Fig).

Under 7 d of LD conditions, most WT plants, as well as theMaASR transgenic line L38, dis-
played bolting but the L14 line did not (Fig 2B). The number of days required for bolting was
22, 35, and 28 d in WT, L14, and L38, respectively (Fig 2C). The average number of rosette
leaves in the WT, L14, and L38 lines was 15, 20, and 18, respectively (Fig 2D). These results
showed that the number of rosette leaves produced by theMaASR transgenic lines was signifi-
cantly greater than those produced by WT.

Under 28 d of LD conditions, WT reached the full-bloom stage and pods were observed;
however, the bolting number of the L14 and L38 lines was significantly lower than that of WT
(Fig 2E). Statistical analyses showed that flower buds were formed in WT under LD conditions
for 7 d. The L14 and L38 lines only formed 12.76% and 38.33% of flower buds, respectively,
until 28 d, at which point the flower buds of the transgenic lines were fully formed (Fig 2F).
Under LD conditions for 14 d, all flower buds fromWT were at mid-flower stage; the number
of flower buds at the mid-flower stage in lines L14 and L38 was only 11.17% and 22.24%,
respectively (Fig 2G). By 28 d, WT reached full bloom, but the flower number in lines L14 and
L38 was only 12.21% and 23.50%, respectively (Fig 2H). These data demonstrate thatMaASR
transgenic lines have a significantly delayed flowering phenotype with respect to flower buds at
mid-flower and full bloom stages.
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Microarray analysis and screening of the differential expressed genes
(DEGs) betweenMaASR transgenic plants andWT
Microarray analysis was used to determine the DEGs affected byMaASR overexpression com-
pared to the WT. Each sample included three biological replicates for L14 (designed as L14-1,
L14-2, and L14-3) andWT (designed as WT1, WT2, andWT3). TreeView representation of
L14-1-vs-WT1, L14-2-vs-WT2, and L14-1-vs-WT3 libraries is shown in Fig 3A. Based on a
fold change�2.0 and P value< 0.05, a total of 747 DEGs were identified, including 559 up-
regulated genes (S3 Table) and 188 down-regulated (S4 Table) genes in L14 vs WT. All DEGs
were mapped to the Gene Ontology (GO) database with respect to biological processes, molec-
ular functions, and cellular components (S6 Fig).

Fig 1. Expression ofMaASR gene in banana female flowers from the upper inflorescence. (A) The
female flowers from the tenth (F10), ninth (F9), eighth (F8), fourth (F4), and first (F1) cluster from the upper
inflorescence. (B) Relative expression level in banana female flowers. The y-axis represents the relative fold-
difference in mRNA level, which was calculated using the 2-ΔΔCT formula with ACTIN and UBQ as internal
controls. The vertical bars represent the mean ± SD of three replicates.

doi:10.1371/journal.pone.0160690.g001
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Fig 2. Flowering phenotypes ofMaASR transgenic plants. (A) Phenotype of floral organs detached from
the same position and developmental stage of 14 d under LD in WT and transgenic plants. (B) Plants at 14 d
under LD. (C) Flowering days ofMaASR transgenic lines L14 and L38. (D) The number of rosette leaves of
MaASR transgenic lines L14 and L38. (E) Plants at 28 d under LD. (F) The number of plants at flower buds
stage. (G) The number of plants at mid-flower stage. (H) The number of plants at full-bloom stage.

doi:10.1371/journal.pone.0160690.g002
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The 11 candidate genes involved in flowering included 6 up-regulated (Col9, ELF3, ELF4,
TCH2, NGA1, and NAP) genes and 5 down-regulated (CO, Col1, Col2,MAF5, and SEP3) genes
in L14 (Fig 3B). The 11 candidate genes were then divided into three pathways, the photope-
riod pathways (CO, Col1, Col2, Col9, ELF3, ELF4, and TCH2), vernalization pathways (MAF5),

Fig 3. TreeView representation of ESTs frommicroarray data (L14 vsWT) and functional
classification of flowering-related candidate genes. (A) Gene expression profile of transgenic plants L14
andWT. (B) Functional classification of candidate genes. Red: up-regulated genes; Green: down-regulated
genes.

doi:10.1371/journal.pone.0160690.g003
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and flowering development pathways (NGA1, SEP3, and NAP) (Fig 3B). These key pathway
genes were subjected to further detailed expression analysis using qRT-PCR.

Overexpression ofMaASR reduces the expression of photoperiod
pathway genes under SD for 28 d
The expression of seven photoperiod pathway genes (CO, Col1, Col2, Col9, ELF3, ELF4, and
TCH2) was examined between WT and theMaASR-overexpressing transgenic plants (L14 and
L38) (Fig 4A). The expression pattern of CO in WT andMaASR transgenic lines was similar to
Col1, Col2, ELF3, ELF4, and TCH2 but it was reversed with Col9 (Fig 4A). Compared to WT,
the expression levels of CO, Col1, Col2, Col9, ELF3, ELF4, and TCH2 inMaASR transgenic
lines were significantly lower than that of the WT under SD for 28 d (from vegetative to repro-
ductive transition stage), specifically in the L14 line compared to the L38 line (Fig 4A), suggest-
ing that different copy numbers of L14 and L38 can affect expression levels in transgenic
plants. These results showed that overexpression ofMaASR reduced the photoperiod pathway
genes expression levels at 28 d under SD.

Overexpression ofMaASR reduces the expression of vernalization
pathway genes (VRN1andMAF5) under SD for 28 d
Four key genes involved in vernalization pathway (FLC, FRI, VRN1, andMAF5) were screened
by microarray analysis based on previous studies of Arabidopsis [4, 32, 33]. FLC and FRI act as
inhibitors of flowering in the vernalization pathway [4]. VRN1 andMAF5 could play an oppo-
site role of FLC [32]. In Fig 4B, the expression of FLC and FRI was lower in theMaASR trans-
genic lines under SD for 14 d than that in WT. Transgenic plants exhibited enhanced
expression of FLC and FRI compared to WT under SD for 28 d but the expression of VRN1
andMAF5 was lower in the transgenic lines under SD for 28 d, suggesting thatMaASR overex-
pression increases FLC and FRI expression and decreases VRN1 andMAF5 expression under
SD for 28 d to delay flowering time.

Overexpression ofMaASR alters the expression pattern of flower
development related genes
Three flowering development pathway genes (NGA1, SEP3, and NAP) were screened by micro-
array analysis (Fig 3B). The expression levels of NGA1, SEP3, and NAP were lower in the trans-
genic lines under SD for 28 d compared to WT (Fig 4C). SEP3 expression was significantly
different between the WT and transgenic lines. SEP3 expression gradually increased in the WT
from 14 d under SD to 28 d under LD but its expression in theMaASR transgenic lines
declined rapidly from 14 d under SD to 28 d under SD and then increased gradually in L14
from 14 d under LD to 28 d under LD (Fig 4C). These results suggest thatMaASR overexpres-
sion suppresses the expression of flowering development pathway genes (NGA1 and NAP),
altering the expression pattern of SEP3.

Overexpression ofMaASR reduces expression of GA pathway genes
and floral integrator genes under SD for 28 d, but did not affect
expression of autonomous pathway genes
Based on previous studies in Arabidopsis, several GA pathway genes (GAI and RGL1), floral
integrator genes (SOC1 and LFY), and autonomous pathway genes (FLK, FCA, and FVE) have
been identified by qRT-PCR [34, 35]. The expression levels of GAI and RGL1 in transgenic
plants at 14 d under SD, 28 d under SD, and 28 d under LD were lower than in the WT
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Fig 4. Expression analysis of photoperiod pathway genes, vernalization pathway genes, flower development
related genes, GA pathway genes, floral integrator genes, and autonomous pathway genes in WT andMaASR
transgenic plants. (A) Photoperiod pathway genes. (B) Vernalization pathway genes. (C) Flower development related
genes. (D) GA pathway genes. (E) Floral integrator genes. (F) Autonomous pathway genes. WT: Wild-type; L14, L38:
MaASR transgenic lines. Data are represented as mean ± SD of biological replicates (n = 3). Means denoted by the
same letter do not significantly differ when set at P<0.05 as determined by Duncan’s multiple range tests.

doi:10.1371/journal.pone.0160690.g004
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(Fig 4D). SOC1 expression was lower in transgenic lines before flowering (from 14 d under SD
to 28 d under SD) compared to WT; however, LFY expression was higher in the transgenic
lines at 28 d under SD compared to WT (Fig 4E). FLK, FCA, and FVE promote flowering via
negative regulation of FLC transcriptional levels in the autonomous pathway [36]. FLK, FCA,
and FVE expression revealed similar trends from 14 d under SD to 28 d under LD between WT
and transgenic plants (Fig 4F), indicating thatMaASR overexpression reduces the expression
of GA pathway genes (GAI and RGL1) and floral integrator gene (SOC1) at 28 d under SD but
does not affect the expression of autonomous pathway genes.

A tentative model of the main genes involved in the flowering pathway in
MaASR-overexpressed plants
A tentative model of the flowering regulatory network associated withMaASR overexpression
was developed (Fig 5). Three genes, FLC, SOC1 and LFY, are in the core of the network. In the
model, photoperiod-related genes (CO, ELF3, ELF4, Col1, Col2, Col9, and TCH2) inhibit flow-
ering time by repressing SOC1 and LFY expression inMaASR transgenic plants at 28 d under
SD condition. Vernalization pathways primarily access the network by inhibiting expression of
FLC. GA pathway genes inhibit the expression of SOC1. Flower developmental pathway genes
are directly regulated by LFY to affect flower organ formation.

Autonomous pathway genes regulate flowering time by affecting FLC expression between
WT and transgenic plants butMaASR overexpression does not affect expression of autono-
mous pathway genes. These findings indicate thatMaASR delays flowering time by reducing
expression of several photoperiod pathway genes, vernalization pathway genes, and GA path-
way genes, while expression of several other flower development related genes (NGA1, SEP3,
and NAP) and floral integrator genes (SOC1) are inhibited byMaASR overexpression.

Discussion
Despite extensive studies on the role ofMaASR in fruit-ripening and in response to various abi-
otic stresses (mainly salt and drought stress tolerance) [16, 23], prior to this study,MaASR’s role
in regulating flowering time in bananas was not studied. For the first time, herein we demon-
strated thatMaASR overexpression resulted in a clear delayed-flowering phenotype. The numbers
of rosette leaves, sepal, and pedicel trichomes in transgenic Arabidopsis plants, L14 and L38, were
significantly greater than those of WT under LD conditions. Similar observations have been
made for other key flowering genes, such as FLC and AERIAL ROSETTE I (ART1), in causing
enlarged basal rosette of leaves, developed adaxial trichome formation, and floral reversion for
delayed flowering [37, 38]. Additional results showed that delaying in flowering time due to
MaASR overexpression was caused mainly by the attenuated expression of several photoperiod
pathway genes (CO, Col1, Col2, ELF3, and ELF4), vernalization pathway genes (VRN1 and
MAF5), flowering development pathway genes (NGA1, SEP3, and NAP), GA pathway genes (GAI
and RGL1), and floral integrator genes (SOC1) under SD for 28 d (from vegetative to reproductive
transition stage). Interestingly, the expression of autonomous pathway genes was not affected.

CO is an important floral regulator in the photoperiod pathway, integrating the circadian
and light signals to control flowering time in the early stage of Arabidopsis growth [39, 40].
Col9, Col1, and Col2 encode zinc finger proteins and are homologous genes of CO; Col9 delays
flowering by reducing CO expression in Arabidopsis and over-expression of Col1 and Col2 can
shorten the period of circadian rhythms [40, 41]. ELF3 and ELF4 negatively regulate CO tran-
scription [42, 43]. In this study, Col9 expression showed a reverse pattern with CO expression,
as in Arabidopsis [40]. While the expression levels of CO, Col1, Col2, ELF3, and ELF4 in
MaASR transgenic plants were significantly lower than that of the WT under SD for 28 d (from

The Role ofMaASR in Flowering Time

PLOSONE | DOI:10.1371/journal.pone.0160690 August 3, 2016 11 / 16



vegetative to reproductive transition stage) (Fig 4A), overexpression ofMaASR reduced several
photoperiod pathway gene expression to prevent the switch from vegetative to reproductive
growth, consequently delaying flowering time; this result was also supported by microarray
analysis (Fig 3), indicating that photoperiod pathway may play a pivotal role in the regulating
flowering time ofMaASR. Further experiments will be required to determine the interaction
mechanism between photoperiod pathway genes andMaASR.

FLC is an inhibitor of flowering in the vernalization pathway by binding the SOC1 promoter
to regulate flowering time in Arabidopsis [4]. The FRI increases FLC levels and affects flowering
time [4]. VRN1 is responsive to low temperature and could participate in the vernalization
pathway to help regulate flowering time [33].MAF5 could play an opposite role to FLC in the
vernalization response [32]. In this study, the expression levels of FLC and FRI were higher in
MaASR transgenic lines than in the WT at 28 d under SD conditions but VRN1 andMAF5
expression levels were lower in transgenic lines than in the WT at 28 d under SD conditions
(Fig 4B), suggesting thatMaASR overexpression could increase FLC and FRI transcription and
reduce VRN1 andMAF5 expression levels at 28 d under SD conditions to delay flowering.

NGA1 belongs to the AP2 transcription factor family and inhibits stigma and style develop-
ment via negative regulation of SOC1 expression in Arabidopsis [44]. In this study, the expres-
sion levels of NGA1 inMaASR transgenic lines were lower from 14 d to 28 d under SD
compared to WT (Fig 4C), suggesting thatMaASR overexpression may affect floral develop-
ment by repressing NGA1 expression. SEP3 affects floral organ formation by controlling LFY
expression [45]. Here, the expression pattern of SEP3 was significantly different between WT
and the transgenic lines. SEP3 expression gradually increased in WT, but its expression in the
transgenic lines declined rapidly from 14 under SD to 14 under LD (Fig 4C), suggesting that
MaASR overexpression altered expression pattern of SEP3 to affect floral organ formation. Fur-
ther studies are required in order to fully understand the interaction between the regulatory
networks inMaASR overexpression and other flowering development-related pathway genes.

GAI and RGL1 belong to the DELLA subfamily and are negative regulators of GA in the
flowering process [34]. Here, the expression levels of GAI and RGL1 inMaASR transgenic

Fig 5. A tentative model showing the main genes involved in the multiple flowering pathway in
MaASR overexpressed plants.

doi:10.1371/journal.pone.0160690.g005
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plants were found to be lower than that in WT at 28 d under SD conditions (Fig 4D), as in Ara-
bidopsis [34]. SOC1, encodes a MADS box transcription factor and integrates multiple flower-
ing signals derived from photoperiod, temperature, and hormone signals to prevent premature
differentiation of the floral meristem [35]. In this study, SOC1 expression was lower inMaASR
transgenic lines before flowering (from 14 d under SD to 28 d under SD) compared to the WT
(Fig 4E). LFY is a master regulator of flowering and of flower development, and acts as part of
a switch that mediates the transition from the vegetative to the reproductive phase of plant
development [46]. Here, LFY expression levels were lower inMaASR transgenic lines under SD
for 14 d before the transition from the vegetative to the reproductive stage (Fig 4E), suggesting
earlyMaASR overexpression was repressed from the vegetative to the reproductive phase tran-
sition by reduced LFY expression.

FLK, FCA, and FVE are three members of an autonomous pathway that cause a late-flower-
ing phenotype in Arabidopsis [36]; however, some mutations in FLK gave rise to phenotypes
with only slightly delayed flowering [47]. FCA interacts with FY in regulating flowering time
[48] and FVE participates in the regulation of flowering time by repressing FLC transcription
[49]. In this study, the expression patterns of FLK, FCA, and FVE genes were similar between
MaASR transgenic lines and WT (Fig 4F), suggesting that delayed flowering due toMaASR
overexpression may not affect the expression of autonomous pathway genes.

Conclusions
MaASR gene is isolated and characterized from banana. Subcellular localization analysis
showed that MaASR protein was localized in the nucleus and plasma membrane. Differences
in the expression ofMaASR gene were detected in different developmental stages of banana
female flowers.MaASR transgenic lines showed a clear delayed-flowering phenotype. Overex-
pression ofMaASR was able to delay flowering time by reducing the expression of several
genes, including photoperiod pathway genes, vernalization pathway genes, GA pathway genes,
and floral integrator genes, under SD for 28 d during the transition period from vegetative to
reproductive phase, but without affecting the expression of autonomous pathway genes. This
study provides a new insight into the regulatory mechanisms of flowering time and warrants
further studies onMaASR that may lead to the development of strategies to regulate flowering
time in banana and other flowering plants.
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