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1. Summary
The generation of an embryonic body plan is the outcome of inductive inter-

actions between the progenitor tissues that underpin their specification,

regionalization and morphogenesis. The intercellular signalling activity driving

these processes is deployed in a time- and site-specific manner, and the signal

strength must be precisely controlled. Receptor and ligand functions are modu-

lated by secreted antagonists to impose a dynamic pattern of globally controlled

and locally graded signals onto the tissues of early post-implantation mouse

embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein

(BMP) signalling cascades, the embryo acquires its body plan, which manifests

as differences in the developmental fate of cells located at different positions in

the anterior–posterior body axis. The initial formation of the anterior (head)

structures in the mouse embryo is critically dependent on the morphogenetic

activity emanating from two signalling centres that are juxtaposed with the

progenitor tissues of the head. A common property of these centres is that

they are the source of antagonistic factors and the hub of transcriptional activi-

ties that negatively modulate the function of WNT, Nodal and BMP signalling

cascades. These events generate the scaffold of the embryonic head by the

early-somite stage of development. Beyond this, additional tissue interactions

continue to support the growth, regionalization, differentiation and morpho-

genesis required for the elaboration of the structure recognizable as the

embryonic head.
2. Establishing the blueprint of the embryonic head
2.1. Prelude to germ layer formation
During the initial phase of mouse development, the zygote (fertilized egg)

undertakes multiple rounds of cleavage divisions and concurrently allocates

cellular progeny to three tissue lineages (trophectoderm, epiblast and primitive

endoderm) of the resultant embryo, known as the blastocyst. The blastocyst is

built as a vesicular structure (figure 1a) with an epithelial layer (the trophecto-

derm) enclosing a cavity (the blastocoel) and, attached to the wall on one side of

the blastocoel, a cluster of cells that constitutes the inner cell mass (ICM). The

ICM is further segregated into the epiblast, which gives rise to the entire
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Figure 1. Development of the mouse embryo from 3.5 dpc (days post coitum) to 6.5 dpc. (a) Blastocyst containing an inner cell mass comprising the epiblast and
the primitive endoderm. (b,c) Egg cylinder embryo at 5.0 dpc with distal visceral endoderm, and 5.5 dpc with anterior visceral endoderm. (d ) Early-streak embryo at
6.5 dpc, with formation of the primitive streak and the nascent mesoderm.
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embryo and some components of the foetal extraembryonic

membranes, and the primitive endoderm that lines the lumi-

nal surface of the cluster of epiblast cells [1].

Following the implantation of the blastocyst, the epiblast

and primitive endoderm grow into the blastocoel to form a

cylindrical embryo—the egg cylinder (figure 1b). The

embryo is composed of a column of three tissues: proximally

the extraembryonic ectoderm (derived from the trophecto-

derm), distally the epiblast (a cup-shaped epithelium

derived from the ICM) and, enveloping these two tissues, a

thin layer of visceral endoderm (descended from the primi-

tive endoderm). The embryo, while maintaining the

cylindrical architecture, continues to grow by cell division,

and cells move around in the visceral endoderm and the epi-

blast (figure 1c). Through the process of gastrulation, cells

from the epiblast are allocated to three definitive germ

layers: the ectoderm, the mesoderm and the endoderm

(figure 1d ). The formation of latter two layers is accom-

plished by morphogenetic cell movement: ingression of

epiblast cells at the site of epithelial–mesenchyme transition

(the primitive streak), the organization of the ingressed

mesoderm progenitors into a mesenchymal layer and the

incorporation of the endoderm progenitors into the pre-existing

layer of visceral endoderm [2,3].
2.2. The building blocks
The emergence and the developmental trajectory of germ

layer derivatives have been examined in the mouse embryo

extensively by fate-mapping analysis at developmental

stages from immediately before the onset of gastrulation to

the formative stage of head morphogenesis (figure 2). These

studies have identified the location of progenitor cells and

their descendants that contribute the tissues that make up
the embryonic head. Derivatives of the three germ layers con-

tribute to different parts of the brain, the facial primordia and

the upper digestive tract.
2.2.1. Ectoderm

At the pre-gastrulation stage, germ layer progenitors are

broadly regionalized in the epiblast: ectoderm in the prospec-

tive anterior and distal domains, and endoderm and

mesoderm in the prospective posterior domain, with a predo-

minantly mesoderm domain intercalated between these two

regions (figure 2a). After gastrulation is initiated, the ecto-

derm progenitors can be resolved into those destined for

surface ectoderm (body covering) and neuroectoderm,

respectively. Within the neuroectoderm domain, cells that

contribute to the brain are localized more anteriorly than

those of the spinal cord (figure 2b). During gastrulation,

this neuroectoderm population expands anteriorly and proxi-

mally, and eventually occupies over two-thirds of the area of

the ectoderm layer by the time the embryo has formed a com-

plete layer of mesoderm. This is accompanied by an emerging

pattern of regionalization of the progenitors for ectoderm tis-

sues of the head. Progenitor cells of the non-neural

derivatives (e.g. surface ectoderm and buccal lining) and

neural tissues of forebrain, the midbrain and the hindbrain

are localized, in the respective anterior–posterior order, to

domains that are increasingly farther away from the

rostral-most border of the ectoderm (figure 2b). In addition,

the progenitors of another non-neural ectoderm derivative,

the neural crest cells that give rise to the ecto-mesenchyme

and cranial ganglia in the head, are mapped to the border

region of neural and surface ectoderm domain [4].

When tracking the segmental fate of the neuroectoderm

cells in the presumptive forebrain domain, it was noted that
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Figure 2. Allocation of the germ layer derivatives to the embryonic head structures. (a) Regionalization of germ layer progenitors in the epiblast elicited by the
graded signalling activity across the prospective anterior – posterior plane of the embryo. (b – d) Allocation of epiblast-derived cells during gastrulation to (b) the
ectoderm tissues that contribute to the brain, neural crest and the surface ectoderm, (c) the mesoderm tissues in the cranial mesenchyme and the heart, and
(d ) endoderm tissues of the embryonic foregut. The fate maps of the progenitor tissues of the embryonic head reveals that the domains and boundaries of the
progenitors in the three germ layers are generally aligned with each other, although a clear demarcation of head versus non-head progenitors is not yet evident at
the late gastrulation stage. ade, anterior definitive (gut) endoderm; ame, anterior mesendoderm; amn, amnion ectoderm; ave, anterior visceral endoderm; crm,
cranial mesoderm; en, endoderm; fb, forebrain; fg, foregut; hb, hindbrain; ht, heart; md, midbrain; mes, mesoderm; ncc, neural crest cells; n-ect, neuroectoderm; se,
surface ectoderm.
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while there is a preference of these cells to colonize the fore-

brain, some descendants are also found in the more posterior

brain parts [5]. This tendency of clones expanding to neigh-

bouring brain parts diminishes for neuroectoderm cells of

more advanced embryos, suggesting that the neural progeni-

tor cells are either becoming more restricted in their fate or

progressively confined to a spatially defined domain during

development [6]. The relative size of the domain of progeni-

tors does not correlate with the final size of the brain part.

Specifically, the forebrain has undergone a disproportionate

expansion during neurulation, which is underscored by the

wide area covered by the clones of forebrain neuroectoderm

cells. This requirement of tissue growth for morphogenesis

underpins the vulnerability of the forebrain in developmental

errors that lead to head truncation.
2.2.2. Mesoderm

Cells in the mesoderm domain of the epiblast of embryos at

the onset of gastrulation have been shown to contribute to

head (cranial) mesoderm and other somatic mesoderm.

During germ layer formation, epiblast cells are allocated

sequentially to mesoderm of the heart, head and the trunk

along the anterior–posterior body axis [7]. After ingression

through the primitive streak, the heart and cranial mesoderm

progenitors are displaced as a tissue sheet to the anterior

region of the embryo and ultimately underlie the prospective

brain domains within the ectoderm (figure 2c). The cranial

mesoderm together with the ectomesenchyme derived from

the neural crest cells give rise to the skeleton, muscles, vascular

and connective tissue of the head and face [8,9].
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The progenitors of another mesoderm population (the axial

mesoderm) are co-localized with those of the endoderm. The

cells of the axial mesoderm ingress through the anterior seg-

ment of the primitive streak and extend along the embryonic

midline by convergent extension to reach the entire length of

the body axis. The resulting midline structure underlies the

brain and spinal cord, and is given different names according

to its position in the anterior–posterior axis: the axial meso-

derm that underlies the forebrain is the prechordal plate and

that which associates with the rest of the brain is the anterior

notochord, whereas the segment underneath the spinal cord

is the notochord [10]. During its ontogeny, cells of the axial

mesoderm are transiently part of the endoderm layer but

later separate from it to take up a position among the meso-

derm tissues. To distinguish these phases of development, for

the period in which the axial mesoderm is contiguous with

the flanking endoderm, it is referred to as axial mesendoderm.

2.2.3. Endoderm

In the pre-gastrulation embryo, a layer of endoderm cells (the

visceral endoderm) is already present. Contrary to the con-

ventional concept that the visceral endoderm gives rise only

to the non-embryonic tissue that lines the extraembryonic

yolk sac, its descendants can contribute to the anterior and

posterior segments of the embryonic gut [11]. The ultimate

fate of these cells in the digestive tract is not known. The

bulk of gut (definitive) endoderm cells is recruited from

their progenitors in the epiblast (figure 2a). Definitive endo-

derm ingressed at the anterior segment of the primitive

streak is incorporated into the pre-existing visceral endoderm

by intercalation over a wide area and not restricted to the

sites in the immediate vicinity of the primitive streak.

Through a concerted movement, cells destined for the

upper digestive tract (the foregut) congregate to the anterior

region of the endoderm layer (the anterior definitive endo-

derm, figure 2d) underlying the cranial and heart mesoderm

and the prospective brain domains in the ectoderm [12].

During head morphogenesis, the endoderm forms the lining

of the embryonic foregut and the associated organs [13–15].

The formation of the three germ layer derivatives hence-

forth completes the building blocks of the head. The

ensuing morphogenetic movement that brings these tissue

components to their proper place in the body plan establishes

the blueprint of the embryonic head by the early-somite stage

of development. Later events will continue to build upon this

scaffold until the fully differentiated head structures emerge.
3. Anterior – posterior polarity and
signalling centre in the anterior visceral
endoderm

3.1. Proximal – distal regionalization of gene activity in
the egg cylinder

Analysis of gene expression in the egg cylinder embryo has

revealed that the transcripts encoding components of signal-

ling pathways such as that of Nodal, BMP and WNT are

localized to specific tissue compartments [3,16–19]. For

example, signalling ligand genes such as Bmp2, Bmp8b,
Bmp4, Wnt2b, Wnt3, and activating convertase enzymes for
Nodal such as Furin and Pcsk6 are expressed in the extraem-

bryonic ectoderm or the proximal population of visceral

endoderm. In contrast, factors that antagonize the TGF-beta

and WNT signalling activity, such as Cerl, Lefty1 and Dkk1,

are expressed in the distal population of the visceral endoderm

(the distal visceral endoderm, DVE). In the epiblast, Nodal is

expressed in the proximal domain whereas the Cripto receptor

is uniformly expressed. Notwithstanding the caveat that gene

expression domains may not reflect the range of action of

the signalling factors, the regionalization of transcripts points

to a graded pattern of high to low signalling activity in the

proximal–distal dimension of the egg cylinder.

3.2. Ontogeny of distal visceral endoderm and anterior
visceral endoderm

By tracing the trajectory of Lefty1-expressing cells that first

emerge in the blastocyst, the DVE cells are found to descend

from a subset of primitive endoderm cells [20,21]. It remains

unclear how these progenitors and their progeny are translo-

cated en masse from a lopsided position in the primitive

endoderm to the distal site in the visceral endoderm over a

2-day period of development. A possible mechanism is that

the displacement of these Lefty1-active cells is driven by

their response to Nodal and WNT signals such that they

are compelled to move away from regions of high signal

activity and congregate to the distal part of the visceral

endoderm. Subsequently, the population of Lefty1- and

Cer1-positive cells expands, and later these cells are relocated

to anterior region of the visceral endoderm (and become

known as the anterior visceral endoderm, AVE) [22]. Con-

trary to the notion that these AVE cells are descendants of

the DVE cells, recent lineage analysis reveals that they are

of separate lineages. The DVE cells do not give rise to AVE

cells, although they share similar molecular properties, inter-

mingle with the AVE cells and participate in similar act of cell

movement to the anterior side of the embryo [20]. The pro-

genitors of the AVE are generated de novo from other

visceral endoderm. This is likely to be accomplished via the

modulation of BMP inductive activity [23–25], but does not

require the presence of DVE cells [20].

3.3. Acquisition of anterior – posterior body axis polarity
Both the DVE cells and AVE progenitors are localized initially

to the distal sites of the egg cylinder. In this position,

the antagonistic activity emanated from these cells may

contribute to the alignment of a signalling axis in the proxi-

mal–distal plane of the embryo. By transforming the cup-

shaped epiblast and the associated visceral endoderm to a

flat disc-like configuration, it can be visualized that the

signal activity may lead to a radially symmetrical body

plan [26]. The breaking of this radial symmetry may be

achieved by localizing the source of signals or that of the

antagonists to one side of the embryo and thereby creating

an asymmetry of the body plan. The movement of the

mixed populations of Lefty1 and Cer1-expressing DVE and

AVE cells to the prospective anterior pole of the embryo is

therefore key to the acquisition of the anterior–posterior

polarity by the embryo.

While the presence of the DVE is not a prerequisite for the

de novo formation of AVE cells, DVE cells are required for the
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anterior displacement of the AVE cells [20]. Visceral endo-

derm cells that are recruited to the AVE and begin to

express Lefty1 join the anterior stream of cells. Whether the

DVE cells act to initiate as well as to guide the movement

of the AVE cells and the mechanistic basis for such naviga-

tional activity are not known. Likewise, the morphogenetic

forces that drive the directional movement of the visceral

endoderm cells are not fully known. Experimental manipula-

tions of Nodal/Lefty1 and WNT/Dkk1 signalling activity

reveal that the visceral endoderm cells respond to differences

in signal intensity (by travelling towards regions of low signal

activity) [27,28], and to the differential proliferative activity

of the epiblast [29]. Loss of Otx2 function, which is

accompanied by the loss of Dkk1 activity, impairs the anterior

movement of the visceral endoderm [30]. Enforced expression

of Dkk1 under the control of Otx2 can restore the migratory

activity of the Otx2-deficient cells [27]. These experiments

provide circumstantial evidence that expression of Nodal

and WNT antagonists by the AVE cells influences their

migratory behaviour. Lefty1-positive AVE cells remain in

the anterior domain of the endoderm, whereas DVE cells

that lose Lefty1 activity after they reach the anterior site con-

tinue to migrate but follow a different path to the lateral

region of the embryo.
3.4. Regionalization of signalling activity and impact on
epiblast patterning

The displacement and expansion of the DVE and AVE cells to

the anterior side of the embryo establish an anterior source of

antagonistic activity against Nodal and WNT signals. Con-

currently, the expression domain of Nodal and Wnt3 retreats

to the posterior side of the embryo. The proximal–distal sig-

nalling axis is consequently realigned to the prospective

anterior–posterior body axis of the embryo. Specifically for

the WNT signalling pathway, other antagonists in addition

to Dkk1 (e.g. Sfrp1, Sfrp5, Cer1) are expressed in the anterior

part of the embryo, whereas WNT ligands (such as Wnt3,

Wnt2b and Wnt8a) are expressed in the posterior part of the

embryo [16,31]. These opposing domains of antagonists and

ligands presumably establish a low to high gradient of

WNT signalling activity across the anterior–posterior plane

of the embryo. Similarly, a Lefty1–Nodal and Cer1–BMP sig-

nalling gradient may also be established. The provision by

the AVE of secreted inhibitors such as Dkk1, Cer1 and

Lefty1 to modulate WNT, BMP and Nodal factors is critical

for the differentiation of the epiblast. The combined loss of

function of Cer1 and Lefty1 leads to the formation of an

enlarged primitive streak (i.e. enhanced specification of

mesoderm and endoderm lineages). This phenotype is

partly suppressed when Nodal signalling is decreased, indi-

cating that these molecules normally constrain the level of

Nodal signal within the epiblast [32]. Likewise, an inability

to establish the AVE (for example, in Otx2 mutants) results

in ectopic expression of mesoderm markers in the epiblast,

a manifestation of the posteriorization of the epiblast [27].

It may be noted that the area traversed by the migrating

AVE and final residence of the AVE match the domain of

the ectoderm progenitors (amniotic, surface and neural ecto-

derm) in the epiblast. In contrast, the epiblast in the domain

of high WNT and Nodal activity is destined for the formation

of the mesoderm and endoderm (figure 2). A crucial role of
the AVE is therefore to maintain the naive characteristics of

the anterior epiblast and to prevent inappropriate differen-

tiation to non-ectodermal cells. Recently, evidence has

emerged that the AVE is also a source of instructive signals.

Bmp2 is expressed in the AVE of the early gastrula, and

then in the node, anterior definitive endoderm and pre-

chordal plate of the late gastrula. Conditional ablation of

visceral-endoderm-derived Bmp2 rescues some, but not all,

of the Bmp2-null phenotypes: anterior definitive endoderm

and prechordal plate are specified, but the development of

head and foregut is perturbed [33]. Apparently, the signalling

activity of the AVE has a lasting impact on the differentiation

and morphogenesis of epiblast-derived tissues into head

structures. However, tissue transplantation experiments

have revealed that AVE itself is not sufficient for inducing

or maintaining the differentiation of the epiblast into anterior

neural tissues [34], suggesting that the AVE may act primarily

as a source of permissive signals for the development of

anterior structures.
4. Gastrulation and anterior midline
signalling

4.1. Sources of morphogenetic activity
Lineage-tracing studies have revealed that during gastrula-

tion, descendants of the visceral endoderm remain among

the anterior definitive endoderm, the gastrula organizer

(node) and the anterior mesendoderm [11]. This raises the

possibility that some AVE descendants may persist through-

out gastrulation and continue to perform the AVE-related

morphogenetic function. However, the domain previously

occupied by the AVE is mostly populated by the incoming

anterior definitive endoderm (ADE) and the axial mesendo-

derm (AME). Both tissues are recruited from cells that

ingress through the anterior segment of the primitive streak

that encompasses the gastrula organizer. These tissues

reach the anterior region of the embryo by separate morpho-

genetic tissue movement along the midline and the lateral

regions underneath the cephalic neural primordial [10]. Simi-

lar to the AVE, the ADE and the AME are the source of

antagonistic activity to WNT and BMP signalling, and they

express Dkk1, Chrd and Noggin.

The critical role of ADE and AME in promoting anterior

patterning is revealed by the truncation and malformation

of head structures when ADE and/or AME development or

function is perturbed. A failure of differentiation or disrup-

tion of tissue movement (e.g. in Mixl1, Lhx1, Foxa2 and Zic2
mutants), or the loss of morphogenetic signalling activity

(e.g. Shh, Dkk1, Chrd and Nog), impairs early stages of head

formation [35–41]. The AME is composed of the prechordal

plate and the anterior notochord, which functionally interact

with each other via planar signals. For example, the prechor-

dal plate is not maintained in the absence of the anterior

notochord [41,42], and the prechordal plate is required to

suppress the ectopic activation of Gsc in the anterior noto-

chord [42]. Furthermore, the prechordal plate provides

inductive activity for sustaining the differentiation of the

ADE [37]. The identity of the molecules that direct the pro-

gressive differentiation of the AME and ADE is not known,

but the intricate network of cross-talk among these three epi-

blast-derived tissues is central to the maintenance of the
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anterior neural characteristics of the neuroectoderm and the

formation of the head structures (figure 3).
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Figure 4. Specification of the brain progenitors is facilitated by WNT
signalling activity. (a) The regionalized activity of signalling components sets
up a signalling landscape with (b) reduced WNT signal activity (low reporter
expression) in (c) the domain of brain progenitor (marked by Otx2
expression). Source of figures: (a) fig. 9, Fossat et al. [44]; (b) fig. 1c, Lewis
et al. [43] ( permission for use by authors under copyright agreement with
Development, Company of Biologists Ltd).
4.2. Balancing the signalling activity
Morphogenetic signals must be delivered at the right time,

place and strength to elicit proper lineage differentiation

and morphogenesis of the head progenitor tissues. The com-

plex mechanisms that localize, constrain and refine Nodal

signals at the onset of gastrulation have been reviewed else-

where [17]. Similarly, complex mechanisms are employed to

balance the WNT signals that permit the early events of

head formation [43]. In the embryo at gastrulation, the

expression domain of Wnt3 in the posterior region juxtaposes

that of Dkk1, which separates the Wnt3 domain from the Fzd8
receptor domain in the anterior region. The Dkk1 and Fzd8
domains together shadow the domain of brain and cranial

mesoderm progenitors in the ectoderm and mesoderm,

respectively (figure 4). These molecular annotations of the

fate map point to a plausible scenario in which Wnt3 signal

emanating from the posterior epiblast and the primitive

streak is dampened by the Dkk1 antagonist such that a

reduced level of signalling activity is perceived by the recep-

tive head progenitor tissues. While other WNT antagonists

are expressed at this stage of embryonic development, the

loss of Dkk1 alone can cause a major disruption of head

development. This finding suggests that the function of

Dkk1 cannot be replaced by other antagonists, which display

no changes in their expression in the Dkk1-null mutant

embryo. When Wnt3 activity is reduced (by genetically silen-

cing one Wnt3 allele) on the Dkk1-null background, head

development is partially restored. This indicates that the pri-

mary target of Dkk1 is the Wnt3-mediated signalling cascade

and that other WNT factors (which do not change their

expression significantly in the Wnt3 and Dkk1 mutants)

might play a lesser role in head development [43].

Wnt3 is a canonical WNT signalling molecule and these

experiments therefore also imply that Dkk1 exerts its influ-

ence by modulation of canonical WNT signalling [44]. This

has been confirmed by the demonstration that different

permutations of mutations of the antagonist (Dkk1), the

co-receptor (Lrp6) and transcription co-activator (b-catenin)

produce phenocopies of the head defects associated with
excessive canonical signalling activity. Furthermore, the

different degrees of elevation of WNT signalling activity

caused by the three mutated genes correlate with the severity

of the head defects, with the tissues of the anterior brain

region being more sensitive to changes in the signalling

activity than those of the posterior regions. Therefore, Dkk1

acts by controlling the level of canonical signalling activity

perceived by the target tissue, and a stringent control of the

signal strength at different locations in the anterior–posterior

plane is critical for the development of specific brain parts.

Wnt3 is expressed in a relatively narrow window of embryo-

nic development, first in the proximal visceral endoderm and

then progressively confined to the posterior visceral
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endoderm, and activated in the posterior epiblast and the

early primitive streak. The requirement for Dkk1 modulation

of Wnt3 signals is therefore confined mainly to pre- and early

gastrulation.

4.3. Intersection with transcriptional activity
The WNT antagonist Dkk1 has been shown to be a direct

transcriptional target of the WNT/b-catenin-dependent

activity [45,46]. The downstream activation of an antagonist

thereby provides a negative feedback mechanism for the

modulation, rather than wholesale inhibition, of the canonical

signalling activity. This feedback mechanism is disrupted

when one allele of both Dkk1 and Wnt3 is ablated. The

reduced WNT signal acting on only one functional Dkk1
allele leads to a decreased amount of antagonist that is

inadequate to modulate the Wnt3 activity [43]. Negative

modulation of signalling activity is also achieved at the

level of transcription of Wnt pathway components. For

example, Gsc activity in the prechordal plate, which nega-

tively regulates itself, represses the transcription of WNT

ligands (such as Wnt8 [47]), and Sox17 in the ADE may

downregulate the expression of b-catenin target genes

through the physical interaction and redeployment of

b-catenin for other non-signalling cellular functions [48,49].

Similar to the phenotypic effect of loss of Dkk1 function,

mutations of two transcription factor genes, Lhx1 and Otx2,

produce head truncation defects [50,51]. Loss of Lhx1 is

accompanied by the failure to form the AME, through its

downstream effect on the expression of non-canonical WNT

signalling factors that influence morphogenetic cell move-

ment in the mesoderm and the AME [39]. Loss of Lhx1
function also elicits a more global response of the upregula-

tion of WNT response genes and, concurrently, the

downregulation of WNT antagonists and also the Otx2
transcription factor gene (N. Fossat & P. P. L. Tam 2012,

unpublished data). Combinations of mutations of Dkk1,
Lhx1 and Otx2 are associated with the manifestation of

head truncation phenotype, albeit in varying degrees with

different permutations. While these findings indicate a poten-

tial intersection of WNT signalling activity with the

transcription of head-forming genes, the underpinning mol-

ecular mechanism is not fully known. However, Lhx1 factor

is a component of the transcription complex containing

Ssdp1 and Ldb1. This complex may be targeted to or

cooperating with the Otx2 gene, which in turn regulates the

expression of several WNT antagonists. Loss of Ssdp1 and

Ldb1 function individually has been shown to cause head

defects and reduced expression of antagonists including

Dkk1 in the prechordal plate and Sfrps in the ADE, and com-

binations of Ssdp1 and Lhx1 or Ldb1 mutant alleles produce

phenocopies of head defects [52,53]. These data provide com-

pelling evidence of a functional intersection of transcription

activity with the molecular cascade of WNT signalling that

promotes head morphogenesis (figure 5). It appears that a

complex network of secreted antagonists, co-receptors and

transcriptional feedback mechanisms regulate the time,

space and strength of the WNT signals that drive the initial

differentiation and morphogenesis of the progenitor tissues

of the murine embryonic head. A landscape of graded

WNT signalling activity along the anterior–posterior axis of

early embryos is found in a multitude of vertebrate and

invertebrate species [54,55]. Similarly, modulating BMP
signalling by the antagonist (e.g. Cerberus) emanating from

the endoderm is required for anterior patterning of Xenopus

embryo [55,56]. The stringent regulation and regionalization

of signalling activity may therefore be a highly conserved

molecular mechanism of embryonic patterning.
5. Conclusion
Our current understanding indicates that the initial events in

formation of the murine head rely on graded signalling

activity of the WNT, Nodal and BMP pathways. Prior to gas-

trulation, these signalling cascades together elicit the first overt

sign of anterior–posterior polarity when a mixed population

of DVE and AVE cells move to the prospective anterior pole

of the embryo and form the AVE signalling centre. This

centre secretes WNT, Nodal and BMP antagonists, and deli-

mits a region of embryo in which the future neuroectoderm

can escape the signals that drive epiblast ingression and differ-

entiation into the definitive endoderm and mesoderm at the

primitive streak. The mesoderm and endoderm derivatives

(ADE and AME) of the anterior primitive streak replace

much of the pre-gastrula visceral endoderm and, like the

AVE, they also supply WNT, Nodal and BMP antagonists.

Interactions between these definitive tissues generate

anterior–posterior differences within the ADE and AME,

which maintain the neural character of (and perhaps begin

to regionalize) the overlying neuroectoderm. The WNT,

Nodal and BMP antagonism provided by these signalling

centres is essential for the anterior patterning of the germ

layer derivatives and thereby establishing a blueprint of the

embryonic head. It stands to reason that, as well as controlling
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the expression of secreted antagonists, transcription factors

expressed at the signalling centres also repress the expression

of ligands and the downstream effectors of WNT, Nodal and

BMP signalling. The integration of signalling and transcrip-

tional activity in the signalling centres and the progenitor

tissues is therefore instrumental for initiating and orchestrating

the development of the embryonic head.
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