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ABSTRACT Although community-associated methicillin-resistant Staphylococcus aureus
(CA-MRSA) has emerged worldwide, no nationwide CA-MRSA surveillance has been con-
ducted in Japan to determine the changes in its molecular characteristics over time. We
aimed to characterize the molecular epidemiology of Panton-Valentine leucocidin (PVL)-
positive CA-MRSA strains collected from across Japan in the past decade. We isolated
1,770 MRSA strains from the skin and pus samples of outpatients of 244 medical facili-
ties in 31 prefectures between 2010 and 2018 (2010, 2012, 2014, 2016, and 2018).
Regions, hospitals, and periods in which strains were isolated and patient age group
and sex were tabulated. Staphylococcal cassette chromosome mec (SCCmec) typing,
detection of virulence factor genes, and antimicrobial susceptibility testing were per-
formed. Whole-genome analysis was performed for the PVL-positive strains isolated in
2018. All strains harbored the mecA gene. Compared to that in 2010, the percentage of
SCCmec type IV increased in 2018, with a corresponding increase in the proportion of
PVL-positive strains (10% to 26%). Of the isolates obtained in 2018, clonal complex 8
(CC8) was dominant among PVL-positive strains. Core-genome single-nucleotide poly-
morphism analysis, using whole-genome sequencing, suggested that the CC8 PVL-posi-
tive strains spread throughout Japan over the last decade. Furthermore, a unique ST22
clone carrying both the PVL- and toxic shock syndrome toxin-1-encoding genes has
emerged. We demonstrated that the molecular epidemiology of CA-MRSA in Japan dif-
fers from that in Europe and the United States; thus, it is crucial to monitor the trend of
changes in CA-MRSA characteristics in Japan.

IMPORTANCE Community-associated MRSA, which is a multidrug-resistant organism and
can cause infections in otherwise-healthy individuals, has become a global problem. This
paper describes a nationwide surveillance conducted in Japan to investigate changes in
molecular epidemiological characteristics of CA-MRSA over the past decade and provides
a detailed review of the characteristics of Panton-Valentine leucocidin (PVL)-positive
strains isolated in 2018. Although CA-MRSA is rare in Japan to date, we found that the
isolation of PVL-positive strains has been increasing over the past decade. In particular,
the PVL-positive strains wherein CC8 was dominant exhibited high interstrain similarity,
suggesting that a limited number of clones have spread over the past decade.
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Furthermore, a unique ST22 clone carrying both PVL-encoding and toxic shock syn-
drome toxin-1-encoding genes has emerged. This study shows that various changes can
be observed when molecular epidemiological analysis, combined with next-generation
sequencing, is conducted over a long period.

KEYWORDS MRSA, CA-MRSA, PVL, TSST-1

Methicillin-resistant Staphylococcus aureus (MRSA) was first identified in 1961 in
England (1). Since the mid-1980s, the prevalence of hospital-associated MRSA

(HA-MRSA) infection has increased worldwide (2). In contrast, since 2000, several coun-
tries have succeeded in reducing the prevalence of HA-MRSA that was considered to
be confined to hospitals (3). In the Netherlands and Sweden, the proportion of MRSA
among the detected S. aureus strains is below 5%, while in Austria, the United
Kingdom, and Germany, its proportion is below 10%. However, in Italy and Portugal,
the proportion of MRSA in the detected S. aureus strains is over 30%.

Since the 1990s, the emergence and increasing prevalence of community-associated
MRSA (CA-MRSA) beyond health care-related environments has changed the epidemiology
of MRSA (4). CA-MRSA colonizes healthy individuals and can cause skin and soft tissue
infections and sometimes life-threatening necrotizing pneumonia in children and adults
with no predisposing factors (5). Molecular typing studies have shown that CA-MRSA dif-
fers from HA-MRSA, as it belongs to several distinct genetic lineages and usually carries
smaller staphylococcal cassette chromosome mec (SCCmec) elements and specific viru-
lence factors, such as Panton-Valentine leukocidin (PVL), a cytotoxin (6, 7). Furthermore,
CA-MRSA overexpresses toxins such as phenol-soluble modulins and hemolysins and
exhibits higher virulence than HA-MRSA (8, 9).

CA-MRSA has been particularly threatening in the United States. The USA300 clone,
a representative clone of CA-MRSA and a sequence type 8 (ST8) clone which carries
the SCCmec type IVa and PVL genes, as well as the arginine catabolic mobile element
(ACME), a mobile genetic element, had spread throughout the United States by 2004
(10). According to reports by the Centers for Disease Control and Prevention (CDC) on
invasive S. aureus disease, incidences of hospital-onset (HO) and health care-associated
community-onset (HACO) MRSA have been on the decline since 2004, while the inci-
dence of CA-MRSA has only mildly declined, from 5.6/100,000 population in 2005 to
4.8/100,000 in 2017 (11, 12). The USA300 clone is considered a highly pathogenic
clone, and many severe infection cases have been reported. Outside the United States,
the Southwest Pacific clone (ST30/SCCmec IVc/PVL1) around the world, the Taiwan
clone (ST59/SCCmec V/PVL1) in South Asia, and the European clone (ST80/SCCmec IVc/
PVL1) in Europe are the dominant clones (5, 13). However, because there are reports of
increased detection of the USA300 clone in Europe, its global spread is feared (13–15).

Japan is known to be a country where MRSA is endemic; in 2000, about 70% of the S.
aureus strains detected in Japanese health care facilities were MRSA, but in 2014, the MRSA
rate fell to less than 50% (https://janis.mhlw.go.jp/english/index.asp). However, this was
only in relation to health care-associated infections and not community-associated ones.
Several studies have suggested that PVL-positive CA-MRSA is rare in the Japanese popula-
tion; however, the strains mentioned in these reports also included HA-MRSA or were only
isolated from a few study centers (16–18). Therefore, based on these reports, it is difficult
to understand the epidemiology of CA-MRSA clones in Japan. We conducted a surveillance
of CA-MRSA in 2010 and 2012 (19). Only 10.4% and 8.3% of the CA-MRSA strains from
2010 and 2012 were PVL positive, respectively, and only 0.8% and 2.1% were the USA300
clone in 2010 and 2012, respectively, suggesting that the prevalence of highly pathogenic
CA-MRSA was low in Japan at that time.

We continued our nationwide surveillance and collected a total of 1,770 CA-MRSA
strains from 2010 to 2018. Here, we report the molecular and epidemiological charac-
teristics of CA-MRSA strains isolated from patients in a large number of health care
facilities throughout Japan. This study is the first longitudinal analysis of epidemiologi-
cal data of CA-MRSA for about 10 years in Japan, and it includes many new findings.
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RESULTS
Clinical and epidemiological data. In total, 46,549 skin and pus samples obtained

from outpatients were sent to the Miroku Medical Laboratory Co. (MML) for culture
during the study period, and pathogens were detected in 29,813 samples (Table 1).
Pathogens obtained from these samples included 9,726 S. aureus isolates (32.6%),
among which 1,928 (19.8%) were MRSA. When MRSA was isolated repeatedly from the
same patient, this was considered one strain. A total of 1,770 MRSA strains isolated
from the skin and pus samples collected from 244 medical facilities in 31 prefectures of
Japan were sent to Toho University for molecular characterization. We isolated MRSA
strains from 78, 102, 94, 102, and 100 facilities in 2010, 2012, 2014, 2016, and 2018,
respectively. Furthermore, MRSA was detected in only 1 year during the study period
in 124 facilities, and 180 strains were isolated from these facilities. The remaining 1,590
strains were isolated from 120 facilities where MRSA was isolated in more than 1 year.
Most MRSA samples (46.8%) were from the Kanto area, which has the highest popula-
tion density, followed by the Chubu area (38.0%), where MML is located. Among the
patients from which CA-MRSA strains were isolated, 31.6% were under 10 years of age,
and the ratio of males to females was 52.9% to 46.0% (unknown, 1.1%).

SCCmec typing and virulence gene analysis of MRSA.We detected mecA in all the
strains. The prevalence of SCCmec type IV increased from 44.0% to 75.8% between 2010
and 2018 (Fig. 1). Patients with SCCmec type IV strains were significantly younger than
those with type II strains, and patients with type V strains were significantly younger than
those with type IV (Fig. 2). Furthermore, SCCmec type II strains were frequently isolated
from patients under 10 (23.8%) and over 60 years of age (52.9%).

Results of the virulence gene analysis are shown in Table 1. The PVL-positive rate
among the MRSA strains increased by approximately 3-fold, from 10.4% in 2010 to
26.5% in 2018. The prevalence of toxic shock syndrome toxin 1 (TSST-1)-positive strains
decreased from 33.6% in 2010 to 21.6% in 2018. Only one strain (0.3%) carrying both
the PVL and TSST-1 genes was isolated in 2012, but five such strains (1.4%) were iso-
lated in 2018 alone.

Antimicrobial susceptibilities. The MIC50 and MIC90 of each SCCmec type for each
agent are shown in Table 2. Univariate analysis of the relationship between each
SCCmec type and antimicrobial MICs showed that there were significant differences
(P , 0.05) in the relationships between SCCmec types II, IV, and V and the following
antimicrobial agents: cefazolin (CFZ), cefmetazole (CMZ), flomoxef (FMOX), imipenem
(IPM), and levofloxacin (LVX). For CFZ, CMZ, FMOX, and LVX, the MIC50 for SCCmec type
IV strains was lower than that for type II strains, and the MIC50 for type V strains was
lower than that for type IV strains. In addition, for clindamycin (CLI), minocycline (MIN),
and IPM, the MIC50 for SCCmec type II strains was higher than that for type IV and V
strains. For gentamicin (GEN) and erythromycin (ERY), the MIC50 was high for all
SCCmec type strains; for sulfamethoxazole-trimethoprim (SXT) and vancomycin (VAN),
the MIC50 was low for all SCCmec type strains.

TABLE 1 Details of bacterial strains isolated in this study by year

Sample category 2010a 2012a 2014 2016 2018
All samples for culture 134,282 213,524 205,412 215,460 182,674
All outpatient samples for culture 64,865 103,822 102,522 112,951 94,655
All samples from skin or pus of outpatients 5,577 9,465 10,670 10,794 10,043
Culture-positive samples 3,957 6,428 6,831 6,741 5,856
S. aureus isolates (% of all positive cultures) 1,436 (36.3) 2,145 (33.4) 2,390 (35.0) 2,092 (31.0) 1,663 (28.4)
MRSA isolates (% of all S. aureus isolates) 260 (18.1) 413 (19.3) 463 (19.4) 420 (20.1) 372 (22.4)
Analyzed MRSA strains 241 384 401 397 347

Samples with virulence gene for:
PVL (% of all MRSA strains) 25 (10.4) 32 (8.3) 53 (13.2) 81 (20.4) 92 (26.5)
TSST-1 (% of all MRSA strains) 81 (33.6) 114 (29.7) 122 (30.4) 89 (22.4) 75 (21.6)
PVL and TSST-1 (% of all MRSA strains) 1 (0.3) 5 (1.4)

aData include the reported data of the isolates in 2010 and 2012 (19); the data on the isolates obtained from 2014, 2016, and 2018 were added for comparison.
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When comparing strain susceptibility according to the detection year, the percent-
age of strains susceptible to MIN and CLI increased in 2018 (87.6% and 80.7%, respec-
tively) compared to levels in 2014 (81.0% and 70.6%, respectively) and in 2010 (51.0%
and 44.0%, respectively) (Fig. 3). The increased percentage of the SCCmec type IV and
type V strains susceptible to MIN and CLI in 2014, compared to 2010, contributes to
the increase in the susceptibility of all strains. Susceptibility to levofloxacin decreased
over time, with 54.8%, 52.1%, and 33.7% of strains being susceptible in 2010, 2014,
and 2018, respectively. SCCmec type II and type IV strains, but not SCCmec type V
strains, are becoming quinolone resistant.

Whole-genome sequencing and analysis of PVL-positive CA-MRSA. Among the
92 PVL-positive strains detected in 2018, CC8 strains were identified most frequently
(59 isolates), followed by CC22 (15 isolates), and four additional CCs, namely, CC5 (1

FIG 1 SCCmec typing of CA-MRSA in Japan. Data regarding the isolates collected from 2010 and
2012 have been reported previously (19); data on the isolates obtained from 2014, 2016, and 2018
were added for comparison. SCCmec, staphylococcal cassette chromosome mec; NT, nontypeable
SCCmec; type I, SCCmec type I; type II, SCCmec type II; type IV, SCCmec type IV; type V, SCCmec type
V; TSST-11, toxic shock syndrome toxin-1 gene-positive strains; PVL1, Panton-Valentine leucocidin
gene-positive strains.

FIG 2 Age distribution of isolates for each SCCmec type (from 2010 to 2018). SCCmec types IV and V
were mostly isolated from patients #9 years of age (26.0% and 61.2%, respectively). NT, nontypeable
SCCmec; SCCmec, staphylococcal cassette chromosome mec.
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isolate), CC30 (8 isolates), CC59 (7 isolates), and CC398 (1 isolate) (Table 3; see also
Table S1 in the supplemental material). Most CC8 had the same genetic profile as that
of USA300_FPR3757: the SCCmec type was IVa and carried the sek, seq, hglA, hlgB, hlgC,
lukE, lukD, scn, sak, and ACME genes. Only one strain (CAM-1934) had the same genetic
profile as that of USA300-LV: the SCCmec type was IVc and it did not carry ACME genes.
The next most frequently detected lineage was CC22, which had the same sequence
type as that of UK-EMRSA-15 (i.e., ST22/SCCmec type IV and PVL genes absent), known
as an HA-MRSA clone. Among the 15 isolates, 10 strains were subtype IVc and the
remaining 5 were subtype IVa. These ST22/PVL-positive strains carried various entero-
toxins; in particular, the ST22/SCCmec IVa clone carried sec, sel, and tst-1, in addition to
seg, sei, sem, sen, seo, and seu.

Core-genome single-nucleotide polymorphism analysis of the PVL-positive
strains. Most CC8 strains showed high similarity to USA300_FPR3757 (Fig. 4A). Of the
59 strains, 58 were SCCmec type IVa. Moreover, the number of single-nucleotide poly-
morphisms (SNPs) between USA300_FPR3757 and each strain was less than 101. In par-
ticular, the 32 strains with the bc-specific deletion formed a very similar group with
fewer than 80 SNPs; these strains are thought to have diverged from a common origi-
nal strain and have been spreading in Japan over the past decade. Only one strain,
CAM-1934, was SCCmec type IVc, and this strain had the lowest similarity to
USA300_FPR3757. This strain was thought to have diverged from USA300-LV, a variant
of the USA300 clone.

CC22 was divided into two major genotypes, namely, ST22/SCCmec IVa and ST22/
SCCmec IVc (Fig. 4B). Furthermore, all five strains of the ST22/SCCmec IVa clone har-
bored lukS-pv, lukF-pv, and tst-1 genes. CC30 showed a relatively low interstrain similar-
ity, with only two strains having no SNPs, while the other strains had more than 100
SNPs (Fig. 4C). This was also observed in CC59, which was similar to CC30 (Fig. 4D).

DISCUSSION

In this study, we analyzed the changes in the molecular and epidemiological characteris-
tics of CA-MRSA in Japan during 2010 to 2018. Our results showed that the ratio of MRSA
to all S. aureus strains in community-acquired infections was approximately 20% and was
lower than that observed in hospitalized patients in Japan (47.5% in 2018) (https://janis
.mhlw.go.jp/english/index.asp). However, the ratio of MRSA to all S. aureus strains increased
slightly from 18.1% to 22.4% between 2010 and 2018, and the percentage of PVL-positive
strains among CA-MRSA isolates increased from 10.4% in 2010 to 26.5% in 2018.

Results of this study reiterate that the molecular epidemiology of MRSA strains in Japan
differs from that of strains in Europe and the United States. In Japan, the isolation

TABLE 2MIC50 and MIC90 levels of the 12 antibiotics tested on the MRSA strains isolated in 2010, 2014, and 2018, based on SCCmec typea

Antibiotic group and agent
(MIC range

MIC50, MIC90 (mg/mL) for SCCmec type

All types II (n = 218) IV (n = 596) V (n = 153)
Non-beta-lactams
Gentamicin (#0.25 to.8mg/mL) .8,.8 .8,.8 .8,.8 .8,.8
Levofloxacin (#0.25 to.4mg/mL) 4,.4 .4,.4 4,.4 #0.25, 0.5
Clindamycin (#0.06 to.2mg/mL) 0.25,.2 .2,.2 0.12,.2 0.25,.2
Erythromycin (#0.12 to.4mg/mL) .4,.4 .4,.4 .4,.4 .4,.4
Minocycline (#2 to.8mg/mL) #2,.8 8,.8 #2, 8 #2,#2
Sulfamethoxazole-trimethoprim (#9.5/0.5 to.38/2mg/mL) #9.5/0.5,#9.5/0.5 #9.5/0.5,#9.5/0.5 #9.5/0.5,#9.5/0.5 #9.5/0.5,#9.5/0.5
Vancomycin (#0.5 to 4mg/mL) 1, 1 1, 1 1, 1 1, 1

Beta-lactamsb

Cefazolin (#0.5 to.16mg/mL) 8,.16 .16,.16 8,.16 1, 2
Cefmetazole (#2 to.32mg/mL) 8, 32 32,.32 8, 16 4, 8
Flomoxef (#0.5 to.16mg/mL) 4,.16 .16,.16 4, 8 2, 4
Imipenem (#0.25 to.8mg/mL) #0.25,.8 .8,.8 #0.25, 1 #0.25, 0.25

aData include the reported MIC values of the isolates of 2010 (19).
bMICs of beta-lactams were low for some MRSA strains. However, even if the MIC of the antibiotic is low, the antibiotic may not be clinically effective.
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frequency of PVL-positive CA-MRSA strains is low, and CA-MRSA/J (ST8/SCCmec IV/TSST-
11), which is unique to Japan, is often isolated (20). In addition, ST89/SCCmec IV/eta or etb-
positive strains have been isolated in impetigo, and in recent years, ST1/SCCmec IV/cna-
positive strains have been isolated (21, 22). In this study, TSST-1-producing CA-MRSA strains
were isolated most frequently in 2010; however, in 2018, the final year of this study, PVL-
positive strains were more prevalent than TSST-1-positive strains. These results suggest
that significant changes occurred in the molecular epidemiology of CA-MRSA in Japan dur-
ing the period covered by this study.

For PVL-positive strains, which have increased over the decade, we determined
multilocus sequence types (MLSTs) of isolates in 2010 and in 2018, thus allowing com-
parisons. In the 2010, 25 PVL-positive strains (10.4% of MRSA) were isolated, with the
ST30/SCCmec IVc clone being the most frequently isolated, with 12 strains (5.0% of
MRSA). The second most common clone was the ST8/SCCmec IVc clone, with seven iso-
lates (2.8% of MRSA), followed by the ST8/SCCmec IVa clone (also known as the
USA300 clone), with two isolates (0.8% of MRSA). Only one (0.4%) of each of the other
clones (ST22/SCCmec IVc, ST452/SCCmec IVc, ST59/SCCmec V, ST154/SCCmec IVn) was
detected. In 2018, 92 PVL-producing strains were isolated, and CC30, including ST30/
SCCmec IVc, the most frequently isolated clone in 2010, was identified in only eight iso-
lates (2.3% of all MRSA analyzed). Furthermore, ST8/SCCmec IVc, the second most fre-
quently isolated strain in 2010, was identified in only one isolate in 2018. In contrast,
although only two strains of ST8/SCCmec IVa/PVL1/ACME1, which has the same
genomic type as the USA300 clone, were detected in Japan in 2010, this number
increased remarkably in 2018 to 58 strains (16.7% of MRSA in 2018). Even in the United

FIG 3 Trends in the percentage of strains susceptible to non-beta-lactam antibiotics over the study
period. Data regarding the isolates collected from 2010 have been reported previously (19). Data on
the isolates obtained from 2014 and 2018 were added for comparison.
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FIG 4 Phylogenetic trees of the PVL-positive strains in 2018. (A) Sixty-two strains of MRSA CC8. USA300_FPR3757 and two USA300 Latin America variant
(USA300-LV) strains (USA300-LV_M121 and USA300-LV_TPS3156), a USA300 clonal subtype frequently reported in Latin America, were included as reference

(Continued on next page)

Survey of CA-MRSA in Japan Microbiology Spectrum

July/August 2022 Volume 10 Issue 4 10.1128/spectrum.02272-21 8

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02272-21


States, where the USA300 clone is now widespread, the clone was not detected before
2000; however, in 2004, it accounted for the majority of the CA-MRSA cases and subse-
quently became the most common MRSA clone detected in health care facilities in the
United States (10, 23). In Japan, if the current trend of the increasing rates of PVL-posi-
tive CA-MRSA strains continues, PVL-positive CA-MRSA strains may become the domi-
nant clone.

According to whole-genome sequencing (WGS) via next-generation sequencing
(NGS), CC8 was the most frequently detected PVL-positive lineage in 2018. SNP analysis
revealed that 58 of the 59 CC8 strains showed fewer than 101 SNPs compared to
USA300_FPR3757. This result suggests that these strains have spread rapidly in Japan
over the last decade. Next, many strains of the ST22 clone, including the double-posi-
tive PVL1 and TSST-11 ST22 clone (ST22-PT clone), were isolated in 2018. The most fa-
mous ST22 clone is EMRSA-15 (ST22/SCCmec IVh), also known as HA-MRSA; however,
strains with a different genetic background from that of this clone have been isolated
as CA-MRSA (24). Recently, the “Gaza clone” (ST22/SCCmec IVa/TSST-11) has been
reported to be CA-MRSA (25, 26). One of the characteristics of this strain is that its
SCCmec type is IVa, unlike EMRSA-15, and it often possesses the TSST-1 gene. Gaza
clones that possess both the TSST-1 and PVL genes have been reported, and the ST22-
PT clone isolated in this study was genetically close to the Gaza clone. Furthermore,
we observed an intrafamilial transmission case involving the ST22-PT clone, which
causes fatal necrotizing pneumonia and sepsis, suggesting that the ST22-PT clone is
highly virulent (27). The five ST22-PT strains detected in our study formed a group and
harbored fewer than 100 SNPs. However, these five strains were detected in different
hospitals, thus ruling out the possibility of an outbreak within a single medical institu-
tion and suggesting that this specific PT-CA-MRSA clone is spreading in Japan.
Furthermore, a PVL-positive ST1232 (CC398) clone was detected; CC398 is a known
livestock-associated MRSA but is sometimes detected as CA-MRSA and includes the
PVL-positive strains (28, 29). A PVL-positive ST1232 clone has been isolated in Japan in
the past (30).

The results of this study show that among MRSA strains, several strains have low
b-lactam MICs; furthermore, b-lactam MICs for SCCmec type IV and type V were lower
than those for SCCmec type II. Because such strains harbor mecA, they are likely to
become resistant even if b-lactam MICs are low, and thus, b-lactams should not be
used. However, in recent years, the strategies of utilizing b-lactams against MRSA have
changed, including their incorporation into combination therapy (31–34). The suscepti-
bility of MRSA to b-lactams may be important in the selection of therapeutic agents in
the future. Excluding b-lactams, the MIC50 for SCCmec type II strains was higher than
that for type IV and V strains for LVX, CLI, and MIN. Furthermore, compared to that in
2010, the percentage of strains susceptible to MIN and CLI increased and the percent-
age of strains susceptible to LVX decreased in 2018. The percentage of strains suscepti-
ble to GEN and ERY was low, while the percentage of strains susceptible to SXT was
high. These results suggest that MIN, CLI, and SXT are potential therapeutic options
when skin and soft tissue infections caused by MRSA are suspected.

This study had several limitations. First, since it was conducted in collaboration with
a laboratory with specific constraints related to patient data availability, the clinical in-
formation of the enrolled patients was limited. Thus, further studies are required to
assess whether the strain characteristics are linked to the infection type and severity in
patients. Second, the study was adjusted to include more CA-MRSA strains by targeting

FIG 4 Legend (Continued)
strains (reference strains are indicated using white circles and red text). A core genome region, amounting to 85.7% (2,462,130/2,872,769 bp), was shared
with the genome of the reference strain S. aureus USA300_FPR3757 (ST8). An explanation of the bc-specific deletion is provided in Materials and Methods.
(B) Fifteen strains of MRSA CC22. A core genome region, amounting to 91.5% (2,604,425/2,846,320 bp), was shared with the genome of the reference strain
S. aureus UK-EMRSA-15 (ST22). (C) Eight strains of MRSA CC30. A core genome region, amounting to 95.4% (2,651,817/2,778,854 bp), was shared with the
genome of the reference strain S. aureus ATCC 25923 (ST30). (D) Eight strains of MRSA CC59. A core genome region, amounting to 95.7% (2,669,274/
2,788,636 bp), was shared with the genome of the reference strain S. aureus M013 (ST59). *, there were no SNPs.
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outpatients and limiting the samples from skin origin. However, it is possible that
patients with a clinical background of HA-MRSA were included in the study. Third,
MRSA strains were collected from outpatients of all age groups but were mostly iso-
lated from patients under 10 years of age. We believe that this indicates that skin and
soft tissue infections caused by S. aureus, especially CA-MRSA, are common in children.
However, in the current study, it was not possible to tabulate the age distribution of
the entire patient population whose samples were sent for culture. It remains unclear
whether the age of the entire patient population for whom samples were sent for cul-
ture was low or the age of the patient population from whose samples CA-MRSA was
isolated was lower. Fourth, in this study, only PVL-positive MRSA strains were analyzed
by NGS; a broader analysis is needed to understand the lineages of PVL-negative
MRSA.

In summary, the number of CA-MRSA strains, including the PVL-positive strains iso-
lated from skin and soft tissue infections, has gradually increased since 2010. To the
best of our knowledge, this study is the first to report and describe CA-MRSA isolates
from Japan collected over the past decade and to indicate that the molecular epidemi-
ology of CA-MRSA in Japan is unique and different from that in Europe and the United
States. Taken together, our study highlights the need to continuously monitor the
trends in CA-MRSA prevalence and devise novel strategies for the management and
control of infections in Japan.

MATERIALS ANDMETHODS
Bacterial strains and definitions of CA-MRSA.We collaborated with the Miroku Medical Laboratory Co.

(Nagano, Japan), a contract-based microbiology laboratory that analyzes clinical samples for over 200 medical
facilities across Japan. We isolated S. aureus from skin and pus samples collected from outpatients registered
in 2010 (February to September), 2012 (February 2012 to January 2013), 2014 (January to December), 2016
(January to December), and 2018 (January to December). These S. aureus strains were tested for antimicrobial
susceptibility to oxacillin (OXA), using the broth microdilution method, and to cefoxitin (FOX), using the disc
diffusion method according to the Clinical and Laboratory Standard Institute (CLSI) reference methods (35).
The strains with OXA MICs of $4 mg/mL or zone diameters for FOX of #21 mm were identified as MRSA.
Since this study was limited to outpatients, there was a possibility that these cases of skin infection were
community-onset infections. Therefore, we treated the MRSA isolates from the skin samples of outpatients as
CA-MRSA. These CA-MRSA strains were sent to our laboratory for molecular characterization. Data regarding
the isolates collected from 2010 and 2012 have been reported previously (19); the data on the isolates
obtained from 2014, 2016, and 2018 were added for comparison and review of the molecular epidemiologi-
cal changes over the past decade. Due to the restricted contract between MML and the medical facilities, we
could collect only limited clinical data from the patients, including the date of isolation, region, sex, and age
group. The samples were collected by MML and anonymized so that no individuals were identifiable.
Moreover, MML provided the patients with information on the opportunity to refuse to participate in the
study (opt-out) on its website. The research protocols were approved by the Safety Committee for Pathogens
of Toho University (20-53-101) and the Ethics Committee of the Faculty of Medicine, Toho University
(A20013_A17019). Since some of the SCCmec types are rare in Japan, the following strains were used as posi-
tive controls in this study: NCTC10442 (SCCmec type I), N315 (SCCmec type IIa), JCSC3063 (SCCmec type IIb),
85/2082 (SCCmec type III), JCSC4744 (SCCmec type IVa), JCSC2172 (SCCmec type IVb), JCSC4788 (SCCmec
type IVc), JCSC4469 (SCCmec type IVd), JCSC4796 (SCCmec type IVg), WIS (SCCmec type V), and JCSC6774
(USA300 clone). These strains were provided by Keiichi Hiramatsu (Juntendo University, Tokyo, Japan).

Antimicrobial susceptibility testing. To compare changes in antimicrobial susceptibility over the
past decade, MRSA strains isolated during 2010, 2014, and 2018 (241, 401, and 347 strains, respectively)
were selected. The MICs for each isolate were determined using a broth microdilution assay according
to the CLSI reference methods (35).

The antimicrobial susceptibility of each strain was tested using ready-made dry plates (DP32; Eiken
Chemical Co. Ltd., Tokyo, Japan) containing 13 antimicrobial agents, including OXA, FOX, CFZ, CMZ,
FMOX, IPM, GEN, MIN, ERY, CLI, SXT, LVX, and VAN. The MIC values for the susceptibility criteria were
determined according to CLSI document M100-Ed30 (36), and those for beta-lactams were determined
according to CLSI document M100-S22 (37). The Staphylococcus aureus ATCC 29213 strain was used for
quality control of the broth microdilution assay. The MICs for the isolates collected in 2010 have been
reported previously (19); the data on the isolates obtained from 2014 and 2018 were added for compari-
son over the past decade.

SCCmec typing and virulence gene analysis. The SCCmec elements are currently classified based
on the combination of two essential components, the mec gene complex and the ccr gene complex (38,
39). We used the basic PCR strategy established by Ito et al. (39, 40) to classify ccr gene complexes into
type 1 to type 5 by using eight different primers (primers used for typing were a1 and bc for type 1, a2
and bc for type 2, a3 and bc for type 3, a4.2 and b4.2 for type 4, and gR and gF for type 5). However,
some type 2 ccr gene complexes that cannot be detected using this method have been reported (41). It
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has been shown that this is due to a specific 11-bp deletion in the bc binding site of the type 2 ccr gene
complex. This bc-specific deletion is relatively common in CA-MRSA clones in Japan, especially in the
USA300 clone. Therefore, we designed a new primer sequence which was different at the bc region
(primer b29, 59-TGGACTTGGGGTTTTTGA-39) and could bind to the type 2 ccr gene complex even in the
presence of a bc-specific deletion (see Fig. S1 in the supplemental material for details). In this study, in
cases where the ccr gene complex was not detected using the standard method, an additional PCR assay
with the primer pair a2 and b29 was performed to detect the type 2 ccr gene complex. If the PCR prod-
uct was confirmed by this PCR, the strain was classified as ccr type 2.

Staphylococcal virulence genes were detected using a PCR assay and previously reported primers
(42–46). The target genes included the PVL gene (lukSF-pv) and TSST-1 gene (tst-1).

Genome sequencing of PVL-positive strains. We performed draft WGS of PVL-positive strains from
the samples isolated in 2018 to characterize the highly virulent clones. Genomic DNA was extracted using
the QIAamp DNA minikit (Qiagen, Hilden, Germany). DNA libraries were prepared using the Enzymatics 5X
WGS reagents (BioStream Co., Ltd., Tokyo, Japan) and pooled. Sequencing was performed using the Illumina
HiSeq X FIVE platform (Illumina, Inc.) at Macrogen Japan Corporation (Tokyo, Japan). The Illumina reads were
assembled using the CLC Genomics Workbench software ver. 20.0.4 (Qiagen), and the assembled contigs
were analyzed using ResFinder 3.2 to identify the drug resistance genes, with MLST 1.8 for multilocus
sequence typing and SCCmec Finder 1.2 for SCCmec typing (all available on the Centre for Genomic
Epidemiology website, http://www.genomicepidemiology.org/services/) (47–49). For drug resistance- and
toxin-encoding genes, 90% similarity and 60% reference sequence length were considered positive results.

Core-genome SNP-based phylogenetic analysis of PVL-positive strains. Core-genome SNP-based
phylogenetic analysis using Illumina sequencing data was performed for the PVL-positive strains obtained in
2018, which belonged to the four largest clonal complexes (CC8, CC22, CC30, and CC59), comprising more than
seven strains. The Illumina reads were aligned to the genomic sequence of the reference strain using the
Burrows-Wheeler Aligner with the SW algorithm (50). To ensure high similarity, different gene sequences were
selected as reference sequences for each CC; the reads of CC8, CC22, CC30, and CC59 strains were mapped to
USA300_FPR3757 (accession number NC_007793), UK-EMRSA-15 (accession number NZ_CP007659), ATCC 25923
(accession number NZ_CP009361), and M013 (accession number: CP003166), respectively. Core-genome regions
were extracted using the Sequence Alignment/Map software (SAMtools mpileup, version 1.1) (51) and read using
VarScan (version 2.3.7) mpileup2cns (52). Maximum-likelihood phylogenetic trees were constructed using PhyML
(53). Using these maximum-likelihood trees as the initial trees, we estimated homologous recombination events
in which DNA fragments from beyond the phylogenetic clade were imported, and we constructed a clonal phy-
logeny with corrected branch lengths using ClonalFrameML (54). The core genome, excluding the homologous
recombination sequences estimated using ClonalFrameML, was analyzed for SNP detection.

Statistical analysis.We performed statistical analysis using SPSS software, version 27 (IBM, Chicago,
IL, USA), with a two-sided significance level of 5% for all statistical tests. To investigate associations
between each SCCmec type and antimicrobial susceptibility or patient age distribution, we applied the
Kruskal-Wallis test, followed by the Dann-Bonferroni test, for multiple comparisons. To compare antimi-
crobial susceptibility to each SCCmec statistically, the MIC values of antibiotics for each strain were used.
If the MIC of each antibiotic exceeded the maximum concentration of the antibiotics measured, then
twice the maximum concentration value was considered the MIC for statistical analysis; if the MIC was
less than the minimum concentration measured, the minimum concentration was considered the MIC
for statistical analysis. (For example, if the MIC was .128 mg/mL, 256 mg/mL was considered the MIC,
whereas if the MIC was#32 mg/mL, 32mg/mL was considered the MIC).

Data availability. Table S1 in the supplemental material shows the type and accessory genes of 92
PVL-positive MRSA isolates obtained in 2018, along with their run accession numbers. These read data
for the 92 PVL-positive strains have been deposited in the DNA Data Bank of Japan (DDBJ) under
BioProject accession number PRJDB11170.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.03 MB.
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