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Psychiatric research is often confronted with complex abstractions and dynamics that

are not readily accessible or well-defined to our perception and measurements, making

data-driven methods an appealing approach. Deep neural networks (DNNs) are capable

of automatically learning abstractions in the data that can be entirely novel and have

demonstrated superior performance over classical machine learning models across a

range of tasks and, therefore, serve as a promising tool for making new discoveries

in psychiatry. A key concern for the wider application of DNNs is their reputation as a

“black box” approach—i.e., they are said to lack transparency or interpretability of how

input data are transformed to model outputs. In fact, several existing and emerging tools

are providing improvements in interpretability. However, most reviews of interpretability

for DNNs focus on theoretical and/or engineering perspectives. This article reviews

approaches to DNN interpretability issues that may be relevant to their application in

psychiatric research and practice. It describes a framework for understanding these

methods, reviews the conceptual basis of specific methods and their potential limitations,

and discusses prospects for their implementation and future directions.

Keywords: model interpretability, explainable AI, deep learning, deep neural networks, machine learning,

psychiatry

INTRODUCTION

Psychiatric disorders are common and a leading cause of disability worldwide. Substantial research
has been done in the field, but major questions about their causes, treatment, prediction,
and prevention remain unanswered. In part because mental phenomena and their disorders
are inherently multidimensional and reflect complex dynamic processes, psychiatric research
comprises a unique set of challenges that have not been tractable to date using conventional
approaches. The validity of psychiatric constructs and their measurements and the interplay
between and within bio-psycho-social factors to determinants might not be readily describable by
heuristic knowledge or by simple models of dynamics currently established. Despite tremendous
efforts, overall progress in understanding and treating psychiatric illnesses has been modest in the
past decades.

The emergence of Big Data and recent developments in machine learning (ML) might provide
a venue to tackle some of the challenges. Deep neural networks (DNNs) (1, 2), a specific type of
ML model, could be particularly helpful in some cases. DNN models are inspired by biological
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brains, using artificial neurons (e.g., mathematical analog to
biological neurons) as units and, with those, building a network
by wiring a large number of units together in specific ways.
Two unique theoretical properties make them particularly
appealing to psychiatric research, namely the capability of
finding and mapping more complex patterns in data compared
to other models, and the ability to automatically learn
important and, at times, novel aspects of information through
sequential data transformations (e.g., “representation learning”).
Empirically, in the field of healthcare, they have already
achieved groundbreaking progress in various applications: for
example, drug discovery (3), protein folding (4), and clinical
risk prediction (5). There is also published work on using
representation learning to potentially enhance the validity of
psychiatric taxonomy (6).

However, it is also known that DNNs possess a set of
lingering issues that remain to be improved. For example,
there is increasing awareness of the challenge of model
interpretability (7–15). Complex ML models, such as DNNs,
are sometimes referred to as “black box” models because their
mechanisms of making decisions are not explicitly accessible
to human cognition. In the context of psychiatric research,
model interpretability is desirable for the following reasons:
(1) for clinical applications, building trust between the model
and stakeholders is fundamental for adoption of the tool. Trust
is directly related to the level of understanding of the inner
working of the model (e.g., “knowing why”). It is known that
DNNs are capable of making accurate predictions based on
“peripheral” features or noise but that contain no heuristic or
scientific meaning other than statistical correlation with the
labels. In this context, the models could be more vulnerable to
adversarial attacks and noise when applied to out-of-distribution
data (16, 17). For example, one can build a well-performing
classifier for diagnosis of depression based on internal data that
is, in fact, less reliable when applied to real-world data. With
appropriate model interpretation, researchers and clinicians can
make better judgments about whether themodel is trustworthy in
a given scenario, supported by their expert knowledge. (2) Model
interpretation helps to identify critical aspects of the data (e.g.,
the underlying biological mechanism as shown in neuroimaging
tools) and could help the progress of science in both better
understanding the subject matter and improving the model. (3)
For psychiatry in particular, a significant proportion of clinical
decisions are made by jointly considering objective conditions
and subjective considerations—for example, preferences to
choose over a certain medication side effect profile vs. another,
etc. Knowledge about how the model makes decisions allows the
flexibility to adjust to additional human preferences and value
judgments not readily incorporated in each instance. (4) Finally,
on the legal side, model interpretability is explicitly stated as a
requirement by the General Data Protection Regulation set by the
European Union (18).

Efforts to improve the interpretability of complex ML models
has been an active area of research, and several recent reviews
have addressed recent developments in this area for an ML
audience (7–11, 13–15). In this article, we aim to summarize
some of these issues in the context of their potential application

to psychiatric research. Starting from a brief introductory sketch
of DNNs, we then discuss general considerations regarding
DNN interpretation methods; the current status of available
interpretation methods; and their limitations, implementations,
and possible future directions. Our main goal is not to provide
an exhaustive review, but to introduce basic principles and
emerging approaches to DNN interpretability that may provide
context for psychiatric researchers interested in applying these
methods. On the other hand, ML researchers interested in
mental health research might also find this article helpful. In
this paper, we discuss interpretability for supervised learning as
most interpretation methods were developed under this context,
but many of the methods can be generalized to semisupervised
learning as well. Figure 1 may serve as a guide to aid readers in
navigating the conceptual flow of this paper.

DNNs IN A NUTSHELL

Basics of DNNs
DNNs belong to the broader class of neural networks (NNs)
(1, 2). As mentioned, the basic unit of an NN is an artificial
neuron, which is a simple simulation of biological neurons.
Biological neurons take input from other neurons, form an action
potential, and then output signals to subsequent neurons via
synapses. Artificial neurons are also connected in an analogous
way, and synaptic strengths are designated by numeric weights
with higher weights indicating a stronger connection. Action
potential is simulated by a nonlinear “activation function,” which
typically has a drastic output value change after input value
exceeds a certain threshold. NNs are typically composed of
“layers” of artificial neurons, which take a signal from their
counterparts in the preceding layer and output to the next after
the aforementioned transformation although, typically, there is
no connection between neurons in the same layer. In real-world
applications, the number of neurons in each layer is usually
large (starting from the order of hundreds to tens of thousands
depending on the design). To further link NNs to other statistical
models, it is noteworthy that logistic regression can be expressed
as a simple case of NN—it is a, NN with only two layers (input
and output) with all inputs linked to a single output cell and
applying a logistic activation function at the output cell.

A DNN is a specific case of the general class of NNs such
that it has at least three layers in its structure: an input layer,
an output layer, and at least one layer in between, designated
as a “hidden” layer. What makes DNNs unique are the hidden
layers; because each layer includes a step of linear and nonlinear
transformation, hidden layers make DNNs “compositional” in
nature (e.g., functions of functions), which is shown to greatly
increase the patterns that can be expressed by the model (19). On
the other hand, it is in part the existence of these hidden layers in
NNs that has contributed to concerns about their interpretability.

Common DNN Architectures
Currently, there are three common types of DNN architectures,
namely (1) feed-forward NN, (2) convolutional neural networks
(CNNs) (20), and (3) recurrent neural networks (RNNs) (21)
(Figure 2). These structures can be used as building blocks (in the
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FIGURE 1 | Conceptual flow chart connecting ideas and articles reviewed and discussed in this paper. Each block between a set of arrows corresponds to a

particular section of the paper. Numbers in parenthesis indicate relevant referenced articles.

form of layers) for a more complicated DNN in flexible ways as
long as model training is computationally feasible. Feed-forward
NNs are the basic type of DNNs in which the batch of neurons
within each layer is connected to and only to those in the previous
and the following layers. Information is propagated from the
input layer through a sequence of hidden layers to the output in
a straightforward fashion.

CNNs are motivated by imitation of biological vision systems
and have been widely adopted for (but not limited to) computer
vision and image-related tasks, such as reading pathology slides
or brain images. The aim is to simulate the hierarchical nature
of neurons in the vision cortex. The input neurons, usually
representing pixels of an image, are typically connected to a
smaller group of neurons that act as “filters,” which scan through
the entire image. The filter processes through the entire input
image by moving one or several pixels at a time, which, in

the end, outputs a filter-transformed version of the image. The
sliding nature of the scan is why the term “convolution” was
coined as it operates analogously to the convolution operation
in mathematics. The main characteristic of the CNN is the
“weight sharing” of the filter in which the parameters defining the
filter are fixed throughout scanning of the whole image. Filters
are capable of learning to recognize meaningful abstracts (e.g.,
representations) of the image that are directly correlated with the
task at hand. For example, to identify a table, representations such
as sharp edges or a flat surface might be captured automatically.

An RNN is motivated by the fact that there are forms of
data in which observations may not be independent, such as
time sequential or text data. An RNN by design takes into
account dependencies over the sequence by taking in inputs
sequentially and allowing information contained in the hidden
layer of the previous step to enter that of the following. Variants
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FIGURE 2 | Schematic diagram for three common DNN architectures. (A) A three-layer, feed-forward NN (with one hidden layer). Each circle represents one artificial

neuron. All neurons in one layer are connected to all neurons in its adjacent layer but not to the neurons in the same layer. (B) A simple RNN. Here, each circle

represents a layer of neurons. Information from the hidden layer of the previous step is allowed to enter the following step. X: input layer; H: hidden layer; Y: output layer.

(C) A convolutional NN with two convolutional layers, two pooling layers, and two feed-forward layers. At the first step, the convolutional filter transforms the input

image into six “feature maps” (e.g., image transformed by the filter). The feature maps are then summarized by pooling, which reduces the dimension of the feature

map, usually by taking the maximum values of smaller regions (i.e., 3 × 3) that covers the whole feature map and combining them with spatial relations pertained to

produce a new feature map. This procedure is repeated two times and then the network is connected to a two layer feed-forward network to derive the final output.

of basic RNNs, such as long-short termmemory (LSTM) (22) and
gated recurrent unit (GRU) (23), differ in the way information
is allowed to propagate over time. These are motivated by
addressing known issues in vanilla RNNs when transmitting
information across a larger number of time steps and have shown
actual improved performance in various tasks (24, 25).

Attention Mechanism
Having discussed the three basic architectures of NNs, we turn
our attention to computational processes that have developed to
further improve learning by DNNs. An “attention mechanism”
was first described by Bahdanau et al. (26) as a novel component
to a DNN-based machine translation model [which is a type
of task in natural language processing (NLP)]. Its idea is to
incorporate the learning, for each input example, on which part
of the input information the model should put emphasis, in the
form of weights applied to specific inputs (e.g., the larger the
weight, the more emphasis) into the DNN model. Implementing
an attention mechanism with DNNs of various types provides
powerful model improvements and can yield state-of-the-art
performance across many NLP tasks (27). In fact, application
of an attention mechanism is not confined to modeling texts,

but rather natural to any DNN model assuming a sequential
data structure. Attention mechanisms have also been adopted for
modeling imaging data although they have not been as prevalent
as they are for sequential data (28, 29). Because an attention
mechanism is an indicator of importance, it could provide a
venue to understanding model decisions, which are discussed in
a later section.

Learning Model Parameters—Gradients
and Back-Propagation
In simpler models, such as linear regression, model parameters
can sometimes be estimated with a closed form, fixed solution.
For complex ML models, the parameters are usually difficult
to solve directly, and one would have to rely on numerical
approximations to obtain their estimates. An important class of
these methods is based on updating the parameter to be learned
with “gradients” during model training. In a heuristic sense,
gradients express howmodel behavior would change with respect
to a small change in a certain parameter or input value (e.g.,
the respective partial derivative) at the given value. Gradients
are calculated for DNNs for all parameters using a technique
called “back-propagation” (30), which is essentially applying a
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chain rule in calculus to derive derivatives with regard to the
objective function (e.g., the function on which the model is being
optimized) for every parameter in the model, taking advantage
of the compositional nature of DNNs. Since gradient values
corresponds to how model output would change by a subtle
change in the input, they can also be used as a means for
model interpretation.

DATA TYPES, DNN MODELING, UTILITIES,
AND EXAMPLES OF MODEL
INTERPRETATION IN PSYCHIATRIC
RESEARCH

The scope of psychiatric research is massive and involves a variety
of data types and structures, upon which model interpretation
also depends. For this reason, we briefly discuss the structure of
commonly seen data types in psychiatric research, how to model
them efficiently by DNNs for a given research question, and why
model interpretation could be beneficial. It is important to note
that DNNs are inherently flexible, and there is no presumption of
a “definitive” way to fit a particular type of data. In many cases,
data can be fit well with more than one method or a mixture
of methods.

Neuroimaging Data
Electroencephalogram (EEG) (31, 32), event-related potential
(ERP) (33), magnetic resonance imaging (MRI) (34), functional
magnetic resonance imaging (fMRI) (35), and positron emission
tomography (PET) (36) are imaging tools that are commonly
used in psychiatric research. These techniques generate images
that are either static (MRI) or time-varying (EEG, ERP, fMRI,
PET). Static images are mostly suitable to be fit with CNN-based
models (37). When time is taken into account, the time series
can either be modeled with a CNN (31) or a mixture of CNN
and RNN (35). In the case of neuroimaging, interpretations of
the DNN models applied could shed light on the underlying
brain structure or mechanism that corresponds to a measured
phenotype or any other metrics of interest. An example is the
EEG classifier and its interpretation described in Ke et al. (31).

Omics and Molecular-Level Data
Genetics and other—omics data are important in psychiatric
studies as most psychiatric disorders are at least partially
heritable (38, 39). Although genetic coding information is
sequential by physical structure, the exact dynamics of interplay
between genetic and other molecular-level information is largely
undetermined, less the typical structure of the DNA-RNA-
protein cascade. Therefore, in the context of functional genomics,
one might be inclined to model such assuming the least on data
structure, such as a deep feed-forward network. For example,
in Wang et al. (40), the authors employ a model based on
the deep Boltzmann machine (41), the probabilistic analogue
of feed-forward NN, to classify cases versus noncases for
several psychiatric disorders using integrated—omics data. In
this particular work, the authors derive model interpretation
to a certain degree by assigning the hidden nodes to inherit

heuristic meanings from observed nodes using a defined rule to
construct linkage pathways between genotypes and phenotypes.
More sophisticated model interpretation methods would allow
additional biological insight to be drawn, for example, the
contribution of a particular gene to the phenotype of interest in a
certain cell type.

Clinical and Epidemiological Data
Clinical and epidemiological data range from those focusing
more on individuals (i.e., more in-depth data collected from
relatively fewer subjects)—such as interview records in the forms
of text of videos or comprehensive questionnaires—to those that
collect data from a larger group of subjects but possibly less in-
depth per subject, such as electronic health records (EHR), health
insurance claims databases, and cohort data (42–45). In most
cases, these data are heterogeneous in structure. For example,
EHR can contain quantified as well as text data. An optimal
choice of model class depends on the actual data type involved
and the study question. For example, if one is analyzing text
scripts, then a model with an attention mechanism might be
appropriate. If one is building a risk-prediction model for a
certain phenotype, a feed-forward NN might be plausible due
to minimization of prior assumptions to the data. On the other
hand, derivation of model interpretation could be particularly
crucial for models that are developed for clinical applications
(e.g., decision support system) given the natural tendency for
one to learn the basis for decisions made, not to mention those
involving medical considerations that might involve risks and
benefits. For example, one might build a suicide risk–prediction
model to stratify those with higher or lower risk. Both the
clinician and patient would then be inclined to be informed why,
in a particular situation, the patient was classified as such.

Behavioral Data
Broadly speaking, any data that reflect human behaviors
would be potentially informative to psychiatric research. For
example, data collected from mobile phones and Facebook
use may provide clues to depression and anxiety (46, 47). In
Dezfouli et al. (6), data collected through a bandit task is
used to classify patients with bipolar disorder versus controls.
Video or audio recordings of patients may also be used for
modeling tasks, such as phenotyping. Again, the optimal model
structure and interpretation method depend on the specific data
collected. Interpretation of these models could facilitate a better
understanding of the roles of behavioral features relative to the
phenotype of interest.

PRELIMINARY ISSUES AROUND MODEL
INTERPRETABILITY

In this section, we briefly discuss some of the background issues
of which to be aware around model interpretability.

“Interpretability” Is Not a Precisely Defined
Term
One of the recurring themes in the ML interpretability literature
is the constant efforts toward a universally accepted definition
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of the term “interpretability” (8, 13, 14). Despite efforts (7–
14), thus far, there has not been an established consensus
as how interpretability should be best defined in the context
of ML. In our view, the question of interpretability can be
approached from two different perspectives: (1) the perspective
of science, in which a precise, formulated definition is required,
and (2) the perspective of the interpreter, which arises from the
psychological need to construct meaning out of things. Although
most previous works discuss the issue from the former (7–14),
we begin our discussion with the latter. In this paper, we define
interpretability as the capability of a subject matter to be faithfully
translated into a language available and a meaning sensible to
the interpreter. By “faithfully,” we emphasize alignment with
science despite the definition being human-centered. Last, we
avoid using commonly used synonyms of “interpretability” to
minimize confusion.

The Importance of Context in
Interpretation
Discussions around model interpretability are often focused
on its mathematical aspects. When applied to a specific task,
however, it requires an added step of translating mathematical
model components to the actual substantives. There is a
substantial amount of contextual subtlety in psychiatry that
cannot be readily extracted from quantified data, making this
step particularly critical for psychiatric researchers. Thus, it is
important for them to work closely with ML specialists to start
from the design phase of a model and make valid and meaningful
interpretations that naturally align with the contextual need.

The General Accuracy–Interpretability
Trade-Off
DNNs are not alone in being tagged the “black box”
property. Model classes that are usually deemed “interpretable”
mathematically can become opaque when translated into
context as model size grows. For example, it is reasonable
to state a linear regression model containing fewer terms to
be easily interpretable. However, it is less clear if a linear
regression with thousands of dimensions and a collection of
higher order interaction terms can be called interpretable; the
model parameters would retain the same interpretation, but
constructing a heuristic explanation from the subject matter
becomes hard. The same applies to single decision trees when the
tree grows deeper.

Ensemble tree-based ML models, such as random forests (48)
and gradient boosting (49), as well as support vector machines
(50) and their variants are among the best performing non-
DNN ML models by accuracy metrics. However, they also
are less directly interpretable compared to decision trees and
logistic regression, and methods were developed to help better
understand how these models make decisions (51). As discussed
in later sections, many of these methods can be applied to anyML
models (i.e., model-agnostic) and, thus, can be applied to DNNs.

Interpreting DNNs comes with a unique set of challenges.
DNNs, unlike other models, consist of hidden layers in which
automatic feature learning occurs, and one would be inclined to

know the actual workings (i.e., the transformations taking place
and the correlation between arbitrary layers) in these nodes in
addition to the relationship between inputs and outputs. Also,
as introduced previously, the structure of DNNs can vary, and
the delicate information flow (i.e., via gradients, weights, and
transformations) make them intrinsically amore complex subject
to study. That said, there do exist tools to help us understand their
mechanisms to an extent as we discuss in the following sections.

GENERAL PROPERTIES OF APPROACHES
FOR DNN INTERPRETATIONS

Before we introduce specific methods, we first categorize them
into a structure consisting of two important dimensions as
previously described (51): (1) the classes of models to which
the method is applicable (i.e., model-specific vs. model-agnostic)
and (2) the scope of data at which the method looks (i.e., local
vs. global).

Model-Specific vs. Model-Agnostic
Methods
Model-specificity means that the interpretation method at hand
can only be applied to a certain class of models. On the
other hand, model-agnostic methods are applicable to any
ML models in general. Model interpretation is carried out by
inspecting components of a given model. Some components
are universal to all models (i.e., inputs and outputs), and some
are specific to certain structures of models; the same applies to
the corresponding interpretation methods. For example, feature
importance for tree-based methods—such as random forest or
gradient boosting—are calculated from the number of split nodes
involved for each feature and can only be carried out to models
with the corresponding structure (52). DNNs are unique in ways
that they are structurally compositional, followed by delicate
calculations in gradients, and sometimes incorporate an attention
mechanism. Accordingly, methods utilizing these structures
would then be specific. In contrast, methods that involve direct
manipulation of common structures, such as model inputs, are
generally model-agnostic.

Local vs. Global Interpretations
An interpretation method can provide either summarized
information about model behavior for each respective feature
regardless of its value (i.e., global) or information about model
behavior around the neighborhood of a specific data point (i.e.,
local, which may be data for a single patient or a single image).
The decision between global vs. local interpretations needs to be
made with respect to the context of the application. For example,
the former might be more suitable when a model is applied
to determine the strength of a relationship between a certain
predictor and population-level (e.g., aggregated) outcomes, and
the latter might be preferable when the goal is to inform
rationales for modeled decision making for a specific patient.
Many of the DNN-specific interpretation methods are local
because most DNN-specific components behave differently in
accordance with their value at model evaluation.
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SPECIFIC INTERPRETATION METHODS

Table 1 summarizes selected interpretation methods and their
characteristics along the axes of locality and specificity to
models. In psychiatry, researchers may be working with—
omics/molecular data, cohort or EHR data, free text, imaging
or magnetic/electrophysiological data, behavioral records,
questionnaires, or time series signals. To bridge this interest
from psychiatry in interpretation of their use of DNN models,
we introduce specific interpretation methods in three categories,
namely (1) methods applicable to data of any type (hereafter
referred to as “general inputs”), (2) visualization techniques for
medical imaging data, and (3) utilizing an attention mechanism
for model interpretation with free text data (26).

Interpretation Methods Applicable to
General Inputs
Interpretation methods under this class utilize model
components common to all DNNs, thus making them applicable
in most research contexts. For example, one might be interested
in building a risk-prediction model for a disorder of interest
with a mixture of different data types (e.g., quantified clinical
measurements, text data, imaging data, or genetic data) as
predictors. The following methods allow interpretation of each
predictor regardless of its data type.

Permutation Feature Importance Scores
Permutation feature importance score is a model-agnostic and
global method (48, 77). The idea is to permute values of each
predictor one at a time and evaluate performance metrics of
models in which values of each predictor are permuted against
those of the model in which the original input is used. Predictors
contributing to a larger drop in model performance are given a
higher importance score.

In the case of DNNs, it is preferable to retrieve permutation
importance scores from test data (instead of training data).
The first reason is due to computing time; to run on training
data would require retraining the model the number of times
equal to the number of features, which is, in some cases, not
computationally feasible. A second reason is that researchers are
generally interested in generalizing the model to data outside of
training. Given that DNNs tend to over-fit during training, the
interpretation methods that rely on importance scores might just
capture noise that contributed to over-fitting (51).

An issue permutation importance scores possess and share
with other methods involving singling out a particular predictor
and then either performing shuffling or extrapolation on that
predictor is when the predictor of interest is correlated with
other predictors, which would result in making inferences
with unrealistic data points or biased results (53). Another
issue, as discussed in (59), is that permutation methods may
underestimate the importance of features that have saturated
their contribution to the output.

Partial Dependence Plot (PDP)
A PDP (49) is a model-agnostic and global interpretation
method. It intuitively plots one or two predictors of interest on

one axis and the output on the other axis, averaging out the effects
of other predictors over their respective marginal distributions.

Despite its simplicity, PDP is also known to produce
biased results when predictors are correlated; it represents
a commonly violated assumption of pair-wise independence
among predictors (54). It also becomes increasingly difficult to
visualize information with a large number of predictors (55).

Individual Conditional Expectation (ICE)
ICE plots the predictor of interest against the outcome in the
same way that PDP does (56). However, it differs from PDP in
that ICE plots a graph for each example while holding all other
predictors constant at their observed values.

Although ICE gives more detailed information on interactions
between predictors than PDP (56), because configurations of
other predictors are not collapsed to average values, it is similarly
prone to bias when predictors are correlated; the plot may end up
in regions where the combination of input values are improbable
in such cases (51, 54).

Local Interpretable Model-Agnostic Explanations

(LIME)
LIME is a model-agnostic and local interpretation method (57),
which produces interpretations for specific examples. Local
behavior of complex functions can be reasonably approximated
by a simpler function, such as the first- or second-order
approximation. In the same vein, LIME approximates the actual
prediction model locally by training a model that is deemed
interpretable (i.e., a linear model). The LIME procedure first
converts the input data from its original form into a set of
“interpretable representations.” Using text data as an example, in
current practice, one might first transform “word embeddings”
(78), which are vectorized representations of words and by itself
incomprehensible to humans, to binary indictors for whether
or not a particular word is present. Then, LIME constructs
a “neighborhood data set,” which includes the example of
interest, and a number of data points sampled close to that
specific example in the interpretable representation space. After
sampling, the neighborhood data are converted back to original
features and run through the model to be explained, which,
in turn, generates prediction for these inputs. The explanation
model is then trained supervised on the labels generated by the
actual prediction model using the interpretable representations
as predictors. It is trained based on optimizing metrics that
would encourage (1) closeness between the results coming from
the explanatory model and the actual prediction model and (2)
simplicity of the explanation model. Neighboring data points
closer to the actual example of interest are given higher weights.

Although LIME is conceptually intuitive, two general issues
should be considered: (1) The procedure of finding the
neighboring sample points in LIME are defined arbitrarily, and
the generated neighborhood data set may include data points
that would rarely occur in real-world settings and are also at risk
of over-weighting them (51). (2) It has been shown that LIME
explanations may not be robust when attempting to explain
nonlinear models (58). For example, in DNNs, attributions of
predictors can vary significantly for neighboring data points,
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TABLE 1 | Summary of approaches to DNN interpretation.

Approach Model Applicable Scope of Input Properties

General methods

Permutation importance (48, 52) Model agnostic Global Idea Permute values within each predictor and

calculate score based on performance drop

Footnote Results may be biased if predictor of interest is

correlated with other predictors (53)

Partial Dependence Plot (PDP) (49) Model agnostic Global Idea Plotting values of predictor of interest versus

outcome with all other predictors averaged out

Footnote May be biased when predictors are correlated;

difficult to visualize when number of interested

predictors is large (54, 55)

Individual Conditional Expectation (ICE)

(56)

Model agnostic Global Idea Similar to PDP, but plotted for individual

examples

Footnote May be biased when predictors are correlated;

difficult to visualize when number of interested

predictors is large (51, 54)

Local Interpretable Model-agnostic

Explanations (LIME) (57)

Model agnostic Local Idea Approximates model locally with another

interpretable model and data representation

Footnote The procedure of finding the neighboring

sample points may result in unrealistic data

point; results may not be robust (51, 58)

Deep Learning Important FeaTures

(DeepLIFT) (59)

DNN specific Local Idea Computes average gradients at the input value

of interest versus a reference value. Calculation

facilitated by the compositional DNN structure

Footnote Results may be inaccurate in the presence of

multiplicative interactions between predictors

(60), robustness issues (58)

Shapley Additive Explanations (SHAP)

(61)

Model agnostic or

DNN-specific

Local Idea Calculates Shapley values through various

approaches for interpretations using linear

additive models, such as LIME and DeepLIFT

Footnote Robustness issues (58)

Methods primarily coupled with saliency maps and imaging data

Perturbation-based methods (62–65) Model agnostic or

DNN/CNN specific

Local Idea Perturbs input values of a specific example and

observes the change in modeled prediction

Footnote Computationally expensive (66)

Gradient-based methods (62, 67–72) Mostly DNN/CNN

specific

Local Idea Calculates score for each feature at the input of

interest based on the gradient values with

respect to modeled prediction

Footnote Meaning of the interpretation itself is unclear.

Some methods have shown insensitivity to

data or weight permutations (60)

Methods primarily coupled with attention mechanism and text data

Attention weight visualization (73) DNN models with

attention

mechanism

Local Idea Visualizes attention weight by showing heat

map with corresponding text

Footnote Intuitive, but attention weights may not be

totally causal to model decisions (74)

Attention saliency (75) DNN models with

attention

mechanism

Local Idea Visualize scores based on absolute value of the

derivative of the model output with respect of

the unnormalized attention weight

Footnote Properties not yet investigated in depth

Word token analysis (76) DNN models with

attention

mechanism;

Local Idea Analyzes spatial relationships of tokens

transformed across attention layers with

dimension reduction

Position-preserving

models

Footnote Works only with model architectures with

positional alignment between input and output

sequences
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which is unfavorable. Therefore, although the idea of LIME
is appealing, there are questions waiting to be solved, and
researchers should remain cautious when applying this method.

Gradient-Based Methods
Gradient-based methods are mostly DNN-specific and local
(62, 67–72, 79, 80). They take advantage of the fact that
the compositional nature of DNNs allows the use of back-
propagation (mentioned in section DNNs in a nutshell),
which enables efficient calculations of the gradients. Intuitively
speaking, the greater the gradient for a predictor, the more
important it is for model output at the input value of interest.
Because the gradient for a certain predictor varies across values
and usually interacts with other predictors, these methods
provide local explanations. Also, because gradients are calculated
along the path of the whole DNNmodel, gradient-basedmethods
can be applied between any two layers of the model.

In this class, integrated gradients and its variant (68, 80) is
based on integrating gradients on a linear path from a reference
value, chosen by prior knowledge, to the actual value of a
predictor of interest for a certain data point. For example, for
an imaging data set, the reference value could be zeroes for
each color channel for each pixel. This method avoids the pitfall
of using vanilla gradients such that it avoids assigning zero
attribution to a predictor when the gradient at that data point
is zero, but the output does, in fact, change when the value of this
predictor changes from reference to the actual value (68).

Although most gradient-based methods are theoretically
applicable to any DNNs, most of these were originally developed
for imaging data to visualize locations in images important for
modeling. Some gradient-based methods are specific to model
CNNs, which are widely adopted for imaging data modeling.
Visualization methods used for imaging data (“saliency maps”)
are discussed in a later section.

Deep Learning Important FeaTures (DeepLIFT)
DeepLIFT is a DNN-specific and local interpretation method
(59). Like integrated gradients (68), DeepLIFT attributes the
importance of each predictor by comparing the model prediction
using an actual predictor value to a reference value. However,
instead of actually integrating gradient values within the range
of interest, DeepLIFT defines “multipliers” as its base building
block, which is a simple averaged corresponding change in the
output by changing the input of interest from a reference value to
the actual value of the data point in question (the “contribution”)
and, therefore, can be perceived as a fast approximation to
integrated gradients (59).

The overarching guidance of DeepLIFT is that the
contributions of all predictors are linearly added to give
the total change in the output [e.g., the “summation-to-delta”
(59)]. Analogous to gradients in DNNs, the multipliers follow
a chain rule–like property, analogous to that in calculus and
back-propagation. With an attempt to preserve the summation-
to-delta property, total contribution is allocated to each input and
then further separated into positive and negative compartments
within input. This way, DeepLIFT avoids misinterpretations that
might arise from cancellation of numeric values with different

signs. Note that, because the multipliers possess a chain rule–like
property, DeepLIFT can assess contributions between any two
arbitrary layers of neurons as other gradient-based methods can.

It is not recommended to use DeepLIFT in models (60)
in which multiplicative interactions occur because it loses the
summation-to-delta property [i.e., LSTMs (22)]. As a heuristic
explanation, problemsmay arise in cases in which approximating
gradients across a range of input using its average value
is inappropriate.

SHapley Additive Explanations (SHAP)
SHAP (61) is a local interpretation method. It can be either
model- or model-specific, depending on which variation is being
used. It extends from Shapely values from cooperative game
theory (51). A Shapely value is by itself a metric to calculate
feature attribution. The idea of Shapely values is that all features
“cooperate” to producemodel prediction. In its classical form, the
Shapely value is calculated as the weighted average of a change
in modeled prediction comparing a model with and without
a given predictor across all possible configurations (presence
or absence) of other predictors. Because this approach requires
repeated assessment of model performance for a large number
of iterations, it is computationally intensive and infeasible
for DNNs.

The SHAP framework starts with the observation that many
of the feature attribution methods (e.g., LIME and DeepLIFT)
can be categorized under a common class of “additive feature
attribution models” for model interpretation. Then, within this
additive model class, a unique solution to the explanatory
model—the one that uses Shapley values as their coefficients
to generate interpretations—would satisfy a set of favorable
mathematical properties, such as accuracy in approximations
(61). SHAP then introduces several efficient methods to obtain
the Shapley value solutions (in contrast to the classical approach
mentioned in the above paragraph) to additive feature attribution
models. For example, Kernal SHAP is a model-agnostic method
combining LIME and Shapely values; Deep SHAP (61, 81) is a
DNN-specific method combining DeepLIFT and Shapely values,
making use of the compositional nature of DNNs to improve
computation efficiency to obtain Shapely value approximations.

Compared to general cases of LIME and DeepLIFT, SHAP
interpretations provide an additional theoretical guarantee of
several favorable properties, grounded by established proofs
originating from game theory (61). However, as noted in
Alvarez-Melis et al. (58), SHAP may also be vulnerable to the
nonrobustness problem as observed in LIME.

Visualization of Imaging Data
It is natural to use visualization techniques to make sense
of imaging data. In psychiatry, these data are primarily
generated through neuroimaging techniques described in section
“Interpretability” is not a precisely defined term. As a
hypothetical example for the utility of model visualization
tools, say a researcher is interested in building a classifier for
schizophrenia based on a set of imaging data, such as fMRI
scans. Once the classifier is built, these techniques allow the
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researcher to highlight which particular areas of an image would
be primarily responsible for a case-control classification.

One way of visualizing areas in an image crucial for the DNN
model to make decisions is via a “saliency map” (71). Based
on the approach to construct importance of predictors (pixels,
etc.), saliency maps can be categorized by their underlying
mechanism: (1) perturbation-based (62–65) or (2) gradient-
based (62, 67–72) as discussed earlier. These methods are local
and mostly DNN-specific.

The main idea of the perturbation-based approach is to
remove or occlude a particular part of the input and observe the
change of modeling prediction. Methods within this class differ
in how the optimal areas to be perturbed are chosen and how
the “change” in model prediction is assessed. One advantage of
this approach is that we are then measuring the actual change of
model output by intervening on the input of interest, instead of
merely measuring the association between the output and input
(62). However, due to the greater quantity of computation needed
to implement this approach, in most cases, these require longer
computation time (66) and are less widely used in the literature
compared to gradient-based methods.

As mentioned, numerous gradient-based methods have been
originally proposed to create saliency maps. These explanation
methods include using original vanilla gradients for explanation
[referred to as “vanilla” gradients (71)], guided back-propagation
(69), deconvolutional networks (79), input × gradient (72),
integrated gradients (68), grad-CAM (67), and guided grad-
CAM (67). We can calculate the gradient for each feature
(e.g., pixel) as the importance measure locally by using vanilla
gradients for explanation. Deconvolutional networks and guided
back-propagation differs from vanilla gradients in the way the
nonlinear transformation was performed. Gradient X input
calculates score based on the product of the gradient and the
value of the feature. Grad-CAM is specific to models comprising
a convolutional layer (CNN) and produces a feature importance
heat map based on the product between the global average of
gradients and the values of each feature for each channel of
the convolutional layer of interest. Guided grad-CAM combines
guided back-propagation and grad-CAM to enhance the spatial
resolution from the original grad-CAM.

Given the popularity and plethora of saliency maps, Ancoma
et al. (60) investigated whether or not these methods satisfy two
criteria: (1) sensitivity to model parameter randomization and
(2) sensitivity to data randomization. In this context, sensitivity
means whether and how much the output of the explanatory
model would change if either parameter was randomly shuffled
or data was randomly shuffled and the model was trained on
the permutated labels. In their work, gradient-based methods
are compared along with one perturbation-based method (65)
and an edge detector (e.g., an algorithm that always illustrates
the borders within an image). In the case in which parameters
are randomized, the prediction model still preserves some
capability to process information, using its structure as a prior.
If a method is not sensitive to this permutation, then the
explanation would not facilitate debugging the model, which is
related to parameter learning. In the case in which labels are
permuted, the relationship between the predictors and the labels

based on the data-generation process is lost, and the model
remembers each permutated example by “memorizing” it with
over-fitting. If a method is insensitive to randomizing the labels,
it implies the explanation generated does not depend on the
data-generation process recorded by the model and, therefore,
cannot explain the model from this perspective (60). In addition,
Kindermans et al. (82) note that saliency maps can change their
explanation when a transformation has no effect on how the
model makes the decision, which suggests that these methods,
although informative, still preside over robustness issues.

Aside from saliency maps, which are a local method, we may
also visualize models trained on imaging data using a global
metric to obtain a global interpretation. For example, in Ke et al.
(31), the authors built an online EEG classifier for depression,
in which they measured and visualized the information entropy
(i.e., the amount of uncertainty contained in a particular random
variable) of the activation matrix of each EEG channel. Because
entropy correlates with the possible amount of information the
model can utilize during learning, such a measure can serve as an
indicator of importance for the model to make decisions.

Interpreting Models With the Attention
Mechanism
Asmentioned previously, the attentionmechanismwas originally
developed for applications in NLP. Language is the primary
form of thought expression, carrying both contextual and
syntactical information indispensable if one intends to learn
about the mental state of another person. Indeed, in current
psychiatric practice, assessments, diagnoses, and the majority
of psychotherapies are carried out mostly by conversations or
interviews in various forms as well as observations made and
recorded by the therapist as clinical notes. Because the majority
of such information is recorded in the form of text, NLP,
the automation of text data analysis, is naturally an appealing
component for psychiatry research.

In recent years, DNN-based NLP has undergone significant
progress and has achieved state-of-the-art performance across
many NLP tasks (27), which can be translated for use in
psychiatric research. Recent progress began with the invention of
distributed word representations, such as word2vec and GloVe
(78, 83), which record co-occurrence information of words in
vectorized forms. These techniques allow dimension reduction
as well as a form of transferring prior knowledge of text into
downstream models. A further breakthrough occurred with the
invention of the attention mechanism (26), which attempts
to build weights that reflect which part of the input is more
important for decision making. Although originally invented
for NLP, models with attention mechanism are not confined to
applications with text data, but they can also fit any sequential
and imaging data as well, making these models highly relevant to
psychiatric research.

By design, it is natural to think that attention weights provide
information on how decisions are being made. For example,
through visualization, Clark et al. (73) systemically analyze
attention layers of a landmark NLP model [“BERT” (27)] by first
comparing behaviors across different layers as a trend and then
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focusing on behaviors of each attention head (e.g., a single set
of attention values derived in an attention layer), during which
they find certain attention heads were specialized in finding
syntactic relations. The authors then probe the combined action
of the attention heads within a single layer, and train supervised
models based on labels of the location of the actual syntactic head
of interest, using attention weights as predictors, showing the
attention values are indeed predictive of the outcome. Last, they
perform cluster analysis of all the attention heads in the model
and show that heads in the same layer tend to be more proximate.

Interpreting through attention weights is not free of
problems. For example, Jain et al. show that (74), (1) although
perturbation- and gradient-based methods are consistent to a
degree between their interpretations, attention-based methods
yield interpretations that correlate more weakly to those
two approaches; (2) changes in prediction outcome upon
permutation of attention weights are modest in many cases; and
(3) it is not impossible to find another set of attention weights
that are quite different from the original while fixing other parts
of the model, and the predictions are unchanged. These suggest
that attention weights might not play the main “causal” role in
making modeled decisions as it intuitively suggests.

Alternative approaches are created considering the issues.
Ghaeini et al. (75) propose “attention saliency,” which, instead
of looking at attention per se, visualizes a score defined by
calculating the absolute value of the derivative of the model
output with respect to the unnormalized attention weight and
show that the attention saliency score provide more meaningful
interpretation compared to vanilla attention weights on a natural
language inference task. Instead of exploring attention weights,
Aken et al. (76) takes advantage of the position-preserving nature
of a BERT model in which the number of positions is constant
across layers, and thus, the output of each layer can be perceived
as a transformation of the input at the same position. They
analyze the tokens produced by each attention layer from the
BERT model, probe their properties with specific tasks, perform
principle component analysis, and visualize clusters of token
outputs at each layer.

DISCUSSION AND FUTURE DIRECTIONS

In this paper, we review existing methods for DNN model
interpretation that are suitable for most commonly collected
types of data in contemporary psychiatric research. We also
discuss a substantial proportion of research questions that can be
addressed using ML approaches.

Indeed, the compositional nature and flexibility of DNNs
carry both a blessing and a curse. Although DNNs bring out
numerous breakthrough performances in a wide and growing
variety of tasks, such complex systems are by nature more
difficult to interpret thoroughly. In fact, our scientific body is
just in the beginning stages of understanding some of their
mathematical guarantees and why they works so well on many
problems. For example, Poggio et al. (84) recently showed that
the reason deep networks generalize well is partially explained
by the fact that the gradient flow of a normalized network is

intrinsically regularized and prove that approximation power
of deep networks is superior to that of shallow networks
under particular hierarchical compositional data structures. That
being said, in real application, a sufficient interpretation for a
particular instance does not necessarily involve a fully detailed
understanding of all the mechanics. As summarized in this
review, many of the interpretation methods utilize information
that is most proximate to either the input or the output, and
despite some mathematical properties yet to be met, these
methods do yield interpretations that could serve a variety
of purposes.

Making DNNs more interpretable is a fast-moving field
on both the theoretical and engineering sides. To facilitate
application and ease the burden of engineering for researchers,
many methods discussed in this paper are published with their
respective code libraries. At the moment of the preparation of
this paper, libraries such as PyTorch Captum (85), tf-explain (86),
and Google LIT (87) further simplify the process by providing
compilations of off-the-shelf, easy-to-use implementations of the
methods in common frameworks. It is noteworthy that, although
the advent of new tools provides convenience, it is necessary
to explicitly describe the underlying metric [i.e., what quantity
is actually being visualized; for example, information entropy is
measured in (31)] when applying these tools or visualizing for
interpretations because different metrics provide measurements
to different constructs, and their properties should be transparent
and open to interrogation whenever necessary.

Many of the interpretability metrics are either a statistic or
derived from a model apart from the model to be explained,
and each may have its own issues in satisfying some desirable
conditions (57–59, 68, 82, 88). Newer methods improve previous
ones in accordance to some axioms, for example, integrated
gradient improves on vanilla gradient in being sensitive when a
specific neuron is saturated (68). New criteria are being iterated
alongside new methods, and it is unsettled what would consist a
standard set of desirable properties. This is also complicated by
the fact that some of the properties are specific to the approach
of interpretation. For example, “summation to delta” is specific
to gradient-based methods. As new approaches are developed,
new criteria specific to novel designs might be required. That
said, it is desirable that at least a set of general properties,
such as robustness as proposed by Alvarez-Melis (58)—e.g.,
interpretations for data sufficiently close should also be similar—
should converge and be agreed upon.

It is well known that current DNN models by themselves
are not entirely robust (i.e., sensitive to small perturbations in
input data) (58), and their interpretation may be nonrobust to
artifacts as well (62). As raised in Alvarez-Melis et al. (58), it
is an open question if the method for interpretation should
be required to be robust when the model itself is not. Indeed,
it has not been directly investigated how desirable properties
correlate between the model and its interpretation method.
One potential direction for both modeling and interpretation
is to capture more invariant structure (e.g., invariant to noise
or certain transformations) in the data, for example, concept-
based methods, i.e., approaches that either carry out predictions
or can be interpreted by human-understandable concepts, such
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as ConceptSHAP (89, 90). Heuristically, finding or imposing
invariant structures into the inner working of a model indeed
should improve robustness. Nevertheless, if a model is expected
to deliver supra-human performances, then it might not be
always reasonable to expect the model to be fully interpretable
using concepts that are readily understandable to humans.

An additional related issue arising from the nature of DNNs
is the nonuniqueness of solutions, i.e., different sets of parameter
estimations can be derived through repeatedly training the same
model with the same data under slightly different conditions
(e.g., initialization or hyper-parameters) as current optimization
methods of DNNs can find different local minima across attempts
(91). Selecting one particular solution undeterministically and
automatically by the training algorithm among a set of possible
solutions without a clear indication as to why that particular
solution is chosen can by itself be seen as a violation of
interpretability because it is then not clear why the algorithm
would choose to do so. Therefore, an additional future direction
to enhance DNN interpretability might be working towardmodel
solutions that are more unique, possibly through ways such as
improved data denoising, feature extraction, and representation
learning that are more disentangled in order to smooth the
landscape of the loss function.

One last noteworthy consideration is DNN interpretation
in the context of few-shot of transfer learning (92), which
seeks to enhance model performance under the constraint of
small sample sizes by utilizing information not explicitly or
directly related to the current task (i.e., injection of prior
knowledge in various possible forms). Although not as pervasive
as conventional methods in themeantime in psychiatric research,
few-shot learning methods are in a rapid phase of development
and is particularly of interest to the psychiatric research setting
due to possible difficulties in case or label collection. At the
time of the making of this paper, to the author’s best knowledge,
there have not yet been published articles that formally discuss
the interpretation methods reviewed here in the context of few-
shot learning. That said, heuristically, it is obvious that the
meaning of derived interpretations can change based on the way
few-shot learning is performed. In the case in which few-shot
learning is done through data augmentation, the impact might
be less likely to be significant, as the structure of the model,
the initialization of parameters, the hypothesis space, and the
amount of information used during model training are mostly

identical to a non-few-shot setting. However, when few-shot

learning is done with a change in some of the aforementioned
conditions, the amount of information utilized during training
can drastically decrease, and the pathway on which parameter
values change over the course of training (i.e., gradients) can be
shortened and altered. In these cases, the meaning given by the
interpretation methods is then no longer “marginal” (i.e., relative
to noninformative initiation) but conditional on the given known
prior. In practice, depending on the architecture of the few-
shot learning model, interpretation methods may have to be
specifically tailored to the given model to perform well. As an
example, in a recent work from Karlinsky et al. (93), the authors
propose a few-shot learning model for image classification and
show that vanilla GradCAM fails to provide visualization for
some of the modeled examples, in which a back-projection map
designed as an integral part of their model performed nicely.

In conclusion, with the current tools for interpretation,
the “black box” of DNNs can have light shed on it and be
inspected to an extent, and further improvements are constantly
being made. After all, psychiatry itself is a very complex field,
which implies mathematical models describing the patterns that
have emerged in the field that would also be complicated and
difficult to interpret. To solve this long-standing challenge, we
must all be equipped to deal with and embrace the complexity
when necessary. DNNs may act as a set of tools to help us
discover patterns in psychiatric phenomenon that cannot be
found otherwise. The various interpretation methods described
above translate such discoveries into clinically meaningful and
actionable findings. Alongside efforts to construct large and
multidimensional data sets, a new wave of exciting exploration
in psychiatric research awaits.
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