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Although antiretroviral therapy (ART) has drastically changed the lives of people living with
human immunodeficiency virus-1 (HIV-1), long-term treatment has been associated with a
vast array of comorbidities. Therefore, a cure for HIV-1 remains the best option to globally
eradicate HIV-1/acquired immunodeficiency syndrome (AIDS). However, development of
strategies to achieve complete eradication of HIV-1 has been extremely challenging. Thus,
the control of HIV-1 replication by the host immune system, namely functional cure, has
long been studied as an alternative approach for HIV-1 cure. HIV-1 elite controllers (ECs)
are rare individuals who naturally maintain undetectable HIV-1 replication levels in the
absence of ART and whose immune repertoire might be a desirable blueprint for a
functional cure. While the role(s) played by distinct human leukocyte antigen (HLA)
expression and CD8+ T cell responses expressing cognate ligands in controlling HIV-1
has been widely characterized in ECs, the innate immune phenotype has been decidedly
understudied. Comparably, in animal models such as HIV-1-infected humanized mice and
simian Immunodeficiency Virus (SIV)-infected non-human primates (NHP), viremic control
is known to be associated with specific major histocompatibility complex (MHC) alleles
and CD8+ T cell activity, but the innate immune response remains incompletely
characterized. Notably, recent work demonstrating the existence of trained innate
immunity may provide new complementary approaches to achieve an HIV-1 cure.
Herein, we review the known characteristics of innate immune responses in ECs and
available animal models, identify gaps of knowledge regarding responses by adaptive or
trained innate immune cells, and speculate on potential strategies to induce EC-like
responses in HIV-1 non-controllers.
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INTRODUCTION

Despite the success of antiretroviral therapy (ART), completely eradicating human
immunodeficiency virus-1 (HIV-1) from people living with HIV-1 (PLWH) remains extremely
challenging due to long-lived HIV-1 latent reservoirs (1, 2). Instead, strategies based on the control
of HIV-1 replication by host immune responses have long been investigated to establish a functional
org April 2022 | Volume 13 | Article 8583831
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cure for HIV-1. HIV-1 elite controllers (ECs) are infrequent
cohorts who naturally maintain undetectable HIV-1 replication
levels in the absence of ART and whose immune responses
provide a model for functional cures (3). Numerous studies
uncovered effective CD8+ T cell responses associated with
specific human leukocyte antigen (HLA) representation in ECs
(4–6), yet attempts to induce similar protective T cell responses
in other PLWH have not been adequately successful (7, 8).
Conversely, innate immune responses in ECs have mostly been
understudied. Because innate immune cells orchestrate adaptive
immune responses in multiple diseases (9, 10), understanding
innate responses in ECs could open a new avenue to improve
CD8+ T cell immunity in HIV-1 non-controllers and achieve
functional cure. Moreover, along with canonical innate
responses, enhanced innate immunity upon repeated pathogen
exposures, collectively referred to as trained immunity, was
recently described against several pathogens (11–13). Trained
immuni ty was a l so repor ted to modula te s imian
immunodeficiency virus (SIV)/HIV-1 control (11, 14–16),
further supporting the potential important contribution of
innate immune responses during HIV-1 infection in ECs.
Because ECs represent an extremely limited population of
PLWH, utilizing animal models including humanized mice and
SIV-infected non-human primates (NHP) would allow
rigorously investigating distinct conventional and trained
innate immune responses associated with elite control of HIV-
1 (17). In this review, we exhaustively elucidate the known
characteristics of innate immune responses in ECs, highlight
available animal models and their innate immunity, discuss the
gaps in knowledge on recall responses in adaptive and innate
immunity, and explore the potential strategies to elicit EC-like
responses in both PLWH and animal models.
HIV-1 ELITE CONTROLLERS AND THEIR
ADAPTIVE IMMUNE RESPONSES

HIV-1 controllers are traditionally classified based on CD4
counts and viral load. Long-term non-progressors (LNTPs)
represent a subpopulation of PLWH who can sustain CD4
counts of more than 500 cells/ml of blood for longer than 7
years after infection (3, 18, 19). Unfortunately, LNTPs occupy
Abbreviations: ART, anti-retroviral therapy; AIDS, acquired immunodeficiency
syndrome; HIV-1, human immunodeficiency virus-1; EC, elite controller; HLA,
human leukocyte antigen; SIV, simian Immunodeficiency virus; NHP, non-
human primate; MHC, major histocompatibility complex; PLWH, people living
with HIV-1; LNTP, long-term non-progressor; VC, viremic controller; IFN,
interferon; Th, T helper; NK, natural killer; KIR, killer immunoglobulin-like
receptor; ADCC, antibody-dependent cellular cytotoxicity; ILC, innate lymphoid
cell; DC, dendritic cell; Cdc, conventional dendritic cell; pDC, plasmacytoid
dendritic cell; HAND, HIV-1-associated neurocognitive disorders; MDM,
monocyte-derived macrophages; PD-L1, programmed death-ligand 1; GvHD,
graft versus host disease; BLT, bone marrow, liver, thymus; HSC, hematopoietic
stem cell; AGM, African green monkey; MCM, Mauritan cynomologus macaque ;
CAR, chimeric antigen receptor; FcRg, Fc receptor gamma chain; scFv, single
chain portion of the variable domain of antibodies; BCG, Bacillus Calmette-
Gué rin; △g, Fc receptor gamma chain-deficient; CIML, cytokine-induced
memory-like; AML, acute myeloid lymphoma; HCMV, human cytomegalovirus.
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only 2% of PLWH. ECs represent a further restricted cohort
amongst LNTPs (0.3%) who can maintain undetectable viral
loads (less than 50 copies/ml) in addition to stable CD4 counts
for more than 12 months without ART (3, 18, 19). Individuals
with plasma HIV-1 RNA levels of 50 to 2,000 copies/ml are often
defined as viremic controllers (VCs) in comparison to ECs (20).
The viremic control of ECs is considered as temporary because
only 1% of them can maintain their virological control for more
than 10 years (3). While ECs harbor HIV-1 reservoirs that are
more transcriptionally silent than those in HIV-1 non-
controllers (21), it is well appreciated that viruses isolated from
ECs can replicate as robustly as those from viremic individuals
(22). Rather, host immune responses are likely the major
contributor of spontaneous control (3, 23–25). One of the
hallmarks of EC immune responses is their strong CD8+ T cell
responses that are associated with viremic control (23, 26, 27).
Correspondingly, many groups reported that specific alleles of
HLA class I molecules, particularly HLA-B*27 or B*57, are over-
represented in ECs (4–6). The stronger CD8+ T cell responses
can also be attributed to the difference in their CD4+ T cell
subsets (3, 28). While reports are varied on the susceptibility of
EC CD4+ T cells to HIV-1 infection (29, 30), ECs consistently
maintain the balance of CD4+ T helper (Th) 17 cell and
regulatory (Treg) subsets similar to that of HIV-1 uninfected
individuals, while the ratio of Th17/Treg cells is lower in viremic
subjects (31, 32). Whereas robust T cell activity is often observed
in ECs, their B cell responses do not seem to significantly
contribute to their viremic control. Rather, ECs exerted weaker
neutralizing and non-neutralizing antibody responses than VCs
(33, 34). Nonetheless, because protective HLA genotypes do not
always confer EC phenotypes (6), it is highly plausible that other
subsets of immune cells, particularly innate effector cells, could
also contribute to the spontaneous control in ECs.
INNATE IMMUNE RESPONSES IN HIV-1
ELITE CONTROLLERS

NK Cells
Whereas studies on HIV-1 ECs have intensively focused on
adaptive immunity due to the association with HLA-B
molecules, it is possible that innate immune responses are also
involved in viremic control (Table 1). Indeed, ECs exhibit
increased markers of inflammation such as elevated interferon
(IFN)-stimulated gene expression (47), suggesting the activation
of innate immune responses. Among innate immune cells,
natural killer cells (NK cells) are critical effector cells that play
an important role in HIV-1 infection (50–52). Killer
immunoglobulin-like receptors (KIRs) on NK cells are key
receptors that regulate NK cell functions and several KIR have
been associated with control of HIV-1 (53). HLA-B*57-01 is
known to interact with NK cells via KIR3DL1 and KID3DS1+
NK cells can suppress viral replication (35, 54–56). As expected,
HIV-1 viremic control is positively correlated with percentage of
NK cells (38) and HIV-1 protection is associated with specific
KIR3DL1 allotypes in HLA-B*57-positive subjects (57).
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Additionally, NK cells from ECs can efficiently lyse HIV-1-
infected CD4+ T cells independently of KIR3DS1 expression
(36), suggesting other factors yet to be defined influence their
unique antiviral activity. Moreover, the percentage of
dysfunctional CD56-CD16+ NK cells, which are frequently
observed in PLWH, was lower in ECs than viremic subjects
(25). EC NK cells also express higher levels of the activating
receptor NKp46 (37) and secrete more IFNg (38), but their
antibody-dependent cellular cytotoxicity (ADCC) responses
were not found elevated compared to non-controllers (33).
Altogether, these observations indicate that NK cell responses
may be enhanced in ECs.

Innate Lymphoid Cells
Similar to NK cells, innate lymphoid cells (ILCs) are increasingly
studied innate immune subsets that could potentially be altered
in ECs. ILCs are lymphoid-lineage cells that are distinct from T
cells and B cells and display early responses to pathogens or
tissue injuries (58, 59). Depending on the expression of
transcription factors, ILCs are further classified as ILC1, ILC2,
and ILC3 and their functions appear to mirror those of CD4+ T
helper (Th)1, Th2, and Th17 lymphocytes, respectively (58).
ILC1 include NK cells, which can be viewed as the innate
counterpart of CD8+ T cells. Each subset of ILCs secretes
distinct cytokines. ILC1 secretes IFNg, and ILC2 produces IL-5
and IL-13. ILC3 is the major producer of IL-17 and IL-22 (58). In
PLWH, ILC depletion was not observed in mucosal tissues (39),
yet all subsets of circulating ILCs were depleted during chronic
HIV-1 infection, presumably by over-activation of ILCs (39, 59,
60). Cytokine production by ILC1 was also impaired in PLWH
(59). Intriguingly, Kloverpris et al. (39) reported that treatment
naïve aviremic PLWH did not experience ILC depletion though
Frontiers in Immunology | www.frontiersin.org 3
they did not specify whether their non-viremic PLWH are ECs or
not. Thus, the role played by ILCs in elite control of HIV-1
remain unclear. However, considering data from PLWH, it is
plausible that ECs maintain circulating ILC populations and
their ILCs secrete cytokines more robustly than HIV-1 non-
controllers, which may be one contributing factor for
elite control.

Dendritic Cells
Dendritic cells (DCs), which are one of the critical immune cells
interacting with NK cells and T cells, also have differential
signatures in ECs. Two main subsets of DCs can be found in
the peripheral blood: conventional DCs (cDCs) and
plasmacytoid dendritic cells (pDCs) (61). cDCs primarily
present antigens to T cells and thereby modulate adaptive
immunity (61). In HIV-1 infection, more cDCs are observed in
circulation in ECs than in viremic subjects (40, 41). Besides being
more abundant, cDCs also exert improved immune responses in
ECs. cDCs in ECs induce more cGAS signaling molecule
expression upon HIV-1 stimulation, and as a consequence
secrete more type 1 IFN (42). EC cDCs also undergo quicker
maturation after stimulation by HIV-1 (42). Furthermore, EC
cDCs express more surface receptors critical for capturing HIV-1
antigen (43) and modulating other immune cells (62).
Consequently, EC cDCs more effectively activate autologous
CD4+ and CD8+ T cells (42).

Another subset of DCs, pDCs, also differ in ECs. pDCs are the
major producer of type 1 IFN (63), and their numbers decrease
in all PLWH (44). However, in ECs pDC numbers were higher
than in viremic subjects and secreted abundant type 1 IFN
similar to healthy donors (38, 44, 45). Interestingly, the
expression of gut-homing marker a4b7 is elevated in both ECs
TABLE 1 | Characteristics of HIV-1 elite controller innate immune cells.

Innate immune cells Characteristics in ECs

NK cells •Association of KIR haplotypes with HIV-1 protection (35)
•Robust cytotoxicity against target cells (36)
•Lower percentage of defective CD56-CD16+ cells (25)
•Increased activating receptor expression (37)
•Upregulated IFNg secretion (38)

ILCs •Maintenance of all ILC subsets in PBMCs (39)

cDCs •More circulating cDCs (40, 41)
•Elevated cGAS signaling by HIV-1 stimulation (42)
•More autologous T cell activation induced (42)
•Increased receptor expression for antigen capture (43)

pDCs • More in circulation than in viremic individuals (38, 44, 45)
• Secrete equivalent levels of type 1 IFN to uninfected people (38, 44, 45)
• Intracellular-specific TRAIL expression (45)
• Equivalent gut homing marker expression to uninfected individuals (24)

Monocytes • Lower percentages of CD14++CD16+ monocytes (46)
• Weaker responses to LPS stimulation (47)

Macrophages • Similar HIV-1 susceptibility to viremic individuals (48)

Granulocytes •Upregulated antiviral factor expression by HIV-1 stimulation (40)
•Better survival of neutrophils cultured in supernatant from HIV-1 infected PBMCs (49)
The distinguished hallmarks of each innate immune cell in HIV-1 elite controllers are tabulated. ECs, elite controllers; NK, natural killer; ILCs, innate lymphoid cells; DCs, dendritic cells;
cDCs, conventional dendritic cells; pDCs, plasmacytoid dendritic cells; IFN, interferon.
April 2022 | Volume 13 | Article 858383

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sugawara et al. Innate Immunity in HIV-1 Controllers
and HIV-1 non-controllers compared to HIV-1 uninfected
individuals (24). This indicates the loss of circulating pDCs in
PLWH plausibly results from increased gut trafficking rather
than depletion of peripheral blood pDCs. Additionally, Barblu
et al. (45) demonstrated healthy donor and EC pDCs only had
intracellular TRAIL expression, a ligand for apoptosis-inducing
receptors (64), while both surface and intracellular TRAIL
expression were exhibited in pDCs from HIV-1 non-
controllers. They also co-cultured pDCs from EC and viremic
individuals with HIV-1 chronically-infected CD4+ T cell line H9
and reported that co-culture with EC pDCs induced more
apoptosis of H9 cells (45). However, it is difficult to speculate
whether pDCs similarly trigger apoptosis of HIV-1-infected
primary CD4+ T cell from this observation alone.

Monocytes and Macrophages
Monocytes are another indispensable innate effector cell that
exhibits unique characteristics in ECs. HIV-1-associated
neurocognitive disorders (HAND) likely result from chronic
inflammation of the central nervous system and correlate with
monocyte activation. Accordingly, monocytes from PLWH
experiencing HAND produced more inflammatory cytokines
than those from PLWH without HAND (65). These enhanced
monocyte responses can be due to perturbations of the monocyte
compartment. Chen et al. (66) reported that chronic HIV-1 infection
increased the percentage of intermediate monocytes (CD14+
+CD16+ cells) in blood, which exert inflammatory responses (67).
Within this subset, CD163+CD16+ monocytes exhibited a negative
correlation with CD4+ T cell counts (68). Conversely, ECs are
known to experience weaker neuroinflammation compared to
HIV-1 non-controllers (69), which reflects more preserved
proportions of the different monocyte subsets. ECs accumulated
lower percentages of intermediate monocytes compared to viremic
subjects (46) and their monocytes triggered weaker responses to LPS
stimulation than those from ART-suppressed PLWH (47).

In addition to monocytes, macrophages are critical phagocytic
cells as well as target cells for HIV-1 infection. Many groups have
reported that HIV-1 persists in monocyte-derived macrophages
(MDMs) and tissue-resident macrophages (70–72). Regarding
their susceptibility to HIV-1 infection, Walker-Sperling et al.
(48) demonstrated no significant differences in MDMs from ECs
and viremic subjects. Macrophages also exert phagocytosis and
secrete proinflammatory cytokines in response to HIV-1 infection
(73). However, phagocytic activity is altered in both HIV-1-
infected and uninfected bystander macrophages (74, 75). In ECs,
it has not been investigated yet as to whether macrophages more
robustly produce cytokines and restore their phagocytic activities,
which are impaired in HIV-1 viremic subjects.

Granulocytes
Along with macrophages, granulocytes, such as neutrophils,
basophils, and eosinophils, are other innate immune cells
modulated by HIV-1 infection. Jiang et al. (76) reported that
basophils can capture HIV-1 virions and facilitate HIV-1
transmission to CD4+ T cells, and increased eosinophil counts
are frequently observed in PLWH (77), highlighting the potential
roles of granulocytes in HIV-1 infection. As anticipated, EC
Frontiers in Immunology | www.frontiersin.org 4
granulocytes exhibited elevated expression of antiviral factors
when stimulated with HIV-1 (40). Neutrophils from ECs also
demonstrated a better survival than those from non-controllers
when cultured with GM-CSF secreted from HIV-1-infected
PBMCs (49), but their antibody-dependent phagocytosis was
not different from that in HIV-1 non-controllers (33). Though
their intrinsic immune functions may not be upregulated in ECs,
several studies indicate the potential alteration of other immune
cells by neutrophils. Neutrophils in PLWH express more
Programmed Death-Ligand 1 (PD-L1), thereby suppressing
CD8+ T cell responses (78). This implies that neutrophils in
ECs could regulate other immune cells in a unique fashion.
Unfortunately, little research has been performed to investigate
the distinct characteristics of basophils and eosinophils in ECs.
However, given the roles of these immune cells in HIV-1
transmission and pathogenesis, it is plausible that EC basophils
and eosinophils also exhibit distinguishable surface receptor
expression and functional responses compared to non-controllers.

In summary, innate immune cells in ECs exhibit unique
features compared to other PLWH, although the studies on
certain innate effector cells are still limited. Available data
imply that ECs can successfully maintain the balance of pro-
inflammatory and anti-inflammatory responses elicited by
respective innate immune subsets. Although it has not been
elucidated yet, the maintenance of this innate immune balance
seems to be indispensable for exerting robust HIV-1 specific
responses by both innate and adaptive immune cells. Given their
roles in modulating T cell responses (9, 10, 78), it would be
important to study EC innate immunity in greater detail to
further elucidate their contributions to improved CD8+ T cell
responses. However, because of the rarity of this population,
research solely depending on available EC samples may not be
practical to exhaustively delineate innate immune responses
associated with natural control of HIV-1.
ANIMAL MODELS FOR HIV-1 ELITE
CONTROLLERS

Humanized Mice
Because HIV-1 elite controllers represent a minor portion of
PLWH, it would be beneficial to establish animal models such as
humanized mice and SIV-infected NHP with immune responses
that mirror those of elite controllers. In the humanized mouse
model, the immune system is reconstituted with human immune
cells (79). Whereas mice are not susceptible to HIV-1 infection,
numerous groups confirmed that HIV-1 can replicate in various
humanized mice models (80–83), which are widely used to
examine promising immunotherapies (84), latency reversing
agents (85), and gene-editing of HIV-1 proviruses in vivo (86,
87). This model has been criticized for frequent development of
graft versus host disease (GvHD) symptoms affecting studies of
innate immunity, yet recent models such as C57BL/6 RAG2 -/-
common g chain -/- CD47 -/- triple knockout mice present
dramatically reduced risks of GvHD and improved reconstitution
of human adaptive immune system (88).
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In HIV-1 infected humanized mice, ILC1 and ILC3 are
depleted in lymphoid tissues by type 1 IFN produced by pDCs
(59, 60). Recently, Kim and colleagues (89) demonstrated that
infusion of allogenic human NK cells in HIV-1-infected
humanized mice can delay HIV-1 viral rebound after ART
interruption. Additionally, animals who received allogenic NK
cell transfer displayed reduced diversity in HIV-1 species,
highlighting the significance of NK cells in HIV-1 control in
this model. In order to investigate EC immune responses in vivo,
Dudek et al. (90) generated humanized BLT (bone marrow, liver,
thymus) mice, where implanted human fetal CD34+
hematopoietic stem cells (HSCs) become educated within
transplanted autologous human thymic tissues, using HSCs
expressing either the protective HLA-B*57 or non-protective
HLA-B alleles. Although mice reconstituted with HLA-B*57
positive cells demonstrated better control of HIV-1 replication,
they could not suppress HIV-1 replication to the point where
viral loads would be lower than the limit of detection, in contrast
to human ECs. It is important to note that their humanized mice
model poorly reconstitute innate immune cells (79), and robust
CD8+ T cell responses have been positively associated with more
successful reconstitution of monocytes in humanized mouse
models (91). Therefore, one possible explanation for why
humanized mice could not achieve HIV-1 control is that EC
innate immune responses were not recapitulated in their model.
Recent humanized mouse models such as MISTRG mice
drastically improved the reconstitution of diverse subsets of
innate immune cells by replacing murine cytokine genes for
human homologs (92, 93). It would be intriguing to compare the
immune responses between traditional and next generation
humanized mice models reconstituted with EC immune
systems to investigate how innate immunity contributes to
natural control of HIV-1.
Non-Human Primates
SIV-infected non-human primates, including rhesus macaques
(Macaca mulatta), African green monkeys (AGM) (Chlorocebus
aethiops), pig-tailed macaques (Macaca nemestrina) and
Mauritan cynomolgus macaques (MCM) (Macaca fascicularis),
are well-established animal models for HIV-1 research that have
been valuable for studying innate immunity. Elevated levels of
inflammatory cytokines such as IL-6 and type 1 IFN are observed
in numerous SIV infection models (94, 95). Specifically, chronic
upregulation of type 1 IFN levels in the blood is linked to
pathogenic SIV infection (95, 96). As expected, this pro-
inflammatory cytokine environment is associated with
modulation of innate immune cells during SIV infection. First,
contrary to what was reported in human studies, subsets of ILCs
such as NKp44+ and IL-17+ ILCs are depleted in the intestinal
mucosa (97, 98). Second, NK cell activities are also
downregulated in pathogenic SIV infection (99). NKp44+ NK
cells in the gut were significantly depleted during persistent SIV
infection, and the magnitude of NKp44+ NK cell depletion was
strongly correlated with intestinal CD4+ T cell loss (100). NK
cells also lost expression of multiple lymph node trafficking
receptors in pathogenic SIV infection and consequently, their
Frontiers in Immunology | www.frontiersin.org 5
homing to the lymph nodes was diminished (101). Finally,
increased infiltration of inflammatory monocytes into the liver
was demonstrated in SIV-infected rhesus macaques and was
associated with hepatic viral replication and markers of liver
inflammation (102). Altogether, SIV infection exhibits numerous
hallmarks of inflammation that lead to the dysfunction of
multiple innate immune subsets.

A number of SIV-infected EC NHP models were considered
to study human EC-like innate responses. One strategy to
establish SIV elite controllers is to infect macaques with an
SIV strain from other NHP species, such as an AGM strain, or
with a mutated SIV. Pandrea et al. (103) reported that rhesus
macaques infected with the AGM strain of SIV controlled viral
replication at the later stage of infection, and CD8+ T cells were
critical for suppressing viremia. Breed and colleagues generated
an SIV strain without the GYxxO cytoplasmic trafficking motif in
Env (SIV DGY) that transiently infects gut CD4+ T cells and
therefore does not deplete intestinal CD4+ T cells (104). Using
this strain, they demonstrated that infection of pig-tailed
macaques also resulted in spontaneous control similar to HIV-
1 ECs. These animals experienced reduced monocyte depletion,
which is one of the hallmarks of pathogenic infection (105).
However, it is important to note that viral replication and
transmission kinetics of these strains in macaque species are
likely to differ from those of wild type SIV (103, 105). As
numerous studies have reported the equivalent replication
capacity between EC and non-controller viruses (22), infection
with mutated SIV or viruses adapted to other primate species
may not be an appropriate representation of immune control of
HIV-1 in ECs.

Similar to HIV-1 elite controllers, viremic control in SIV
infection is associated with specific Major Histocompatibility
Complex (MHC) alleles in rhesus macaques. Therefore, another
approach to study elite control of SIV is to infect macaques
expressing protective MHC with SIV. Loffredo et al. (106)
demonstrated that rhesus macaque MHC molecules Mamu-
B*03 and Mamu-B*08 bind epitopes similar to human HLA-
B*27, and animals bearing these MHC alleles were more likely to
establish spontaneous control of SIV infection (107). Other
studies with rhesus macaques also indicated the association of
Mamu-B*17, Mamu-B*1001 and Mamu-B*8701 with viremic
control (108, 109). As anticipated, robust CD8+ T cell responses
were associated with viremic control in these models similar to
human ECs (107, 110). Intriguingly, SIV EC rhesus macaques
had higher percentage of plasmacytoid dendritic cells in
circulation similar to human ECs, but lower in colorectal
t i ssues than animals with high viremia (38, 111).
Correspondingly, more IFNa-positive pDCs were observed in
PBMCs from SIV elite controllers than viremic animals, but this
trend was reversed in colorectal samples (111). Because SIV
infection is known to promote robust inflammatory responses
(112), it would be intriguing to assess the magnitude of systemic
inflammation in SIV EC animals.

Besides the rhesus macaque model, MCM models have been
frequently used to recapitulate immune responses in human
ECs. MCMs with SIV infection exhibit similar phenotypes as
human ECs including lower viral loads and reduced CD4+ T cell
April 2022 | Volume 13 | Article 858383

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Sugawara et al. Innate Immunity in HIV-1 Controllers
loss (113, 114). Similar to other animal models, MCMs
expressing specific MHC haplotypes such as M1, M2, and M6
are likely to establish viremic control (114–116). Surprisingly,
several studies indicate that effective CD8+ T cell responses are
not required for viremic control in this model (113, 114),
suggesting the potential contribution of innate immune cells in
HIV-1/SIV elite control.

Although MCM models indicate that elite control can
potentially be attributed to innate immunity, the majority of
innate immune cells has been understudied in both rhesus
and cynomolgus macaque models in the context of elite control.
SIV-infected NHP models have many advantages over human
studies including the ability to experimentally deplete specific
immune cells (117), the availability of tissue samples (117, 118),
and the carefully-controlled design of the studies with clear
definition of acute and chronic infection (118). It would be
beneficial to investigate whether specific depletion of innate
effector cells, such as monocytes, neutrophils, and NK cells,
would alter the outcome of SIV infection in macaques
expressing protective MHC alleles. Furthermore, SIV EC models
could unravel the distinguishable innate immune responses in
different anatomical sites, which is challenging to demonstrate in
human ECs.
HOW TO INDUCE HIV-1 ELITE
CONTROLLER RESPONSES?

Therapeutic vaccines that elicit EC-like responses have been
investigated in order to achieve a functional cure in PLWH
with diversified MHC genotypes. In SIV-infected monkeys
expressing Mamu-B*08, vaccination with Mamu-B*08-
restricted peptides induced robust CD8+ T cell responses
(119). Migueles et al. (7) tested adenovirus-based vaccine in
HIV-1 controllers and non-controllers and investigated their
CD8+ T cell responses. Unfortunately, only HLA-B*57-positive
HIV-1 non-controllers could induce highly functional CD8+ T
cell activities similar to ECs. Additionally, Li et al. reported a
more effective reduction in HIV-1 reservoir size following
vaccination in ECs compared to non-controllers though it was
not statistically significant (120). This study also showed an
inverse correlation between HIV-1 reservoir size and percentage
of activated CD8+ T cells, suggesting that the decrease in EC
HIV-1 reservoir size may be partially mediated by CD8+ T cell
activities. Whereas T cell-based therapies can induce robust
HIV-1 specific responses in ECs, these strategies need to be
further ameliorated by activation of other subset of immune cells
including innate effector cells so that effective HIV-1-specific
responses can be globally triggered in PLWH regardless of their
diverse MHC haplotypes.

Chimeric antigen receptor (CAR) therapies are emerging
immunotherapeutic approaches that could engineer innate
cellular immune products that mimic responses in ECs. A
CAR is comprised of a single chain portion of the variable
domain of antibodies (scFv) and of an intracellular signaling
domain such as CD3 z chain and Fc receptor g chain (FcRg)
Frontiers in Immunology | www.frontiersin.org 6
(121). While CARs were initially developed for T cell
immunotherapeutics (121), the same concept has more
recently been applied to innate effector cells including NK cells
(122), macrophages (123), and dendritic cells (124). Specifically,
NK cells have been the most intensively investigated
among innate immune cells for the application of CAR therapy
because of their success in tumor treatment where they
exhibit robust responses against lymphoid tumors with limited
adverse effects (122). Subrakova et al. (125) introduced the
knockout of inhibitory signaling molecule SHP2 in the
CAR YT cell line which ameliorated the cytolytic function
(125). This implies that CAR-NK therapy can be further
complemented by gene knockout and overexpression.
Unfortunately, CAR-NK cell therapy has not been tested in
PLWH yet (126), but adoptive transfer of CAR-NK cells
eliciting EC-like responses could be a promising strategy to
establish HIV-1 elite control.

Harnessing trained innate immunity represents another way
that could complement the existing approaches to trigger EC-like
responses. Instead of genetic recombination, trained immunity
by innate effector cells is developed through epigenetic or
transcriptional reprogramming (11, 127). Trained immunity
can develop upon direct exposure to pathogens, or indirectly
via pathogen-associated molecular patterns and cytokine milieu
generated by host immune responses against pathogens (127).
This concept is supported by multiple lines of recent evidence.
For instance, Mycobacterium bovis Bacillus Calmette-Guérin
(BCG)-trained monocytes responded more robustly to LPS
stimulation than naïve monocytes (12). Enhanced immunity by
trained monocytes depends on H3K4 trimethylation.
Macrophage responses were also ameliorated by repeated
antigen stimulation from Nippostrongylus brasiliensis, and
neutrophils are crucial to facilitate enhanced macrophage
activities (13). Jensen and colleagues (14) investigated the effect
of trained immunity against SIV infection by challenging
animals with BCG prior to SIV infection. Animals exposed to
Mtb and BCG displayed augmented activation of monocytes
after SIV infection, but also enhanced CD4+ T cell activation that
could potentially result in higher susceptibility to SIV infection.
In HIV-1 ECs, it remains to be determined whether myeloid cells
exhibit reduced trained immunity. Nevertheless, as
demonstrated by Jensen et al. (14), non-specific induction of
trained immunity may not be an effective approach for HIV-1
elite control due to possible off-target effects on other immune
cells. Instead, infusion of specific innate effector cells exhibiting
enhanced immunity such as CAR expression, knockout of anti-
inflammatory genes, and overexpression of innate effector
molecules could be a more feasible strategy to utilize trained
immunity for HIV-1 immunotherapeutics.

Among innate effector cells, trained immunity exerted by
specific subsets of NK cells, namely adaptive NK cells, is
increasingly described against several pathogens in humans
and animal models. Distinct types of adaptive or memory NK
cells have been identified and include cytokine-induced, FcRg-
deficient (Dg), and antigen-specific NK cells (128). Cytokine-
induced memory-like (CIML) NK cells mediate enhanced
effector functions upon cytokine or activating receptor re-
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stimulation for several weeks following short-term pre-activation
with IL-12, IL-15 and IL-18 (128–130). Owing to their robust
anti-tumor responses, CIML NK cells are increasingly studied as
a promising target in cancer immunotherapy (131). CIML NK
cells exerted effective cytotoxicity against acute myeloid leukemia
(AML) and ovarian cancer cells both in vitro and in vivo mice
model (132, 133). Romee et al. (132) performed an allogenic
transfer of CIML NK cells in individuals with AML. CIML NK
cells exhibited robust expansion and effective anti-tumor
responses in the recipients, resulting in a 55 percent overall
response rate (132). In viral infection, CIML NK cell responses
were observed in individuals post influenza vaccination, with IL-
2 being critical for enhanced NK cell responses (134). Despite the
promising results on CIML NK cell activity in a number of
disease models, little is known about their significance in HIV-1
infection and responses in individuals vaccinated with HIV-1
antigens. It would be intriguing to elucidate the importance of
CIML NK cell responses in HIV-1 controllers and investigate the
potential use of CIML NK cells as immunotherapeutics for HIV-
1 cure.

Gamma signaling chain-deficient (Dg) NK cells are another
subset of adaptive NK cells that are specialized in antibody-
mediated responses. Dg NK cells often exhibit reduced FcRg and
Syk expression (135) and demonstrate differential surface
receptor expression profile including diminished TIM-3 and
CD7 expression and increased CD2 expression (135, 136). The
loss of Syk expression in Dg NK cells is mediated by epigenetic
modification of the Syk promoter region, exhibiting a hallmark
of trained immunity (135). This subset of cells expands in
individuals with human cytomegalovirus (HCMV) infection,
and rhesus macaques with rhesus CMV infection (135, 137).
Functionally, Dg NK cells elicited elevated ADCC responses
compared to conventional NK cells (135), whereas killing of
target cells triggered by other activating receptors was
diminished (138). In HIV-1 infection, this subset of NK cells
expanded in viremic and ART-suppressed PLWH, and Dg NK
cells exerted stronger responses mediated by antibodies (16).
Unfortunately, the contribution of Dg NK cell responses in ECs
has not been exhaustively elucidated yet. A recent study by Liu
et al. (139) illustrated that knockout of FcRg in human NK cells
enhanced cytokine secretion by CD16 stimulation while
cytotoxic responses mediated by other activating receptors
were downregulated, similar to Dg NK cells. This indicates that
the Dg NK cell phenotype could be engineered by knockout of
FcRg. Thus, it would be intriguing to evaluate what role Dg NK
cells (or engineered counterparts) play in viremic control of HIV.

Antigen-specific adaptive NK cells mediate recall responses
similar to T and B cells and have been described against multiple
infectious agents including HIV-1 (128, 140–143). These
responses were also activated in humans upon re-exposure to
antigens long after their clearance (140). In accordance with the
signatures of trained immunity, subsets of antigen-specific
memory NK cells have been shown to also undergo epigenetic
modifications, resulting in increased chromatin accessibility in
regions encoding for genes involved in NK cell activation and
function (142). CXCR6 and CD49a are consistently expressed on
such antigen-specific memory NK cells and other markers that
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have been associated with antigen specificity include NKG2D,
CD69, CD57, and KLRG1 (128, 140, 141, 143).

NKG2C+ NK cells represent another subset of adaptive NK
cells that seem to exert antigen-specific responses. Similar to Dg
NK cells, NKG2C+ cells were expanded in people with HCMV
infection (144, 145) and influenza vaccination further expands
pre-existing NKG2C+ NK cells generated by CMV infection
(146). NKG2C recognizes non-classical MHC class I molecules
HLA-E. Importantly, NKG2C+ NK cells display antigen-specific
responses to HLA-E-binding CMV-derived peptides (147),
indicating the potential to engineer NK cell responses by
vaccine antigens. Moreover, only 2 HLA-E alleles are mostly
represented in humans (148), so HLA-E-mediated NK responses
can be triggered regardless of highly polymorphic classical MHC
genotypes (149). A recent study demonstrated HLA-E-restricted
HIV-1-specific CD8+ T cells responses in PLWH (150), and a
CMV-based vector vaccine was able to elicit MHC-E-mediated
SIV-specific CD8+ T cell responses associated with protection in
a rhesus macaque model (151), further validating that HLA-E-
mediated responses are therapeutically inducible. HIV-1
infection also increased the percentage of NKG2C+ NK cells,
which is linked to effective viremic control (15). It would be of
high interest to determine if HLA-E-dependent HIV-1-specific
NK cell responses play a role in HIV-1 control in PLWH. It is
important to note that a significant proportion of Dg NK cells
also exhibit increased NKG2C expression (136), indicating a
potential overlap between these adaptive NK cell subsets. For
instance, a considerable percentage of Dg NK cells from PLWH
did express NKG2C and their Dg NK cells elicited stronger HIV-
1 peptide-specific responses than FcRg+ NK cells (16).

Because trained immunity is an emerging field of research,
limited studies have focused on these responses in HIV-1 ECs or
animal models. Nevertheless, considering differential innate
immune responses in HIV-1 ECs and the significance of
adaptive NK cell responses in PLWH, it would be intriguing to
investigate whether trained innate immunity is stronger in
individuals with viremic control. Particularly, some aspects of
NK cell trained immunity such as antigen-specific adaptive NK
cell activities seem to be inducible in a targeted fashion by
therapeutic approaches including administration of peptides.
Adaptive NK cell functions can also be recapitulated by
adoptive transfer of genetically engineered innate cells
including CAR NK cells or NK cells with knockout or
overexpression of immune genes, so further understanding of
NK cell trained immunity could open a new avenue for strategies
to elicit immune responses similar to ECs. NK cell trained
immunity is also observed in certain animal models, so EC
trained immunity elicited by NK cells should be rigorously
studied in animal models in order to utilize their advantages
such as characterization of innate immunity during well-defined
stages of both acute and chronic infection.
CONCLUSION

In this review, we highlighted the innate immune responses in
ECs characterized in previous studies and reviewed the available
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animal models to study EC innate immunity. We also discussed
the previous and possible future strategies to induce immune
responses similar to ECs in other HIV-1 non-controllers by
incorporating the novel concept of trained immunity. Because of
their association with HLA class I molecules, research on ECs has
mainly focused on their CD8+ T cells, frequently neglecting the
possibility that innate immunity could also improve their CD8+
T cell functions. While elite control was investigated in
humanized mice and NHP models with specific MHC
expression profiles, their innate immune responses were
understudied. Because ECs represent a limited fraction of
PLWH, studies utilizing animal models are essential to
meticulously understand their innate immunity. Specifically,
humanized mice and SIV-infected NHP models have many
strengths including depletion of specific innate immune cells,
applying potential immunotherapies with controlled timepoints,
and analyzing longitudinal responses including memory
responses and trained immunity. These advantages are critical
to extensively understand innate immunity in both acute and
chronic phases of infection and validate the effectiveness and
safety of promising vaccine strategies utilizing trained immunity.
Therefore, more extensive research on innate immunity in
Frontiers in Immunology | www.frontiersin.org 8
animal models would be essential to understand the unique
innate responses applicable to human ECs that can be translated
into novel immunotherapeutics towards other PLWH in a more
focused fashion.
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