
materials

Article

Ultrasonically Processed WSe2 Nanosheets Blended Bulk
Heterojunction Active Layer for High-Performance Polymer
Solar Cells and X-ray Detectors

Hailiang Liu 1,†, Sajjad Hussain 2,† , Jehoon Lee 1, Dhanasekaran Vikraman 3,* and Jungwon Kang 1,*

����������
�������

Citation: Liu, H.; Hussain, S.; Lee, J.;

Vikraman, D.; Kang, J. Ultrasonically

Processed WSe2 Nanosheets Blended

Bulk Heterojunction Active Layer for

High-Performance Polymer Solar

Cells and X-ray Detectors. Materials

2021, 14, 3206. https://doi.org/

10.3390/ma14123206

Academic Editor: Marko Topic

Received: 28 April 2021

Accepted: 7 June 2021

Published: 10 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Korea;
liuhailiang107@gmail.com (H.L.); usyj0512@gmail.com (J.L.)

2 Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea;
shussainawan@gmail.com

3 Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Korea
* Correspondence: v.j.dhanasekaran@gmail.com (D.V.); jkang@dankook.ac.kr (J.K.)
† Authors contributed equally.

Abstract: Two-dimensional (2D) tungsten diselenide (WSe2) has attracted considerable attention in
the field of photovoltaic devices owing to its excellent structure and photoelectric properties, such as
ordered 2D network structure, high electrical conductivity, and high mobility. For this test, we firstly
prepared different sizes (NS1–NS3) of WSe2 nanosheets (NSs) through the ultrasonication method
and characterized their structures using the field emission scanning electron microscope (FE-SEM),
Raman spectroscopy, and X-ray powder diffraction. Moreover, we investigated the photovoltaic
performance of polymer solar cells based on 5,7-Bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-
4,8-dione(PBDB-T):(6,6)-phenyl-C71 butyric acid methyl ester (PCBM) with different WSe2 NSs as
the active layer. The fabricated PBDB-T:PCBM active layer with the addition of NS2 WSe2 NSs
(1.5 wt%) exhibited an improved power conversion efficiency (PCE) of 9.2%, which is higher than
the pure and NS1 and NS3 WSe2 blended active layer-encompassing devices. The improved PCE is
attributed to the synergic enhancement of exciton dissociation and an improvement in the charge
mobility through the modified active layer for polymer solar cells. Furthermore, the highest sensitivity
of 2.97 mA/Gy·cm2 was achieved for the NS2 WSe2 NSs blended active layer detected by X-ray
exposure over the pure polymer, and with the NS1 and NS2 WSe2 blended active layer. These results
led to the use of transition metal dichalcogenide materials in polymer solar cells and X-ray detectors.

Keywords: WSe2 nanosheets; charge transport; mobility; polymer solar cell; sensitivity

1. Introduction

Optoelectronic devices based on organic semiconductors have received considerable
attention in recent times [1]. Currently, organic semiconducting materials have been
considered for a wide range of applications, such as organic solar cells [2–4], organic light-
emitting diodes [5,6], sensors [7,8] and photodetectors [9,10]. This is mainly due to the
excellent properties of organic semiconductor materials, such as their low cost, lightweight
design, flexibility, and excellent thermal and mechanical stability [11–16]. A wide-bandgap
polymer, 5,7-Bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione (PBDB-T) is one of
the most recognized and effective donor materials in polymer solar cells (PSC). Moreover,
most organic-based semiconducting devices use a fullerene derivative phenyl-C70-butyric
acid methyl ester (PCBM) as an acceptor due to its high rate of conductivity, which is
combined with the photon charge conversion layer (active layer) [17–21]. Among the
donor materials, PBDB-T-conjugated polymers are the most studied and well-recognized
choice of material due to their unique properties, such as semicrystalline structure and high
hole/electron mobility, as well as their ease of interaction with fullerene-based acceptors
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such as PCBM [22]. PBDB-T exhibits an excellent absorption coefficient and is located
at the deepest level of the occupied molecular orbital (HOMO) [23,24]. For this reason,
PBDB-T:PCBM is considered as the driving force for further in-depth research on organic
solar cells, sensors and photodetectors.

Third-generation bulk heterojunction (BHJ) PSCs are cheaper and weigh less compared
to first-generation single-crystal silicon-based solar cells and second-generation compound
semiconductor-based solar cells [25–28]. However, their power conversion efficiency (PCE)
is insufficient compared to that of other silicon-based devices. This is mainly due to the
low mobility of polymer semiconductors, which leads to poor charge transportability [29].
The intrinsic potential of the active layer film and the number of photogenerated carriers
generated by the recombination effect are limited by their thickness, which makes it difficult
to achieve higher PCE. It is still a considerable challenge to fabricate high-performance
BHJ organic solar cells with superior performance. Recently, ternary hybrid-based solar
cell research works have attracted growing attention; for example, Sygletou et al. [30]
demonstrated that solar cell PCE was improved by 12.5% through the doping of WS2–
AuNSs into the active layer (PCDTBT:PCBM). Elsewhere, Wu et al. [31] achieved an
improved PCE by using different contents of graphene quantum dots (GQDs) for doping
in the active layer of P3HT:PCBM. Finally, Ahmad et al. [32] successfully manufactured
the ternary hybrid-based active layer of P3HT:PCBM:MoS2 NSs with a PCE increment
of 32.71% when compared to the performance of an active layer-encompassing device
without MoS2 added. The PCE enhancements in the ternary hybrid layers are mainly due
to their enriched capacity for light absorption and their harmonizing absorption of solar
radiation [33,34]. In this respect, interest in ternary-based research has grown recently in
order to improve the photovoltaic performance of PSCs.

X-rays have been widely used in the detection of indirect/direct methods and have
a wide range of application prospects, including industrial inspection, scientific research
(crystallography) and in the field of medicine [35–39]. The coupling of an indirect photode-
tector and a CsI (T1) scintillator is a common detection method in which the scintillator
converts incidental X-rays into visible light. The visible light is then absorbed by the active
layer, thereby forming an electron–hole pair to excite charge carriers [21,40]. In a recent
report, an X-ray detector based on a ternary system was studied. Unlike the traditional
hybrid device concept, a device based on a ternary structure can use the interaction be-
tween the organic semiconductor and the additive material to generate surplus-free carrier
selection, thus creating a highly sensitive detector. For example, Thirimane et al. [41]
reported a ternary hybrid detector based on an organic BHJ-bismuth oxide composite
material with a sensitivity of 1712 µCmGy−1·cm−3 under 50 kV soft X-rays. The organic
semiconductors can be manufactured at low cost, at room temperature (over a large area of
flexible/wearable substrate), and with an adaptable methodology for complex structures,
which will more easily meet the requirements of commercialization.

Transition metal dichalcogenides (TMDs) are attractive semiconductors used in vari-
ous electronics and optoelectronics [42,43]. TMDs are mainly composed of sandwiched
metal (M = Mo, W, etc.) atoms between chalcogenide atoms (such as S, Se, or Te). They
possess a unique chemical composition and unique physical properties, such as a high
capacity for light absorption, a high carrier mobility, and high bandgap tunability, making
them promising as complementary light absorbers and as additional-charge transport ma-
terials for high-efficiency ternary devices [44–47]. Usually, the BHJ structure is composed
of a p-type polymer donor and an n-type fullerene acceptor material [48,49]. When the
additives are introduced between the polymer donor and the acceptor, it enhances the
exciton dissociation and charge transfer activities through interfacing characteristics. An
inter-penetration of the nanostructure’s transport network in the active layer can signifi-
cantly improve carrier mobility. However, the key point of device performance is based
on the involvement and interaction of a third component with the thin BHJ layer, which
includes uncontrollable factors such as shape and size. For this reason, it is a challenging
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step to produce suitable nanomaterials with compatible morphological properties in order
to maximize the performance of ternary devices.

In this work, we used a simple and convenient method to tune the sizes of WSe2
NSs by ultrasonication, and then added different concentrations of WSe2 NSs to the
polymer heteroatoms active layer of PBDB-T:PCBM to improve its inherent attributes. The
experimental results showed that the NS2 WSe2 NSs-suspended active layers (1.5 wt%)
produced an improved PCE of 9.2%, which increased by 13.5% compared to the pristine
polymer junction device PCE of 8.1%. In addition, under the exposure of X-rays, the NS2
WSe2 NSs-incorporated (1.5 wt%) PBDB-T:PCBM active layer obtains a sensitivity level of
2.97 mA/Gy·cm2.

2. Experimental Section
2.1. Preparation of WSe2 Nanosheets

Firstly, 1 g of WSe2 commercial powder was mixed with 100 mL of ethanol solution.
The solution was then subjected to sonication at different times, such as 6, 12 and 18 h
in a sonic bath under 60 W. Next, it was centrifuged at 8000 RPM for 5 min to retain
the precipitate. The collected precipitate was then kept in a vacuum-heating oven until
the ethanol evaporated. Finally, the prepared WSe2 nanosheets were used for device
fabrication and characterization. Based on the sonication times of 6, 12 and 18 h for WSe2
preparation, the final products are named “NS1”, “NS2”, and “NS3”, respectively, in the
following text. The WSe2 nanosheets’ ultrasonic preparation parameters are listed in
Table S1 (Supplementary Materials).

2.2. Device Fabrication

The indium tin oxide (ITO)-patterned glass substrates were cleaned sequentially with
acetone, methanol, and isopropyl alcohol for 5 min by sonication treatment, then dried
in a vacuum oven at 100 ◦C, before finally being exposed to UVO treatment for 15 min.
The PEDOT:PSS was spin-coated onto the cleaned ITO substrate at 3000 rpm for 30 s and
then annealed at 150 ◦C for 30 min, resulting in a 40 nm thick PEDOT:PSS. For the pure
active layer formation, a mixture of PBDB-T and PCBM (with a weight ratio of 2:3) was
completely dissolved in chlorobenzene with a concentration of 20 mg/mL, then subjected
to constant stirring for 3 h at 60 ◦C. Next, the prepared solution was spin-coated onto
the PEDOT:PSS layer at 1100 rpm for 30 s, and treated by thermal annealing at 150 ◦C
for 10 min. To prepare the WSe2 NSs blended active layer, the selective concentration
(1, 1.5, and 2 wt%) of prepared WSe2 NSs (NS1–NS3) was dissolved in isopropyl alcohol
and then mixed with the chlorobenzene mixture (PBDB-T:PCBM—2:3 ratio), before being
subjected to constant stirring for 3 h at 60 ◦C. The WSe2 NSs blended PBDB-T:PCBM active
layer was then spin-coated onto the PEDOT:PSS layer at 1100 rpm for 30 s, and treated
by thermal annealing at 150 ◦C for 10 min (Table S2). Finally, a 5 nm lithium fluoride
(LiF) layer and a 120 nm Al cathode were deposited on top of the active layer by thermal
evaporation under a pressurized environment of 3 × 10−7 torr. The fabricated device
contains four cell structures with an active area of 0.04 cm2. To prevent the exposure of the
fabricated detector to oxygen and humidity, it was enclosed under a glass lid in a glove
box. The device fabrication scheme of a patterned ITO substrate with different active layers
(PBDB-T:PCBM (92 nm) and PBDB-T:PCBM:WSe2 (89 nm)) is shown in Figure 1.
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Figure 1. Schematic process for the fabrication of pure and WSe2 NSs-suspended PBDB-T:PCBM
active layer comprising a BHJ device.

2.3. Characterization

Field emission scanning electron microscopy (FE-SEM, Hitachi S-4700, Tokyo, Japan)
was used to describe the morphology and sizes of WSe2 NSs. Raman measurements were
carried out using a Renishaw inVia (RE04, Gloucestershire, UK) spectrometer with a laser
wavelength of 532 nm and an incident power of 5 mW for WSe2 NSs. The WSe2 NSs
structural characteristics were characterized using in-plane X-ray diffraction (XRD, Rigaku
D/Max-2500, Tokyo, Japan) with Cu-Kα radiation operated at 50 kV and 300 mA. Light
absorption spectra were obtained using a UV–vis spectrophotometer (Optizen 2120UV, K
LAB, Daejeon, Korea) for the pure and WSe2 NSs blended PBDB-T: PCBM active layers.
Atomic force microscopy (AFM) measurements were obtained for the prepared active layers
using Park Systems, XE-150 (Suwon, Korea), with a non-contact operating mode. The
current density–voltage (J–V) characteristics of PSCs were measured with an electrometer
(Keithley 6571B, Tektronix, Inc., Beaverton, OR, USA) under the exposure of an AM 1.5G-
filtered Xe lamp with an intensity of 100 mW/cm2.

The X-ray detector combined with the scintillator was characterized under X-ray
exposure. The emission spectrum of the CsI(Tl) scintillator (Hamamatsu Photonics J1311,
Shizuoka, Japan) was measured under X-ray irradiation with a spectrometer (AvaSpec
ULS2048L, StellarNet, Inc., Tampa, FL, USA). The prepared detector was placed at a
distance of 30 cm from the X-ray generator, with the operation of the X-ray generator fixed
under the conditions of 80 kVp and 60 mA·s, before being irradiated for 1.57 s. In order
to collect the charge under the X-ray exposure period, a bias voltage of 0.6 V between
the cathode and anode of the detector was applied. In addition, at the same distance
(30 cm), the X-ray exposure dose was measured using an ion chamber (Capintec CII50,
Mirion Technologies (Capintec), Inc., Florham Park, NJ, USA), and the absorbed dose from
exposure to the X-ray was 3.14 mGy. The radiation parameters were calculated using
the following Formulas (1) and (2), which correspond to the collected current density
(CCD) under X-ray irradiation conditions and the dark current density (DCD) under X-ray
irradiation conditions, respectively. The sensitivity of the X-ray detector was calculated
using a Formula (3), which indicates that the current generated is proportional to the
absorbed dose.

CCD
[
µA
cm2

]
=

Collected Current during X-ray ON
Exposed Detection Area

(1)

DCD
[
µA
cm2

]
=

Collected Current during X-ray OFF
Exposed Detection Area

(2)

Sensitivity
[

µA
mGy·cm2

]
=

CCD−DCD
Absorbed Dose

(3)
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3. Results and Discussion

The morphological characteristics of different WSe2 NSs were evaluated by FE-SEM
measurements. Figure 2a–c show the FE-SEM images of NS1, NS2 and NS3 WSe2, respec-
tively. The prepared NS1 WSe2 produces the agglomerated larger-size granular structure
with inhomogeneous shapes and sizes. Moreover, the observed surface reveals the voids
and hillocks of a natured morphology. The sizes of the grains were estimated using line
profiling with FE-SEM. The line profile of Figure 2d reveals NS1 WSe2 NSs with an average
size of ~80 nm. Agglomerated grain bunches made of nano-sized grains are observed for
NS2 WSe2 (Figure 2b). Furthermore, a line profile (Figure 2e) of NS2 WSe2 explores the
~50 nm diameter of average grain sizes. For NS3 WSe2, the fragmented sizes of differently
shaped grains are shown in Figure 2c and its line profile (Figure 2f) indicates minimized
sizes of grains with a ~30 nm average diameter. The observed results prove that the sizes
of WSe2 NSs grains are purely affected by the time of ultrasonic treatment due to the
dispersion of nanosheets during the ultrasonic treatment [50].
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Figure 2. SEM images of WSe2 NSs (a) NS1 (6 h sonication), (b) NS2 (12 h sonication), and (c) NS3
(18 h sonication); (d–f) particle size distribution of WSe2 NSs (d) NS1 (6 h sonication), (e) NS2 (12 h
sonication) and (f) NS3 (18 h sonication).

The structural property of NS1–NS3 WSe2 was characterized using Raman scattering
analysis. Figure 3a shows the Raman scattering profiles of WSe2 NSs. The Raman scattering
of NS1 displays two distinct characteristic peaks of E2g mode and E1g mode, located at
173.99 cm−1 and 250.22 cm−1, respectively [51,52]. For the NS2 and NS3 WSe2 nanos-
tructures, the peak positions are kept constant but their peak intensities are considerably
altered. In our observation, the Raman peak intensities reduced considerably after an
increase in ultrasonic treatment. The layered structure of WSe2 bonded with weak Van der
Waals forces between their layers. During the longer ultrasonic bath, weak forces collapsed
and induced the agglomeration of the bulk nature of WSe2 [53]. In addition, due to the
dispersion of the layered structure and nano-sheet sizes, the Raman phonon modes either
significantly broadened or were strongly suppressed [52]. These agglomeration characteris-
tics and size decrements are clearly portrayed in the Raman signals. The crystalline nature
of NS1–NS3 WSe2 was characterized by XRD analysis. Figure 3b reveals the diffraction
peaks of WSe2 located at 13.28◦ and 32.05◦ corresponding to the (002) and (100) lattice
planes, respectively. The (002) peak intensity is significantly reduced, while the (100) plane
intensity is considerably greater with an increase in sonication time [54,55]. The d-spacing
of the (002) peak ascribes the single layer thickness of WSe2. After the lengthiest sonication
of 18 h, the reduction in (002) peak intensity suggests the destacking/termination of the
WSe2 layered architecture. The observed results are consistent with the Raman observation.
However, unrelated layers randomly folded between other layers, resulting in an increase
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in (100) lattice-plane peak intensity. The observed results decoded the role of sonication
time to produce the highly active WSe2 NSs.
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The effect of incorporation of different WSe2 NSs with the PBDB-T:PCBM active layer
on the optical properties was investigated by ultraviolet–visible absorption spectroscopy.
Figure 4a shows the absorption spectra of pure and NS1–NS3 WSe2 NSs blended PBDB-
T:PCBM film. The pristine PBDB-T:PCBM film’s absorption spectrum displays several
characteristic features with the three distinct peaks at 474, 580 and 632 nm. An observed
weak peak centered at 474 nm is associated with the absorption following the extended
conjugation of PCBM in the solid state, and the doublets at 580 and 632 nm attribute
to the interchain vibrational absorption of ordered PBDB-T chains. Compared to the
pristine PBDB-T:PCBM, the PBDB-T:PCBM:WSe2 hybrid displays an enhancement in
the absorption profile for different NS1–NS3 WSe2 (1.5 wt%), as shown in Figure 4a.
Furthermore, the different concentrations, such as 1, 1.5 and 2 wt%, of NS2 WSe2 NSs
blended PBDB-T:PCBM films’ absorption profiles are shown in Figure 4b, which depicts a
high absorption behavior for the 1.5 wt% NS2 WSe2. The addition of WSe2 NSs with the
PBDB-T:PCBM active layer provides a superior photon transmission path and enhances
photon absorption characteristics.

The impact of the incorporation of WSe2 NSs with an active layer on the photovoltaic
and photodetector performances of ITO/PEDOT:PSS/PBDB-T:PCBM:WSe2/LiF/Al device
was measured by current density–voltage (J–V) characteristics. The schematic of the hybrid
polymer solar cell’s structure and the X-ray detector’s structure is shown in Figure 5a,b,
respectively. Figure 5c shows the energy level diagram of each component used for the
fabrication of the device. For the X-ray detector, the CsI(Tl) scintillator was constructed,
which consisted of 400 µm thick CsI and 0.5 mm thick Al. The induced X-ray photons
were converted through the scintillator, and were then absorbed by the active layer (PBDB-
T:PCBM:WSe2 NSs) to create electron–hole pairs. The transfer of electrons/holes through
the cathode/anode thus collected charges. According to the energy band position, additive
WSe2 NSs help the movement of electrons from PCBM to the cathode, whereas the hole
transport layer (HTL) of PEDOT:PSS helps the movement of holes towards the anode.
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To explore the photovoltaic behavior, the J–V characteristics of pristine PBDB-T:PCBM
and WSe2 NSs-incorporated PBDB-T:PCBM devices were measured under AM 1.5 G condi-
tions at an illumination intensity of 100 mW/cm2. Figure 6a shows the J–V characteristics of
devices comprising pure and NS1–NS3 WSe2 NSs (1.5 wt%)-incorporated PBDB-T:PCBM
active layers. Using a PSC device, we showed that the pristine PBDB-T:PCBM active
layer displayed a short-circuit current density (Jsc) of 16.81 mA·cm2 and an open-circuit
voltage (Voc) 0.84 V, with a fill factor (FF) of 56% and series resistance (Rs) of 225.43 Ω·cm2,
resulting in a PCE of 8.1%. After the incorporation of different NS1–NS3 WSe2 NSs, the
performances of the PSC devices were considerably improved. Further, the observed
PSC outcomes are provided in Table 1. After the incorporation of WSe2 NSs into the
active layer, the light-absorption capacity of the composite films significantly improved
compared to the pristine device, which promoted the exciton generation rate. The re-
sults reveal that the device with the NS2 (1.5 wt%) WSe2 NSs active layer produces the
highest JSC of 19.78 mA/cm2, VOC of 0.85 V, Rs of 122.02 Ω·cm2 and FF of 55%, with a
very promising PCE of 9.2%. The presence of WSe2 NSs in the ternary blend provides an
additional PBDB-T:PCBM:WSe2 interface, thus inducing a large interfacial area for charge
separation, and it thereby accelerates the rate of exciton dissociation. Moreover, the highly
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conductive 2D network of NS2 WSe2 NSs offers new interconnected percolation networks
for charge-carrier transport and collection, which could improve the electron mobility,
resulting in larger JSC. The observed low Rs further establishes the improved solar cell
performances for WSe2-incorporating active layers. The observed values are provided with
standard deviation (Table 1) between their five replicated experiments to prove their stable
performances. Similarly, the J–V characteristics of the constructed devices using different
concentrations, such as 1, 1.5 and 2 wt%, of NS2 WSe2 blended PBDB-T:PCBM:WSe2 in
their active layer are provided in Figure 6b. The observed results clearly illustrate the
improved behavior of the 1.5 wt% blended active layers. The detailed PSC parameters
are presented in the Table 2. In addition, in order to realize the role of concentration
variation in achieving high performance, AFM measurements were performed to study
the topography of the active layer prepared on ITO-coated glass. Figure S1 shows the 3D
AFM topographical images of pure and different concentrations (1, 1.5 and 2 wt%) of the
NS2 WSe2-doped PBDB-T:PCBM heterojunction active layer. The RMS surface roughness
of the active layer is 1.73 nm, 1.59 nm, 1.49 nm and 1.53 nm for the pure and 1, 1.5 and
2 wt% NS2 WSe2-doped PBDB-T:PCBM active layers, respectively. The development of a
very dense PCDTB-T:PCBM:WSe2 NS2 (1.5 wt%) active layer could prevent the leakage
of current and produce conduits useful for charge conveyance and separation, improving
the device’s performance [56]. Further, to validate the performances of the devices with
different concentrations (1, 1.5, and 2 wt%) of NS1 and NS3 WSe2 doping, PSC J–V profiles
are provided in Figures S2 and S3, respectively.
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The fabricated X-ray detectors were measured using the X-ray generator and elec-
trometer, as described in the experimental part. Figure 7a shows the logarithmic J–V
characteristics of pure and NS1–NS3 WSe2 NSs (1.5 wt%) blended PBDB-T:PCBM active
layers using prepared detectors. For the pristine PBDB-T:PCBM active layer, the X-ray
detector achieves a 2.55 mA/Gy·cm2 sensitivity. When the active layer is blended with
NS1–NS3 WSe2 NSs, the sensitivity is increased to 2.63, 2.97, and 2.76 mA/Gy·cm2 for NS1,
NS2 and NS3, respectively (Figure 7b, right-side axis). The extracted CCD-DCDs (Figure 7b,
left side axis) are at 8.01, 8.25, 9.32, and 8.67 µA/cm2 for the pure and NS1–NS3 blended
PBDB-T:PCBM active layers using the prepared X-ray detectors, respectively. Similarly, the
outcomes of different NS2 WSe2 NSs blended PBDB-T:PCBM active layers using prepared
X-ray detectors are provided in Figure 7c. The sensitivity as assessed by X-ray realizes
gives values of 2.55, 2.74, 2.97, and 2.86 mA/Gy·cm2 for the pristine PBDB-T:PCBM active
layer and 1 wt%, 1.5 wt% and 2 wt% NS2 WSe2 NSs, respectively (as shown in Figure 7c,
right-side axis). The estimated CCD-DCD values are 8.01, 8.60, 9.32, and 8.98 µA/cm2 for
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the pristine PBDB-T:PCBM active layer and 1 wt%, 1.5 wt% and 2 wt% NS2 WSe2 NSs,
respectively. The observed X-ray detector outcomes for NS1 and NS3 WSe2 NSs (1, 1.5, and
2 wt%) blended PBDB-T:PCBM active layers are provided in Figures S3 and S4, respectively.
Better outcomes are ensured for the 1.5 wt% NS2 WSe2 NSs hybrid active layer under
X-ray detection due to the enhanced conductivity, improved light absorption capacity, and
superior mobility.

Table 1. PSC performances of pristine and different WSe2 NSs blended PBDB-T:PCBM active layers using constructed
devices (± indicates the standard deviation).

WSe2 Type Doping wt% Voc (V) JSC (mA/cm2) FF (%) PCE (%) Rs (Ω·cm2)

- 0 (Pure) 0.84 ± 0.01 16.81 ± 0.13 56 ± 1 8.1 ± 0.09 225.43 ± 2.78

NS1 1.5 0.84 ± 0.01 18.14 ± 0.17 54 ± 1 8.4 ± 0.14 144.38 ± 3.15

NS2 1.5 0.85 ± 0.01 19.78 ± 0.19 55 ± 1 9.2 ± 0.17 122.02 ± 4.76

NS3 1.5 0.85 ± 0.01 18.56 ± 0.18 55 ± 1 8.7 ± 0.15 136.81 ± 3.59

Table 2. PSC performances of pristine and different amounts NS2 WSe2 NSs blended into the PBDB-T:PCBM active layer
using constructed devices (± indicates the standard deviation).

NS2 WSe2 (wt%) Voc (V) JSC (mA/cm2) FF (%) PCE (%) Rs (Ω·cm2)

0 (Pure) 0.84 ± 0.01 16.81 ± 0.13 56 ± 1 8.1 ± 0.09 225.43 ± 2.78

1 0.85 ± 0.01 18.27 ± 0.17 55 ± 1 8.6 ± 0.15 157.33 ± 3.42

1.5 0.85 ± 0.01 19.78 ± 0.19 55 ± 1 9.2 ± 0.17 122.02 ± 4.76

2 0.85 ± 0.01 18.69 ± 0.18 56 ± 1 8.9 ± 0.16 126.13 ± 3.85
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The carrier mobility was determined using the space-charge-limited-current (SCLC)
method in the dark, and it was obtained using the modified Mott–Gurney equation as
shown below:

µ =
8
9
× J × L3

Va2 × ε0 × εr
(4)

where ε0 is the permittivity of free space (=8.85× 10−12 F·m−1), εr is the relative permittivity
of the active layer, Va is the voltage applied across the detector, µ is the carrier mobility,
and L is the thickness of the active layer. The calculated mobilities using the detector are
at 5.62 × 10−5, 5.23 × 10−4, 8.82 × 10−4, and 7.13 × 10−4 cm2/V·s for the pristine active
layer and 1 wt%, 1.5 wt% and 2 wt% of NS2 WSe2 NSs blended active layers, respectively.

4. Conclusions

In this work, we have ultrasonically prepared exfoliated WSe2 NSs and blended them
with PBDB-T:PCBM as an active layer for ternary hybrid solar cells and X-ray detectors.
The different types (NS1–NS3) of WSe2 NSs were incorporated with active layers to explore
their potentials to alter the electron transport behavior in the prepared devices. The TMD
WSe2 blended active layer produced a synergistic enhancement of exciton generation and
dissociation, and enhanced hole and electron transport through the active layer, which
helped in achieving the high JSC and PCE for solar cells and the high sensitivity of detectors.
The highest PCE of 9.2% was attained for the NS2 WSe2 (1.5 wt%) blended PBDB-T:PCBM
active layer, which is higher than the devices comprised of pristine and NS1 and NS3
blended active layers. The fabricated X-ray detectors achieved the maximum CCD-DCD
of 9.32 µA/cm2, a high sensitivity of 2.97 mA/Gy·cm2, and large carrier mobility of
8.82 × 10−4 cm2/V·s for the NS2 WSe2 (1.5 wt%) blended PBDB-T:PCBM active layer. Our
research work provides a good strategy for incorporating highly dispersed aggregated
WSe2 NSs in an active layer to promote the charge extraction process and electron/hole
transport behavior, thus realizing high-performance semiconductor devices. These results
offer a new direction for the development of high-performance devices based on hybrid
structures for future electronics.
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(d) PBDB-T:PCBM:WSe2 NS2 with 2 wt%, Figure S2: J–V characteristics and their outcomes for pris-
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teristics and their outcomes for pristine and different amounts NS3 WSe2 NSs blended PBDB-T:PCBM
active layer, Figure S4: CCD-DCD and sensitivity variations for pure and different concentrations of
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