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How to Address Uncertainty in Health

Economic Discrete-Event Simulation Models:
An Illustration for Chronic Obstructive

Pulmonary Disease
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and Maureen P. M. H. Rutten-van Mölken

Background. Evaluation of personalized treatment options requires health economic models that include multiple
patient characteristics. Patient-level discrete-event simulation (DES) models are deemed appropriate because of their
ability to simulate a variety of characteristics and treatment pathways. However, DES models are scarce in the litera-
ture, and details about their methods are often missing. Methods. We describe 4 challenges associated with modeling
heterogeneity and structural, stochastic, and parameter uncertainty that can be encountered during the development
of DES models. We explain why these are important and how to correctly implement them. To illustrate the impact
of the modeling choices discussed, we use (results of) a model for chronic obstructive pulmonary disease (COPD) as
a case study. Results. The results from the case study showed that, under a correct implementation of the uncertainty
in the model, a hypothetical intervention can be deemed as cost-effective. The consequences of incorrect modeling
uncertainty included an increase in the incremental cost-effectiveness ratio ranging from 50% to almost a factor of
14, an extended life expectancy of approximately 1.4 years, and an enormously increased uncertainty around the
model outcomes. Thus, modeling uncertainty incorrectly can have substantial implications for decision making.
Conclusions. This article provides guidance on the implementation of uncertainty in DES models and improves the
transparency of reporting uncertainty methods. The COPD case study illustrates the issues described in the article
and helps understanding them better. The model R code shows how the uncertainty was implemented. For readers
not familiar with R, the model’s pseudo-code can be used to understand how the model works. By doing this, we
can help other developers, who are likely to face similar challenges to those described here.
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Key Points

In health economic (HE) decision modeling, the lack of
reporting extensive details on the model implementation,
especially on modeling uncertainty, is often a great con-
cern. Since the majority of the HE models published so
far, including those using patient-level data, are basically
Markov models, this issue is of special importance for
discrete-event simulation (DES) models.

Our article can be used as an example on how to
appropriately implement uncertainty in DES models and

transparently report the methods used. This can be useful
to other model developers, who are likely to face similar
challenges to those described in our article. We have used
a chronic obstructive pulmonary disease DES model as a
case study to help the reader to get a better understand-
ing of the problems presented in our article. By including
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the full R code of the COPD model, readers can see how
the proposed solutions were implemented. For readers
who are not familiar with R, we have provided the mod-
el’s pseudo-code, which can be used as a standalone tool
to understand how the flow of the code works without
knowing the specifics of the R language.

Background

Pharmacological and nonpharmacological treatments are
increasingly targeted to the patients who are most likely
to benefit. Personalized medicine, which includes strati-
fied medicine, refers to an approach where treatments are
targeted to subgroups of patients with specific character-
istics and takes into account other morbidities frequently
occurring simultaneously with the condition at hand.1

The economic evaluation of these personalized treatment
options calls for innovations in economic modeling.

Health economic (HE) models built to assess the cost-
effectiveness of new treatments in stratified medicine
should be flexible enough to include many patient and
disease characteristics that are deemed important for dis-
ease prognosis or treatment allocation. Such models can
be used to calculate a range of different outcomes and to
evaluate treatment options for a wide variety of sub-
groups. Markov models may not be the most efficient
way to address the heterogeneity in patient, disease, and
treatment characteristics that need to be considered to
target the right treatment to the right patient. Most of
the HE models published so far, including those using
patient-level data, are basically Markov models.2–6

Patient-level discrete-event simulation (DES) models are
appropriate tools to model treatments in stratified medi-
cine because of their ability to simulate a greater variety
of (time-varying) patient characteristics and treatment
pathways.7–9 DES models also allow a more flexible time
management, where time to multiple (and possibly com-
peting) events is simulated, without restricting their
occurrences to predetermined model cycles. DES models
can also accommodate the patient history into the simu-
lation and do not require the definition of health
states.10–12 Despite this, DES models have not been
widely used for economic evaluations.13 The methods

used in DES models are usually complex and their
description rather technical. When DES models are used
in published economic evaluations, details about their
implementation are often not part of the main article or
even the supplementary materials. Multiple examples of
published studies using patient-level models not report-
ing extensive details about modeling uncertainty can be
found in the literature.14–31 This lack of guidance is not
limited to DES models.32 However, since DES models
are less frequently used and are often considered more
complex, DES models could benefit more from additional
modeling guidance. Considering also the increased atten-
tion for personalized medicine, it is argued that DES mod-
els will become more important because they are more
flexible in modeling individual patient’s disease and treat-
ment pathways based on many different characteristics.33

Existing modeling guidelines focus on what should be
covered by DES models but are not very specific on
how.8 The Technical Support Document 15 (TSD15) by
the Decision Support Unit (DSU) of the National
Institute for Health and Care Excellence (NICE) pro-
vides more details about the methodology used in DES
models,7 including the code of a simple DES model used
to perform cost-effectiveness analysis. As models become
more complex, new methodological challenges may arise,
which are not covered by TSD15. This specifically per-
tains to uncertainty in DES models. When methods to
model uncertainty are not implemented or explained
well, the credibility of the DES model’s results may
decrease. The aim of this article is to describe important
challenges of modeling heterogeneity and structural, sto-
chastic, and parameter uncertainty in DES models. We
describe the solutions to several issues faced during the
development of a new DES model for chronic obstruc-
tive pulmonary disease (COPD) and present the results
of hypothetical cost-effectiveness analyses to illustrate
the impact of each type of uncertainty on the model out-
comes.34 These are common issues that can be encoun-
tered in other DES models. Thus, the methods explained
in this article could be applied to other DES models as
well. This article is further structured into a Methods
section, in which 4 challenges and solutions to modeling
uncertainty in DES models are described; a Results sec-
tion, in which the impact of the applied solutions is illu-
strated; and a Discussion section.

Methods

Description of the COPD Model

A full description of the HE COPD model was published
in Hoogendoorn et al.34 The main objective of the model
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was to simulate major COPD-related events over a life-
time and to calculate HE outcomes such as total costs
and quality-adjusted life years (QALYs) for a population
of COPD patients. The backbone of the model is a set of
regression equations describing the associations between
patient and disease characteristics and different COPD-
related events, as well as intermediate and final COPD
outcomes. These equations were estimated using the
combined patient-level data of 5 large COPD trials with
1 to 4 years of follow-up after randomization (19,378
patients).35–39 The regression equations are outlined in
Table 1. A summary of the characteristics of the trial
populations is shown in Appendix 1 (available online).

The simulation starts by sampling patients (with
replacement) from the existing baseline populations. The
model combines these regression equations in the
sequence of events described in Figure 1. Model inputs
are individual patient characteristics. The events included
in the model were exacerbations, pneumonias, and
death. Final outcomes were total lifetime costs and
QALYs. A step-by-step description of the simulation is
also given in Figure 1.

The simulation base-case represents patients treated
with a common medication for COPD patients (tiotro-
pium). The effectiveness of new interventions is modeled
relative to the base-case and can be included in the model
by modifying inputs of the base-case arm (e.g., 15%
increase in the time to exacerbation compared to the
base-case).

Challenges of Modeling Uncertainty during the
Model Implementation

Simulating patients’ clinical histories is the core of the
COPD model. The full R code used to build the COPD
model can be found on GitHub (https://github.com/icor-
roramos/PLDES_COPD_model). Future updates in the
code will be placed on the same repository. We refer to
the model pseudo-code in several parts of the remaining
of this article, with the purpose of improving clarity and
transparency. The pseudo-code for the clinical history
function is shown in Figure 2. The full model pseudo-
code is presented in Appendix 2 (available online). The
COPD model includes the 4 types of uncertainty that are
relevant for decision models: patient heterogeneity and
stochastic, parameter, and structural uncertainty.44

Challenges associated with each type of uncertainty that
were encountered during the model implementation are
described below.

Challenge 1: Remove differences in patient heterogeneity
between the intervention and control arms

Why is this challenge important? Patient heterogeneity
is defined as the variability in model outcomes between
patients that can be attributed to differences in patient
characteristics.44 Because patient-level models usually
sample individual patients, whose characteristics are used
as inputs for regression equations, model results are
influenced by patient heterogeneity. Sampling different
patients for the intervention and control groups may
cause differences in the model results that are attributed
to differences in heterogeneity rather than to differences
in effectiveness between treatments.

What solution was implemented? In the COPD model,
patient heterogeneity is the result of randomly sampling
different patients at the start of the simulation. Patients
are sampled with replacement from the baseline popula-
tions, and every time a simulation is run, results could be
different when a different set of patients is sampled. The
way to solve this is by using random seeds, which are
numbers that, after being fixed in the code, ensure that
the random draws in the model can be reproduced. This
would produce the same model outcomes in all simula-
tions run with the same seed. This is relevant when 2
treatment arms are modeled: the population has to be
the same for both arms to get results that differ only
because of a treatment effect but not due to a different
selection of patients. To avoid this issue in the COPD
model, the random seed 1 in the clinical history function
shown in Figure 2 has to be the same for all the treat-
ment arms compared.

Challenge 2: Adjusting remaining life expectancy after the
occurrence of an event

Why is this challenge important? Structural uncer-
tainty is the type of uncertainty associated with the
assumptions made while building a model. It may
include very different types of assumptions, from the
choice of the software used to estimate regression equa-
tions, to the way remaining life expectancy is adjusted
after events occur in the simulation. This is important
because the choices made during the development of a
model have to some extent impact on the model results.

What solution was implemented? The way remaining
life expectancy was adjusted after events occur in the
COPD model is used here for illustrative purposes. As
explained in Hoogendoorn et al.,34 a Weibull distribution
was used to simulate time to death (at baseline) for
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patients in the COPD model. The parameters (shape and
scale) of the Weibull distribution function were estimated
using the equation shown in Table 1, which resulted in
the patient’s life expectancy predicted at baseline. During
the simulation, life expectancy is affected by the occur-
rence of events and the changes in age and intermediate
outcomes. To predict remaining life expectancy at the
time of an event, updated characteristics are filled in the
equation. If, at the time of an event, a new remaining life

expectancy was randomly drawn, this could result in
inconsistent results (e.g., a patient whose condition wor-
sened after having a severe exacerbation could be ran-
domly assigned a life expectancy higher than that before
having the exacerbation). To avoid this issue, the random
seed 2 in the clinical history function shown in Figure 2
was used. However, this was not sufficient since inconsis-
tencies between a worsening condition and increased life
expectancy (and vice versa) were observed, which called

Figure 1 Flow diagram and step-by-step description of the chronic obstructive pulmonary disease (COPD) model. QALY,
quality-adjusted life year.
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for an adjustment of the life expectancy. When life expec-
tancy is updated at the time of an event, the outcome of
the time to death equation reflects the remaining life
expectancy at baseline should the patient have had the
updated characteristics at baseline (because regression
coefficients were estimated based on baseline data).
Therefore, the remaining life expectancy needs to be

corrected for 1) the time that already had passed since
the start of the simulation and 2) for worsening or
improvement of the condition. Two simulated patients
are used to illustrate how this was done. The first
patient’s baseline characteristics are shown in the first
row of Table 2. The remaining life expectancy at baseline
(RLE_t0) was predicted by filling in these characteristics

Figure 2 Pseudo-code of the chronic obstructive pulmonary disease (COPD) model.
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in the time-to-death equation. In the example, the
expected life expectancy at baseline was 11.43 years. In
the beginning of the simulation, a random time to death
at baseline was drawn (12.36 years). This value was used
as reference for the remaining simulation. At the time of
the first event (1.33 years), all parameters were updated
(second row in Table 2), and the updated remaining life
expectancy was calculated using the following formula:

Remaining life expectancy at first event (RLE_t1) =
(RLE_t0 – time passed until the first update (t1)) *
(Expected life expectancy at baseline using updated
values at t1 / Expected life expectancy at baseline using
baseline values).

The expected life expectancy at baseline had that
patient had the characteristics in the second row of
Table 2 was 10.82 years, which was lower than the value
obtained with the baseline characteristics (11.43 years),
reflecting the patient’s worsened condition. The remaining
life expectancy after the first event was (12.36 – 1.33) *
(10.82/11.43) = 10.44 years. Thus, the remaining life
expectancy after the first event (10.44 years) plus the
time that had passed until the first event happened (1.33
years) is 11.77 years, which is lower than the remaining
life expectancy estimated at baseline (12.36 years). This
difference (0.59 years) is the result of the patient’s wor-
sened condition. For the second patient in Table 2, the
expected life expectancy at baseline was 10.63 years, and
the random time to death at baseline drawn in the

beginning of the simulation was 15.21 years. At the time
of the first update (at 1 year, so no event occurred), all
parameters were updated (eighth row in Table 2) and
the updated remaining life expectancy was 10.81 years,
which was higher than the value obtained with the base-
line characteristics, reflecting the patient’s improved
condition. The remaining life expectancy after year 1
was (15.21 – 1) * (10.81/10.63) = 14.45 years. Thus, the
remaining life expectancy after the first year was 15.45
years, which is higher than the remaining life expectancy
estimated at baseline (15.21 years). The difference of
0.24 years is the result of the patient’s improved condi-
tion. This adjustment was repeated for all patients until
the patient’s death. The ratio in the above formula
reflects a factor to correct for improvement or deteriora-
tion in the patient’s health status over time.

Challenge 3: Remove stochastic uncertainty from treat-
ment effectiveness

Why is this challenge important? Stochastic uncer-
tainty refers to the random variability in the model out-
comes between identical patients. Even though, by fixing
a random seed, it is possible to ensure that patients are
the same for different simulations, the results of these
still include stochastic uncertainty. Due to the (random)
sampling of times to event, every time a simulation is
run, results could be different even if the same patients are
selected, simply because different event times can be
drawn. Because of this, the modeled treatment effects for
an intervention can be masked, which should not happen.

Table 2 Example of Two Simulated Patient Histories

Patient

ID Time, y Age, y FEV1

Severe
exacerbation

(Yes = 1)

Moderate
exacerbation

(Yes = 1)

Exercise

capacity, s

SGRQ
Activity

Score

SGRQ
Total

Score

Cough/Sputum

(Yes = 1)

Breathlessness

(Yes = 1) Dead

1 0.00 73.00 1.22 0 1 376.58 57.84 40.35 0 1 0
1.33 74.33 1.18 0 1 410.95 57.60 36.17 0 0 0
2.20 75.20 1.15 0 1 436.07 56.13 38.19 1 0 0
6.39 79.39 1.02 0 1 448.21 59.30 45.60 1 1 0
11.87 84.87 0.85 0 1 445.95 67.75 48.39 1 0 0
11.87 84.87 0.86 0 0 480.74 69.81 48.03 1 0 1

2a 0.00 61.00 1.08 0 0 366.30 57.77 48.25 1 1 0
1.00 62.00 1.04 0 0 374.38 59.93 49.20 1 1 0
2.00 63.00 0.99 0 0 377.66 61.76 50.56 1 1 0
3.00 64.00 0.95 0 0 377.24 63.61 51.97 1 1 0
3.05 64.05 0.93 0 1 331.39 58.21 46.61 1 0 0

. . .
13.74 74.74 0.47 0 0 165.99 84.17 67.69 1 1 0
14.68 75.68 0.42 0 0 163.02 81.14 62.28 0 1 1

FEV1, forced expiratory volume in 1 second; SGRQ, St. George’s Respiratory Questionnaire.
aThe complete clinical history simulated for this patient is not shown in this table.
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What solution was implemented? Suppose that we
want to model a new COPD intervention whose main
effect consists of delaying the occurrence of exacerba-
tions. The time to first exacerbation is determined by the
same Weibull curve in both arms because at the begin-
ning of the simulation, the same patient (with the same
characteristics) starts in both arms. In the base-case arm,
the time to first exacerbation is randomly sampled from
the corresponding Weibull curve. In the new intervention
arm, the time to first exacerbation is simply the time
sampled in the base-case increased by, for example, 15%.
Because in the intervention arm, the first exacerbation
was postponed, the patient’s age and intermediate out-
comes after the first exacerbation (i.e., when the time to
next event is calculated) are not the same as in the base-
case arm. Consequently, the time to second exacerbation
is not determined by the same Weibull curves. Appendix
3 (available online) provides a more detailed explanation.
If 2 Weibull curves were used to sample the time to next
exacerbation independently, the sampled times could be
inconsistent with the delay in exacerbation due to sto-
chastic uncertainty. Drawing a low random value for the
time to next exacerbation in the intervention arm and a
high random value in the comparator arm would result
in an intervention being less effective than a comparator.
To ensure consistency, the set of random seeds 3 in the
clinical history function shown in Figure 2 was fixed per
patient. These seeds guarantee that the treatment effect is
not removed, increased, or reversed due to randomness.
This approach always results in a positive effect of the
intervention unless, by extending the time to exacerba-
tion, a pneumonia or death occurs.

Challenge 4: Remove heterogeneity and stochastic uncer-
tainty from probabilistic sensitivity analysis

Why is this challenge important? Probabilistic sensi-
tivity analysis (PSA) assesses the magnitude of parameter
uncertainty in HE models44 and, in patient-level models,
is implemented as a double loop: the number of itera-
tions in the PSA (outer loop) and the number of patients
per PSA iteration (inner loop).7,45,46 Loop sizes should
be determined in such a way that the PSA results are sta-
ble. Stochastic uncertainty and patient heterogeneity
should not be included in a PSA.46,47 Input parameters
should be the same across treatment arms. That way, the
difference between the 2 arms in the PSA only results
from the application of a treatment effect.

What solution was implemented? Parameter uncer-
tainty in the COPD model is the uncertainty around the
estimation of the regression coefficients and the treat-
ment effect parameters included in the model. The

estimated regression coefficients are provided in
Appendix 4 (available online). Uncertainty around treat-
ment effect parameters (e.g., percentage increase in the
time to exacerbation) is based on the available efficacy or
effectiveness data for new interventions. Appendix 5
(available online) provides details about the estimation
of the PSA loop sizes in the COPD model. The PSA
function in the COPD model calls other model functions
multiple times and calculates average results per itera-
tion. The pseudo-code for the PSA function is shown in
Figure 2. Every time the clinical history function is
called, the random seed required as input parameter is
changed with the PSA index. That way, the parameters
drawn in the PSA are different per iteration but the same
across treatment arms, and the difference in results is
only due to the application of a treatment effect. The
uncertainty around the regression coefficients was
addressed by assuming a multivariate normal distribu-
tion with parameters equal to the estimated regression
coefficients and the estimated covariance matrices shown
in Appendix 4 (available online). In each PSA iteration,
random draws are taken from these multivariate distri-
butions to get a new set of coefficients for each equation,
which are then combined with the characteristics of the
patients included in the PSA. The uncertainty around the
treatment effect parameters was included by assuming a
certain deviation (%) from the assumed mean value and
then sampling from a uniform distribution. No uncer-
tainty was included around treatment costs.

Cost-Effectiveness Scenario Analyses

To illustrate the potential impact of each type of uncer-
tainty on model outcomes, we ran the COPD model for
several hypothetical scenarios. In the base-case (determi-
nistic) scenario, all solutions described above were imple-
mented. This scenario was run for 1000 individual
patients treated with a common medication for COPD
patients (tiotropium), which acts as the comparator arm
in the model. For the intervention arm, we used a
hypothetical treatment that delays the time to exacerba-
tion by 15% and is 50% more expensive compared to
the base-case. Note that this treatment effect is not
unrealistic. In the base-case scenario, an increase in time
to exacerbation with 15% resulted in a reduction in the
exacerbation rate with a rate ratio of 0.86, which is
within the range of rate ratios observed for several treat-
ments in large COPD trials.35–39 A PSA was also con-
ducted as explained in Challenge 4 and by assuming an
additional 610% variation to the delayed time to exacer-
bation. The size of the outer and inner loops was 300
and 100, respectively. According to the calculations
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shown in Appendix 5 (available online), the PSA loop
sizes are large enough to provide stable results. Four
additional scenarios (described below) were also run to
illustrate what might occur when the solutions described
above are not implemented.

Scenario 1: Differences in patient heterogeneity between
the intervention and control arms not removed. Scenario
1 was run using different random seeds for selecting
patients in the intervention and the comparator arm.
Therefore, the 1000 patients in the intervention arm were
not the same as the 1000 patients in the comparator arm.
The random seeds used to sample the times where the
events occurred were the same across treatment arms.
Hence, differences in results between the base-case sce-
nario and scenario 1 can be attributed to differences in
patient heterogeneity between intervention and control
arms.

Scenario 2: Unadjusted remaining life expectancy after
the occurrence of an event. In this scenario, we consid-
ered for both arms the same 1000 patients and the same
random seeds used to sample time to event as in the
base-case scenario. However, in scenario 2, the remain-
ing life expectancy after events occurred in the simula-
tion was not adjusted, as described in Challenge 2. The
differences in results between scenario 2 and the base-
case scenario can be thus attributed to the alternative
modeling assumptions regarding life expectancy.

Scenario 3: Stochastic uncertainty not removed from
treatment effectiveness. In scenario 3, the same 1000
patients were selected for the intervention and the com-
parator arm. However, random seeds were not fixed
when sampling time to event in the intervention arm.
Thus, differences in results between the base-case sce-
nario and scenario 3 can be attributed to the stochastic
uncertainty associated to the random drawing of time to
event.

Scenario 4: Heterogeneity and stochastic uncertainty
included in probabilistic sensitivity analysis. As explained
in Challenge 4, in the PSA, an additional set of random
seeds is required to ensure that the parameters drawn in
the PSA are different per iteration but the same across
treatment arms. In scenario 4, we run a new PSA where
in each iteration, the same patients and the same random
seeds used to sample time to event as in the base-case
scenario were selected. However, the PSA here was run
without fixing the PSA-specific random seeds, and

therefore, the results include stochastic uncertainty and
patient heterogeneity, which is methodologically incor-
rect.45,46 Thus, only the PSA in the base-case scenario
adequately reflects parameter uncertainty.

Results

In the base-case scenario, the 4 forms of uncertainty were
implemented in the way it was considered to be correct.
The base-case results are thus believed to be appropriate
for decision making on a hypothetical intervention,
which was assumed to delay time to exacerbation by
15% and to be 50% more expensive. This intervention
generated 0.0728 incremental QALYs with higher incre-
mental costs of e1449, resulting in an incremental cost-
effectiveness ratio (ICER) of e19,904 per QALY gained.
At a common threshold ICER of e20,000 per QALY
gained, the new intervention could be deemed as cost-
effective, even though the ICER is close to the threshold.

In scenario 1, as shown in Table 3, the ICER was
approximately e10,000 larger than the base-case ICER,
falling thus above the threshold ICER of e20,000 per
QALY gained. Therefore, by selecting different patients
per treatment arm, we moved from a situation of a ‘‘bor-
derline’’ ICER in the base-case to a situation where the
intervention is not cost-effective in scenario 1.

In scenario 2, remaining life expectancy after events
was not adjusted, as explained in Challenge 2. As shown
in Table 4, both the total costs and total QALYs were
similarly increased across treatment arms compared to
the base-case. Because of this, the ICER in scenario 2
was e19,943, thus in line with the base-case ICER and
still below the e20,000 threshold. This increase in total
costs and QALYs was mostly caused by an extended life
expectancy of approximately 1.4 years. In scenario 2,
patients live longer because the model is not corrected
for a worsening in the COPD condition.

In scenario 3, the same patients were selected in the
intervention and the comparator arm, but no random
seeds were fixed to sample time to events in the interven-
tion arm. As a result, the new intervention had similar
incremental costs, but the incremental QALYs were very
low. Consequently, the ICER was almost 14 times higher
compared to the base-case (see Table 3). Thus, by ran-
domly sampling time to events in the intervention arm
that were shorter by chance, we moved from a ‘‘border-
line’’ ICER in the base-case to a very high ICER in sce-
nario 3, in which the new intervention would not be
deemed as cost-effective.

PSA results are also shown in Table 3. The ICER
obtained from the PSA base-case analysis was e22,258,
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whereas the probabilistic ICER in scenario 4 was
e39,677. Even though the probabilistic base-case ICER
was above the e20,000 threshold, it might be deemed as a
‘‘borderline’’ ICER. However, in scenario 4, the probabil-
istic ICER is clearly above that threshold. Furthermore,
when the PSA outcomes were plotted in the cost-
effectiveness (CE) plane, it was clear that in scenario 4,
the uncertainty was much larger (Figure 3). In scenario 4,
the PSA was run without fixing PSA-specific random
seeds, which caused results to be scattered over all quad-
rants of the CE plane. The cost-effectiveness acceptability
curve (CEAC) in the base-case showed the common
increasing shape when the PSA outcomes are mostly in
the northeastern quadrant of the CE plane, while in sce-
nario 4, the CEAC flattened quickly. However, in the
PSA base-case, the hypothetical intervention had approx-
imately a 40% probability of being cost-effective at a
threshold of e20,000 per QALY, whereas in scenario 4,
this was 46%. Looking at these probabilities in isolation

can be misleading since based on Figure 3, it seems clear
that uncertainty is a great concern in scenario 4.

Discussion

In this article, we have presented 4 challenges associated
with modeling uncertainty that were encountered during
the implementation of a DES COPD model but that can
be applicable to DES models in general. The first chal-
lenge was to remove the differences in patient heteroge-
neity between the intervention and control groups. The
solution proposed in the COPD model consisted of fix-
ing a random seed (see Figure 2, seed 1). From this chal-
lenge, we learned that in patient-level models, patient
heterogeneity can lead to an erroneous interpretation of
treatment effects. This was illustrated in scenario 1,
where the new (hypothetical) intervention increased the
ICER by approximately 50%. However, this was not
caused by the assumed treatment effect, as it should be,

Table 3 Example of COPD Model Results Affected by Patient Heterogeneity and Stochastic Uncertainty and PSA With and
Without Fixing PSA-Specific Random Seedsa

Scenario Technologies Total Costs (e) Total QALYs Incremental Costs (e) Incremental QALYs ICER (e)

Base-case (deterministic) Comparator e17,567 5.7717
Intervention e19,016 5.8445 e1449 0.0728 e19,904

Scenario 1 Intervention e19,184 5.8260 e1617 0.0543 e29,779
Scenario 3 Intervention e19,004 5.7770 e1437 0.0053 e271,132
Base-case (PSA) Comparator e17,147 5.7163

Intervention e18,580 5.7806 e1432 0.0644 e22,258
Scenario 4 Comparator e17,462 5.7468

Intervention e18,824 5.7812 e1363 0.0343 e39,677

ICER, incremental cost-effectiveness ratio; PSA, probabilistic sensitivity analysis; QALYs, quality-adjusted life years.
aScenario 1: Different random seed for selecting patients for the intervention and the comparator (heterogeneity). Scenario 3: Same patients as in

base-case, but no random seeds were fixed for sampling time to events (stochastic uncertainty). Scenario 4: PSA with no random seeds fixed.

Table 4 Results for a Simulated Cohort of Patients With and Without Adjusting Remaining Life Expectancy (Structural
Uncertainty)a

Scenario Total Costs (e) Total QALYs Mean Life Expectancy, y Mean Exacerbation Rate per Year

Base-case (comparator):
adjusting RLE

e17,567 5.7717 11.45 0.674

Scenario 2 (comparator):
without adjusting RLE

e20,281 6.0499 12.84 0.712

Difference (comparator) e2714 0.2782 1.39 0.038
Base-case (intervention):
adjusting RLE

e19,016 5.8445 11.64 0.585

Scenario 2 (intervention):
without adjusting RLE

e21,675 6.1198 13.06 0.614

Difference (intervention) e2659 0.2753 1.42 0.029

ICER, incremental cost-effectiveness ratio; QALYs, quality-adjusted life years; RLE, remaining life expectancy.
aBase-case ICER: e19,904; scenario 2 ICER: e19,943.
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but because different patients were selected for each
treatment arm. The new intervention was less effective
for the patients selected in scenario 1 than for those
selected in the base-case scenario. Thus, the differences
in the model results were attributed to differences in het-
erogeneity rather than to differences in effectiveness
between treatments. The second challenge consisted of
adjusting the remaining life expectancy after the occur-
rence of a COPD-related event (i.e., exacerbation or
pneumonia). The solution proposed in the COPD model
was to fix another random seed (see Figure 2, seed 2)
and to correct the remaining life expectancy for 1) the
time that already had passed since start of the simulation
and 2) for worsening or improvement of the condition,
as explained in Challenge 2. From this challenge, we
learned that it is important to assess the impact not only
on HE outcomes but also on clinical outcomes. Face
validity of the clinical outcomes can be one of the reasons
for preferring one modeling assumption over a plausible
set of alternatives. By making these changes, the model
results became more valid, but also an additional element
of structural uncertainty was introduced. The third chal-
lenge was to remove stochastic uncertainty from treat-
ment effectiveness. The solution proposed in the COPD
model was to fix a set of random seeds per patient (see
Figure 2, seed 3). From this challenge, we learned that in

stochastic models, random chance can also lead to an
erroneous interpretation of treatment effects. As an
example, scenario 3 resulted in an ICER that was almost
14 times higher than the base-case ICER. Overall, this
was due to shorter times (to event) sampled in the inter-
vention arm. However, this was not caused by the
assumed treatment effect, as it should be, but because the
times (to event) randomly sampled for the intervention
arm in scenario 3 were by chance shorter than those
sampled in the intervention arm in the base-case scenario.
The fourth and final challenge addressed in this article
was to remove heterogeneity and stochastic uncertainty
from the PSA. In the COPD model, the PSA function
calls the other model functions multiple times and calcu-
lates average results per iteration. Thus, the solution pro-
posed in the COPD model was to use as input parameter
for the clinical history function a different random seed
(which changes with the PSA index) every time that func-
tion was called (see Figure 2). From this challenge, we
learned that in probabilistic (as opposed to deterministic)
models, the uncertainty associated with the model results
can be misrepresented when the input parameters drawn
in the PSA are not the same across treatment arms. This
was illustrated in scenario 4, where the uncertainty
around the model results was larger than in the base-case.
In both scenarios, the model had the same number of

Figure 3 Example of probabilistic sensitivity analysis (PSA) results with and without fixing PSA-specific random seeds. ICER,
incremental cost-effectiveness ratio; QALYs, quality-adjusted life years.
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input parameters, the same probability distributions, the
same patients, and the same random seeds used to draw
time to event. However, for each individual patient run in
the PSA, the input parameters were different for each
treatment arm: they were randomly drawn regardless of
the treatment arm, which resulted in model outcomes
scattered all over the CE plane.

Random sampling was presented as a key concept in
DES models, and its importance as a main differentiator
from common cohort models was highlighted. In the
COPD model used as an example in this article, random
sampling was done to select the patient population, to
calculate time to events and as a part of the PSA. We
explained that it was necessary to control the random
number generation process to ensure the consistency of
the results. It is important to emphasize that in TSD15,
the use of random seeds is explained in the context of
replicability of results.7 In the COPD model, random
seeds were also needed for consistency of the results (even
if the model was run just once), as explained throughout
the Methods section of this article. All these seeds, after
being fixed, guaranteed that the treatment effect was not
removed/increased or reversed due to patient heterogeneity
and stochastic or parameter uncertainty, which can have a
great impact on the model results, as shown in the Results
section. This, however, does not imply that using fixed ran-
dom seeds in the way previously described always results in
positive treatment effects. For example, based on the
uncertainty interval around the treatment effect considered
in the PSA, negative effects can also occur.

We must acknowledge the presence of structural
uncertainty in all decision models and that this type of
uncertainty may have a considerable impact on the
model results. While some assumptions can be tested in a
systematic way (like the choice of parametric survival dis-
tributions), testing other assumptions is not so straight-
forward or simply not possible/feasible. An example of
this could be the reestimation of intermediate (nonevent)
outcomes in the COPD model. Time to event was calcu-
lated at baseline and each time an event occurred, but it
was not reestimated after each year. The main reason for
doing the retrospective update was to report intermediate
outcomes on annual basis as this is the most common
way to report them (e.g., annual decline in lung func-
tion). The main implication of this approach was for the
calculation of QALYs. In the COPD model, utilities are
calculated as a function of the SGRQ total score. By hav-
ing SGRQ updated every year, annual QALYs can also
be calculated, which, in turn, results in a more accurate
estimation of the QALYs accrued over the simulated life-
time. We assumed that the time to next event was

determined by the patient characteristics at baseline (for
the first event) and the patient characteristics at the time
of an event for the next events. We believe this is the com-
mon way to perform DES, where time to events are simu-
lated. Furthermore, the most important predictor for an
exacerbation is a previous exacerbation, as can be seen
from the estimated regression coefficients presented in
Appendix 4, Table A4.1 (available online). If we had
updated events every year, we would have adopted a differ-
ent approach, for example, to calculate the annual prob-
ability of having an exacerbation. This would not be a
time-to-event model and would result in different outcomes
(life expectancy, QALYs). This alternative way of model-
ing, if appropriately implemented, would also be valid and
illustrates yet another example of structural uncertainty.

Conclusions

Modeling uncertainty is crucial in all health economic
decision models but even more so in DES models, where
all the possible types of uncertainty (i.e., patient hetero-
geneity, stochastic, parameter and structural uncertainty)
apply. Because DES models are usually complex and less
often used, it is especially important to be as detailed as
possible in the description of the methodology used to
model uncertainty. In our experience, this is not always
the case. With this in mind, we believe this article can be
a valuable addition to the literature on DES. We have
reported the methods used in the model with a great
extent of detail and as clearly as we could (the latter is of
course subjective and depends very much on the reader).
By doing this, we can help other model developers, who
are likely to face similar challenges to those described
here. We have provided examples, using our COPD
model as case study, to illustrate the issues described in
the Methods section of the article. These examples can
help the reader to get a better understanding of the issues
presented there. We have included a link to the full R
code of the model where readers can see how the pro-
posed solutions were implemented. For readers who are
not familiar with R, we have provided the model’s
pseudo-code, which can be used as a standalone tool to
understand how the flow of the code works without
knowing the specifics of the R language. To the best of
our knowledge, this level of detail is not common in the
HE modeling literature. Finally, we also hope to encour-
age other model developers to do the same, which in the
long term will help increase the transparency of future
DES models. We think this is the way forward until the
HE community is ready to accept more transparent
approaches, like using open-source models.
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