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Abstract: Pseudoexon (PE) inclusion has been implicated in various dystrophinopathies; however,
its splicing characteristics have not been fully investigated. This study aims to analyze the splicing
characteristics of dystrophin PEs and compare them with those of dystrophin canonical exons (CEs).
Forty-two reported dystrophin PEs were divided into a splice site (ss) group and a splicing regulatory
element (SRE) group. Five dystrophin PEs with characteristics of poison exons were identified and
categorized as the possible poison exon group. The comparative analysis of each essential splicing
signal among different groups of dystrophin PEs and dystrophin CEs revealed that the possible
poison exon group had a stronger 3′ ss compared to any other group. As for auxiliary SREs, different
groups of dystrophin PEs were found to have a smaller density of diverse types of exonic splicing
enhancers and a higher density of several types of exonic splicing silencers compared to dystrophin
CEs. In addition, the possible poison exon group had a smaller density of 3′ ss intronic splicing
silencers compared to dystrophin CEs. To our knowledge, our findings indicate for the first time
that poison exons might exist in DMD (the dystrophin gene) and present with different splicing
characteristics than other dystrophin PEs and CEs.

Keywords: pseudoexon; canonical exon; splicing characteristics; DMD; intronic variants

1. Introduction

The dystrophin or DMD (Duchenne muscular dystrophy) gene consists of 79 canonical exons
(CEs). Ninety-nine percent of the gene consists of intronic sequences. There are abundant common
fragile sites and transposable elements that can cause large and complex genomic rearrangements
in DMD [1]. Hence, large genomic rearrangements are quite common in DMD and account for
~80% of all pathogenic DMD variants [2]. The remaining ~20% are mainly small variants involving
coding and/or adjacent exon–intron boundaries [2]. Due to recent improvements in sequencing and
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computational techniques, some previously undetected intronic variants have been increasingly
reported as causal for dystrophinopathies [2–4]. The accurate splicing of dystrophin pre-mRNA is
dependent on the presence and recognition of essential splicing signals, including the donor (5′ ss) and
acceptor (3′ ss) splice sites, the branch point (BP) and polypyrimidine tract sequence, and auxiliary
cis-acting splicing regulatory elements (SREs) [5,6]. Auxiliary SREs are preferentially located near
the splice sites and include exonic splicing silencers (ESSs), exonic splicing enhancers (ESEs), intronic
splicing silencers (ISSs), and intronic splicing enhancers (ISEs) [6,7]. Those pathogenic intronic variants
can cause various non-canonical splicing events of dystrophin pre-mRNA by affecting essential or
auxiliary splicing cis-elements, including exon-skipping, intron retention, cryptic splice site activation,
and pseudoexon (PE)-inclusion [2–4,8,9]. Among the aberrant non-canonical splicing events reported
in the DMD gene, PE inclusion has been frequently described to be involved in the pathogenesis of
dystrophinopathies [3,9,10]. The inclusion of dystrophin PEs into the Dp427 m transcript encoding the
muscle isoform of dystrophin can lead to absent or reduced expression of dystrophin with varying
degrees. This reduced expression of dystrophin ultimately gives rise to Duchenne muscular dystrophy,
intermediate muscular dystrophy, or Becker muscular dystrophy (BMD) [9,11].

PEs or cryptic exons are usually located far from the annotated CEs and likely originated from
homologous intronic sequences [3]. Without the presence of a pathogenic PE-activating genomic
variant (see Methods), a putative PE usually presents a weak exon-like profile. The exon-like profile of
a putative PE can be strengthened by the presence of a PE-activating variant, and subsequently, the
putative PE will be spliced into the mature transcript with a measurable proportion [3]. A previous
study that included 14 dystrophin PEs indicated that, compared to the dystrophin CEs, the dystrophin
PEs present with a weaker exon profile in terms of 5′ ss, 3′ ss, ESEs, and ESSs [10]. However, this study
did not analyze intronic SREs and included seven PEs without an identified genomic pathogenic
PE-activating variant. Therefore, some of the PEs identified from lymphocytes in the previous study
could be the products of alternative splicing or the intermediate products of recursive splicing or part
of noncoding RNAs [3,10], which can occur in a physiological condition. In another study, the author
analyzed the splice sites of 58 dystrophin PEs. This study however did not analyze the characteristics
of other splicing signals and included the PEs without a pathogenic PE-activating variant [3]. Hence,
the splicing characteristics of dystrophin PEs with a pathogenic PE-activating variant have not been
fully investigated. Characterizing these variants and understanding their pathogenic mechanisms
are important for the development of genetic therapies, which can induce PE skipping based on the
complementary binding of antisense oligonucleotides to splicing motifs.

In this study, we first expand the spectrum of aberrant splicing variants in DMD in general by
reporting a novel genomic intronic DMD variant in a BMD patient, which caused a non-canonical
splicing event of dystrophin pre-mRNA (partial intron inclusion). Then, we investigated and further
characterized a specific form of aberrant splicing in DMD, PE activation, and summarized 42 reported
dystrophin PEs from the literature that are activated by a pathogenic PE-activating variant. We analyzed
the splicing characteristics of the 42 dystrophin PEs, including both essential splicing signals and
auxiliary SREs using several common bioinformatic tools. Furthermore, we compared the splicing
characteristics of dystrophin PEs with those of dystrophin CEs.

2. Materials and Methods

2.1. Patient and mRNA Analysis

This study was approved by the Ethics Committee at Peking University First Hospital.
Written informed consent was obtained from the parents for their and their child’s inclusion in the study.
A 4.5-year-old boy with clinical features compatible with a BMD phenotype was enrolled. He was
presented to Peking University First Hospital at the age of 4.5 years because of an incidental finding of
elevation in serum creatine kinase (CK) level (range 3566–6075 IU/L; normal 25–170 IU/L). Physical
examination confirmed that he had mild calf hypertrophy but no obvious muscle weakness. Routine
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genetic testing for myopathies was performed, including a next-generation sequencing-based diagnostic
panel [12] covering all exons and flanking regions of genes related to inherited neuromuscular disorders
and multiplex ligation-dependent probe amplification (MLPA)-based deletion/duplication analysis of
DMD. However, this genetic testing did not reveal a causal variant. Next, a diagnostic muscle biopsy was
performed. Routine techniques were used for histological, histochemical, and immunohistochemical
staining using a panel of primary antibodies against dystrophin (dystrophin-R, DYS1; dystrophin-C,
DYS2; dystrophin-N, DYS3; Novocastra Laboratories, Newcastle). Total muscle mRNA was isolated
from the remaining muscle tissue using an RNA extraction kit (Invitrogen, La Jolla, CA, USA) and
retrotranscribed to cDNA using a HiScript II Q RT SuperMix kit (Vazyme, Nanjing, China). Full length
sequences of the entire dystrophin cDNA (NM_004006.2) of the patient were amplified, and Sanger
sequencing of 22 overlapping cDNA fragments using primer sets was performed (Table S1) [12].

2.2. Dystrophin Pseudoexons

In order to rule out the PEs possibly caused by the alternative splicing or recursive splicing
of DMD and other unknown conditions that could happen in a physiological condition, we used
modified inclusion criteria for dystrophin PEs based on the definition of PE proposed by Dr. Keegan [3].
The modified inclusion criteria include: (1) all or part of a PE sequence is homologous to a tract of
DMD intronic sequence; (2) the entire sequence of a PE does not overlap with any sequence of the
DMD CEs; (3) a PE should account for a measurable proportion of the muscle dystrophin mRNA and
is observed in patients with dystrophinopathies; (4) a PE without a pathogenic PE-activating variant at
genomic level is not included. Thus, a genomic pathogenic DMD variant needs to have been identified,
which activates a dystrophin PE through the experimentally demonstrated splicing mechanisms,
i.e., creation of new splice sites, strengthening cryptic splice sites, creation of new ESEs, and/or
disruption of original ESSs. Based on these criteria, we summarized 42 reported dystrophin PEs and
their corresponding phenotypes after a thorough search of the literature. Dystrophin PEs and related
genetic details were consistently recorded in relation to genomic reference sequence NC_000023.10
(genome build GRCh37/hg19), coding DNA reference sequence NM_004006.2, RNA reference sequence
NM_004006.2, and protein reference sequence NP_003997.1 according to the published literature and
Human Genome Variation Society nomenclature [13]. Evolutionary constraint of each PE region was
estimated by the Genomic Evolutionary Rate Profiling (GERP) score that is calculated based on an
alignment of 35 mammalian species [14].

2.3. In Silico Prediction

Both essential splicing signals and auxiliary SREs of each dystrophin PE (mutant sequence)
and CE were analyzed using several common bioinformatic tools. Splice site consensus motifs of
total dystrophin PEs and dystrophin CEs were investigated, as they can be exploited for therapeutic
strategies for PE skipping and assist in the understanding of PE inclusion. To construct the 5′ ss
and 3′ ss motifs, Multiple Em for Motif Elicitation software (MEME, version 5.1.1) was used [15].
The position weight matrix of each motif was outputted for this study.

2.3.1. Splice Site and Branch Point

The algorithms selected for evaluating the strength of 5′ ss and 3′ ss comprised Human Splicing
Finder (HSF Pro from Genomnis) [16], maximum entropy (MaxEnt) [17], first order Markov model (MM),
weight matrix model (WMM), and multiple dependence decomposition (MDD) (http://hollywood.
mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html). The BP was predicted using a support vector
machine (SVM) learning algorithm, the SVM-BPfinder, of which the output was limited to the
AG-dinucleotide exclusion zone only. The BP with the highest score was selected as the best candidate
according to the rules specified in SVM-BPfinder [5]. The distance of the BP adenine to the 3′ ss and
the pyrimidine content between the BP adenine and the 3′ ss were calculated.

http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://hollywood.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
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2.3.2. Numbers and Densities of Auxiliary Splicing Regulatory Elements

Exonic SREs were predicted by several bioinformatic prediction tools, which use position-specific
scoring matrices to store the target SREs motifs. The HSF tool was used to calculate the number of
RESCUE-ESE hexamers [18], FAS-ESS hexamers [19], PESE and PESS octamers [20], exon/intron-identity
elements (EIE/IIEs) [7,21], ESE motifs for 9G8 and Tra2-β [16], ESS motif for hnRNP A1 [16], Sironi’s
ESS motifs [22], and ESEfinder motifs for SF2/ASF, SF2/ASFB, SC35, SRp40, and SRp55 [23]. EX-SKIP
was used to compute the number of neighborhood inference (NI)-ESE or NI-ESS in each dystrophin PE
and CE [24]. The density of each ESE or ESS in each exon was obtained by dividing each number by its
sequence length. The ratio of total ESEs to total ESSs in each exon was calculated.

As for the intronic SREs, there are significant overlapping patterns between the scoring matrices
of computationally predicted ISEs and ISSs motifs [25,26]; therefore, it is inaccurate to functionally
classify a published intronic SRE motif as an ISE or an ISS. Hence, the SpliceAid [27], a splicing factor
database storing experimentally assessed target RNA sequences, was used to scan and calculate the
numbers of ISEs and ISSs in the flanking intronic sequences of each dystrophin PE and CE. A target
sequence was classified as an ISS if it was assigned with a positive score by the SpliceAid and as an ISE
with a negative score. The density of ISEs or ISSs was calculated for 300 bp intervals flanking each
exon, including both downstream (5′ ss) and upstream (3′ ss) ISEs or ISSs. If the flanking intronic
sequence of a dystrophin PE or CE is shorter than 300 bp, then only the region up to the neighboring
CE is taken. The ratio of total ISSs to total ISEs in each exon was calculated.

2.4. Statistical Analysis

The nonparametric Kruskal–Wallis test was used to compare the difference in each splicing signal
among different groups of dystrophin PEs and the group of dystrophin CEs. If the Kruskal–Wallis
test was statistically significant, the Nemenyi test was used to performed pairwise comparisons to
locate the source of significance. The Mann–Whitney U test was employed to compare the difference
in each splicing signal and GERP scores between the group of total dystrophin PEs and the group of
dystrophin CEs. All tests were two-sided and a p value < 0.05 was considered statistically significant
using the R software (version 3.1.3; The R Foundation for Statistical Computing, Vienna, Austria;
http://www.r-project.org).

3. Results

3.1. Dystrophin Protein and mRNA Analysis

The muscle biopsy revealed a severe reduction in dystrophin-N, a partial reduction in dystrophin-C,
and a slight reduction in dystrophin-R (Figure S1), suggesting a molecular diagnosis of BMD in
this patient. The dystrophin cDNA analysis identified an insertion of 18 bp sequence into the
mature mRNA between exons 50 and 51 (Figure 1 and Figure S1). A BLAT search indicated that
the 18 bp sequence was derived from intron 50 (chrX:31792310-31792327). Therefore, this insertion
was described as r.7309_7310ins7310-18_7310-1 (NM_004006.2) at mRNA level, which was predicted
to create a premature termination codon (PTC), p.(Ser2437Ter), just occurring at the last codon
of exon 50. A low residual level of wild-type transcript was present and could be distinguished
from the aberrant transcript (Figure S1). Genomic Sanger sequencing subsequently identified a
novel variant in intron 50, NC_000023.10:g.31792328T>C (NM_004006.2:c.7310-19A>G). This variant
was predicted to create a new 3′ ss (HSF score 91.24; MaxEnt score 11.72) that was stronger than
the natural 3′ ss of exon 51 (HSF score 69.98; MaxEnt score 3.73), causing the inclusion of 18 bp
intronic sequence into the mature transcript. The genomic variant (c.7310-19A>G) was absent
from the dbSNP database (https://www.ncbi.nlm.nih.gov/snp/) and several genomic databases as
well, including the Genome Aggregation Database (gnomAD; https://gnomad.broadinstitute.org/),
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and Leiden Open Variation Database (LOVD;

http://www.r-project.org
https://www.ncbi.nlm.nih.gov/snp/
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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https://databases.lovd.nl/shared/genes/DMD). The genomic variant (c.7310-19A>G) was a de novo
variant (Figure S1).

Figure 1. Graphic representation of the non-canonical splicing event caused by a de novo and novel
genomic intronic variant in the dystrophin (DMD) gene. The intronic variant c.7310-19A>G in intron
50 created a new 3′ splice site that was stronger than the natural acceptor site of exon 51. This caused the
inclusion of an 18 bp sequences into the mature transcript, which was predicted to create a premature
termination codon. (A) Patient genome (NC_000023.10); (B) dystrophin pre-mRNA; (C) dystrophin
mRNA (NM_004006.2).

3.2. Summary of Dystrophin Pseudoexons

Details of the 42 reported dystrophin PEs with pathogenic PE-activating genomic variants in
DMD are described in Table S2. Graphic representation of the 42 dystrophin PEs is shown in Figure 2.
Deep intronic single nucleotide variants (SNVs) were the most commonly reported causes of dystrophin
PEs, accounting for 78.57% of the PEs (33/42), through 33 unique pathogenic SNVs. Among the 33 SNVs,
27 SNVs, respectively, activated the inclusion of 27 different PEs (PE1, 2, 4, 6, 7, 9–12, 15, 16, 22–24, 27,
28, 31–33, and 35–42), one SNV activated the inclusion of both PE13 and PE14, one SNV activated the
inclusion of both PE18 and PE19, two SNVs (c.[94-78858C>G;94-78836T>G]) combinedly activated
the inclusion of PE3, and the remaining two SNVs (c.[650-39575A>C;650-39498A>G]) combinedly
activated the inclusion of PE5. One small intronic deletion of an 18 bp sequence (PE21) and eight
unique large rearrangements accounted for the causes of the remaining 21.43% dystrophin PEs (9/42).
Five of the eight large rearrangements were pure intronic variants and, respectively, activated the
inclusion of five different PEs (PE8, 17, 29, 30, and 34), while the remaining three were pathogenic
variants involving the exonic and intronic region of DMD and, respectively, activated the inclusion of
three different PEs (PE20, 25, and 26).

Thirty-one dystrophin PEs (PE1, 2, 4–7, 9, 10, 12–14, 16, 17, 19, 22–24, 27, 28, 30–33, and 35–42)
activated by genomic pathogenic DMD variants through the creation of new splice sites and/or
strengthening cryptic splice sites were categorized as the group of dystrophin PEs with alterations
in splice sites (referred to as the “splice site group” from here on). Eleven dystrophin PEs (3, 8,
11, 15, 18, 20, 21, 25, 26, 29, and 34) were activated through the alterations in ESEs and/or ESSs
and were categorized as the group of dystrophin PEs with alterations in SREs (referred to as the
“SRE group”). Five dystrophin PEs (PE22, 23, 33, 36, and 37) were highly conserved exons that contain
a PTC (Figure S2) and therefore were considered to have the characteristics of poison exons. However,
we cannot confirm whether these exons are indeed included into the mature mRNA to create a poison
exon at any spatiotemporal time point; not without the presence of a pathogenic genomic variant.
Thus, these potential poison exons were referred to as the “possible poison exon group” [28].

https://databases.lovd.nl/shared/genes/DMD


Genes 2020, 11, 1180 6 of 14

Figure 2. Graphic representation of the forty-two dystrophin pseudoexons. (A) Graphic representation
of PEs activated by deep intronic single nucleotide variants in DMD. (B) Graphic representation of PEs
introduced by small and large rearrangements in DMD. Each PE is shown as a light blue box, and its
genomic coordinate is indicated under the light blue box. The PE-activating genomic variant of each
PE is shown above an arrow. A dark blue box indicates a canonical exon. The more detailed genetic
information about the PEs is provided in Table S2. PE, pseudoexon; ins, insertion; inv, inversion; dup,
duplication; del, deletion; delins, deletion-insertion.

3.3. Comparative Analyses of Essential Splicing Signals

The exon length of the possible poison exon group and the total dystrophin PEs group were
significantly shorter than that of the dystrophin CEs group (Table S3). In addition, the possible poison
exon group had a shorter exon length compared to the SRE group (p < 0.001). No statistically significant
difference was found between the group of total dystrophin PEs and the group of dystrophin CEs
regarding each essential splicing signal. Furthermore, there was no significant difference among
different groups of dystrophin PEs and the group of dystrophin CEs in terms of the strength of 5′ ss,
the distance of the BP adenine to the 3′ ss, and the pyrimidine content between the BP adenine and the
3′ ss. The only difference was found in the 3′ ss strength among different groups of dystrophin PEs and
the group of dystrophin CEs (Table S3; Figure 3A). The possible poison exon group had a significantly
stronger 3′ ss predicted by the MM algorithm than the splice site group, the SRE group, and the CEs
group. The 3′ ss strength of the possible poison exon group predicted by the HSF or MaxEnt algorithm
was also stronger than that of the SRE group.
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Figure 3. Comparative analyses of different splicing signals among different groups of dystrophin
pseudoexons and the group of dystrophin canonical exons. Comparative analysis of the 3′ ss strength
(A) revealed that the possible poison exon group had a significantly stronger 3′ ss compared to other
groups. Comparative analyses of the SREs revealed that different groups of dystrophin PEs had a
smaller density of diverse types of ESEs (B), a higher density of several types of ESSs (D), and a smaller
ratio of total ESEs to total ESSs (C) compared to the CEs group. Some groups of dystrophin PEs had
a smaller density of 3′ ss ISSs compared to the CEs group (D). Only splicing signals with significant
difference among different groups were included in these figures. Statistics data of other splicing signals
are presented in Table S3. Density was calculated as numbers per base pair. Descriptive statistics are
presented as box plots, displaying the minimum, first quartile, median, third quartile, and maximum.
PE, pseudoexon; SRE, splicing regulatory element; HSF, Human Splicing Finder; MaxEnt, maximum
entropy; MM, first order Markov model; ss, splice site; ESE, exonic splicing enhancers; ESS, exonic
splicing silencers; ISS, intronic splicing silencers; EIE, exon-identity element; IIE, intron-identity element;
NI, neighborhood inference. * p < 0.05; ** p < 0.001.

The 5′ ss and 3′ ss consensus motifs derived from the canonical exon–intron boundaries of DMD
are similar to the highly conserved canonical motifs derived from the human genome [29]. The position
weight matrix-based 5′ ss consensus motif of total dystrophin PEs (Figure 4C) is almost the same as
that of dystrophin CEs (Figure 4A). However, there are some minor differences in the 3′ ss consensus
motifs between the group of total dystrophin PEs and the group of dystrophin CEs. The nucleotides in
positions +1, –4, and –17 of the 3′ ss consensus motif (Figure 4D) derived from total dystrophin PEs
appear to be more flexible compared to the canonical one (Figure 4B). Furthermore, 19 of 23 positions of
the 3′ ss consensus motif derived from dystrophin PEs have a significantly lower GERP score compared
to that of dystrophin CEs (Table S4), indicating that the 3′ ss consensus motif of dystrophin PEs is not
as constrained as that of dystrophin CEs.
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Figure 4. Position weight matrix-based splice site consensus motifs of dystrophin pseudoexons
and canonical exons. Sequence logos for donor (A) and acceptor (B) splice site consensus
motifs of dystrophin canonical exons and the consensus sequences are MAG|GTAAGW and
TTTWTTTTTTTTTTTTTTWYAG|G, respectively. Sequence logos for donor (C) and acceptor (D) splice
site consensus motifs of dystrophin pseudoexons and the consensus sequences are MAG|GTAAGT and
TTTTTHTTTYTTTTYYTTNCAG|R, respectively. The height of each letter reflects the relative frequency
of that nucleotide in the respective position. “|” indicates the exon–intron boundary in the consensus
sequence. H stands for any nucleotide except G, Y for C or T, N for any nucleotide, R for A or G, M for
A or C, and W for A or T.

In addition, among the splice site group, the strength of the 5′ ss group of splice sites that were
formed de novo or strengthened by a pathogenic genomic variant (de novo 5′ ss group) is significantly
stronger than that of the cryptic 5′ ss group of splice sites that were only activated as partners of a
mutated splice site (cryptic 5′ ss group) (Table S5). The nucleotides in positions –3, +4, and +5 of the
5′ ss consensus motif derived from the cryptic 5′ ss group appear to be more flexible compared to
those of the de novo 5′ ss group (Figure S3). Although no significant difference in the strength of 3′ ss
was observed between the de novo 3′ ss group and the cryptic 3′ ss group (Table S5), the nucleotides in
positions –21, –19, –17, and –10 of the 3′ ss consensus motifs derived from both the de novo 3′ ss group
and the cryptic 3′ ss group appear to be flexible (Figure S3). The 5′ ss strength of the de novo 5′ ss group
is significantly stronger than that of the 5′ ss group of dystrophin canonical exons (canonical 5′ ss
group) (Table S6). The 5′ ss consensus motif of the de novo 5′ ss group (Figure S3) is almost the same as
that of the canonical 5′ ss group (Figure 4A). Although no significant difference in the strength of 3′ ss
was observed between the de novo 3′ ss group and the canonical 3′ ss group (Table S6), the nucleotides
in positions –21, −19, –17,–10, and +1 of the 3′ ss consensus motif derived from the de novo 3′ ss group
(Figure S3) appear to be more flexible compared to those of the canonical 3′ ss group (Figure 4B).

3.4. Comparative Analyses of Auxiliary Splicing Regulatory Elements

Different groups of dystrophin PEs had a smaller density of total ESEs (splice site group, SRE
group, and possible poison exon group) compared to the group of dystrophin CEs (Table S3; Figure 3C).
The possible poison exon group had a smaller density of RESCUE-ESE, Tra2, 9G8, EIE, or NI-ESE
compared to the CEs group (Figure 3B). In addition, the possible poison exon group also had a smaller
density of ASFB compared to the SRE group. The ESE density of RESCUE-ESE, 9G8, EIE, or NI-ESE of
the SRE group was, respectively, smaller than that of the CEs group. The NI-ESE density of the splice
group was smaller than that of the CEs group.

However, different groups of dystrophin PEs had a higher density of total ESSs (splice site group,
SRE group, and possible poison exon group) compared to the CEs group (Figure 3C). Both the splice
site group and the SRE group had a higher density of IIE, FAS, or NI-ESS compared to the CEs group
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(Figure 3D). The possible poison exon group also had a higher density of IIE or NI-ESS compared to
the CEs group. No significant difference was observed between the splice site group and the SRE
group regarding each splicing signal (Table S3).

In general, the group of total dystrophin PEs had a smaller density of total ESEs compared to the
group of dystrophin CEs (Table S3; Figure 3C). More specifically, the ESE density of RESCUE-ESE,
9G8, EIE, or NI-ESE of the total dystrophin PEs group was, respectively, smaller than that of the CEs
group (Figure 3B). On the contrary, the group of total dystrophin PEs had a higher density of total
ESSs compared to the group of dystrophin CEs. The ESS density of IIE, FAS, or NI-ESS of the total
dystrophin PEs group was, respectively, higher than that of the CEs group (Figure 3D). Therefore,
the total dystrophin PEs group had a smaller ratio of total ESEs to total ESSs compared to the CEs group.

As for the intronic SREs, the significant difference was only observed in the density of 3′ ss ISSs
among different groups of dystrophin PEs and the group of dystrophin CEs, where the 3′ ss ISSs
density of the splice site group, the possible poison exon group, or the total dystrophin PEs group was
smaller than that of the CEs group (Table S3; Figure 3D).

4. Discussion

As the majority of human genes consist of multiple exons and introns, the intervening introns
must be precisely removed from the pre-mRNA and exons joined together to form a mature mRNA.
The pre-mRNA splicing of the DMD gene, similar to pre-mRNA splicing of most human genes,
is also achieved by the U2-dependent (major) spliceosome [29]. The combinatorial recognition of
essential splicing signals that define exon–intron boundaries and auxiliary cis-acting SREs is critical
for a precise pre-mRNA splicing process [30]. Pathogenic genomic DMD variants, especially intronic
variants that alter the essential or auxiliary splicing cis-elements, can cause splicing errors and result
in various non-canonical splicing events [2–4,8,9]. PE inclusion, one of the non-canonical splicing
events identified in DMD, has been reported to be implicated in various dystrophinopathies; however,
its splicing characteristics have not been fully investigated [3,9,10]. This study was focused on the
further characterization of aberrant splicing in DMD. First, we identified a novel intronic DNA variant
causing a non-canonical splicing event in DMD. Then, we focused on a subset of aberrant splicing
that needed further exploration, i.e., PE activation, and analyzed the splicing characteristics of 42
dystrophin PEs and compared them with those of dystrophin CEs.

As the largest gene annotated in the human genome, the DMD gene spans over 2.5 Mb and the
vast majority of it is intronic sequences [1]. The length of 36 introns in DMD are 10× longer than the
median intron length of human genes, and three of them are more than 100× the median size [30].
In addition, common fragile sites and repetitive elements that can mediate large genomic mutation
events are relatively common in the vast intronic region of DMD [31]. The above complex structure
of DMD makes the occurrence of intronic DNA variants including large intronic rearrangements
not uncommon. However, it is difficult to assess the pathogenicity of intronic variants without
experimental evidence. It has been well-established that mRNA analysis of dystrophin cDNA can
be used to detect non-canonical splicing events in DMD and then search for pathogenic genomic
variants [4,8,9]. Therefore, we performed mRNA analysis of dystrophin cDNA in a BMD patient
after a negative finding in clinical genetic testing. We successfully identified a non-canonical splicing
event in DMD, an inclusion of 18 bp intronic sequence into the mature mRNA, and then identified
a novel intronic DNA variant in intron 50 (c.7310-19A>G). A reduced expressed dystrophin protein
was also identified in this patient via immunohistochemical staining. This latter could be due to
nonsense-mediated decay (NMD) of the aberrant transcript and/or due to a truncated dystrophin that
is vulnerable to degradation, either of which would lead to absence or severe reduction in dystrophin.
The mixture of wild-type transcript and aberrant transcript resulted in a partial expression of dystrophin
observed in this patient. Based on the phenotype (PP4), genotype (PS2 and PM2), results of dystrophin
expression and mRNA analysis (PS3), and in silico predictions (PP3), this genomic variant can be
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classified as a pathogenic variant according to the American College of Medical Genetics (ACMG)
guidelines for the interpretation of sequence variants [32].

The exon definition mechanism involving the combinatorial recognition of essential splicing
signals is the first step and probably most important in pre-mRNA splicing [33], which indicates that a
splicing event with a predominant occurrence should have a strong exon profile of essential splicing
signals. As a disease-related PE-inclusion event occurs in preference over the constitutive splicing of
the unaffected CEs occurs in DMD, the essential splicing signals strength of dystrophin PEs enhanced
by PE-activating genomic variants should not be weaker than that of the dystrophin CEs. Our study
found no statistically significant difference between the total dystrophin PEs group and the dystrophin
CEs group in terms of each essential splicing signal, suggesting that dystrophin PEs are not weaker
than dystrophin CEs regarding the essential splicing signals. These findings are contrary to the findings
in a previous study that 14 dystrophin PEs had a weaker exon profile compared to dystrophin CEs in
terms of essential splicing signals [10]. The possible reason contributing to the contrary findings is
that the previous study included some dystrophin PEs without a pathogenic PE-activating variant.
Those PEs without a pathogenic genomic variant are possibly originated from the alternative splicing
of DMD, which typically present a weak characteristic to the spliceosome. In addition, some of those
PEs identified from lymphocytes could be the intermediate products of recursive splicing or part of
noncoding RNAs [10]. Note that recursive splicing is important for the splicing of some of the large
dystrophin introns [3]. Last, expression levels of wild-type and mutant transcripts associated with
these PE inclusions were not available and were therefore not taken into account into the analysis.

We also analyzed the splicing characteristics of possible poison exons in DMD. Poison exons are
alternative exons with high-level conservation and contain a PTC. Inclusion of a poison exon in a mature
transcript causes NMD and decreases the expression of the resulting protein [28]. Poison exons show a
dynamic spatiotemporal expression profile and have been found important during development by
altering gene expression via alternative splicing [34]. Recently, poison exons have also been shown to
be relevant to Mendelian diseases, as pathogenic genomic variants that promote the inclusion of these
exons into the mature mRNA have been successfully identified in certain Mendelian diseases [28,34].
In the current study, we identified five dystrophin Pes, which are highly conserved and contain a
PTC. These were considered as potential poison exons in DMD. As we have no further confirmation
of expression of these potential poison exons without the presence of a pathogenic variant, these
possible poison exons are awaiting to be proved as alternative and therefore bona fide poison exons
in DMD. Analysis of essential splicing signals revealed that the mutant possible poison exon group
has a stronger 3′ ss compared to any other group. The 3′ ss strength of the possible poison exons was
strengthened by the presence of pathogenic DMD variants at certain positions of 3′ ss. This study
shows, to our knowledge, for the first time that several possible poison exons may exist in the DMD
gene, which were found to cause dystrophinopathies by promoting poison exon inclusion. Hence,
genomic sequencing of the intronic regions around these possible poison exons should be considered
in unsolved dystrophinopathies after routine genetic testing.

It is well-known that the presence of essential splicing signals is necessary but not sufficient to
the accurate splicing of pre-mRNA [5,7]. Other auxiliary SREs are not only important in regulation of
splicing but are also crucial for splice site recognition [6,7,35]. The main significant differences were
found in exonic SREs among different groups of dystrophin PEs and the group of dystrophin CEs.
Compared to the CEs group, different groups of dystrophin PEs have a smaller density of diverse types
of ESEs, but on the contrary, they have a higher density of several types of ESSs, which is similar to
the findings in a previous study, which included 14 dystrophin PEs [10]. With regard to the intronic
SREs, the only significant difference is that the 3′ ss ISSs density of dystrophin PEs is smaller than that
of dystrophin CEs. The ESEs and ISSs enriched in exons and introns can facilitate exon definition,
whereas ESSs and ISEs can facilitate intron definition [6,7,27,35,36]. From the perspective of auxiliary
SREs, an exon presenting a strong exon profile means that it has a high occurrence of ESEs and/or
ISSs and a low occurrence of ESSs and/or ISEs. Hence, the differences in exonic and intronic SREs
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between dystrophin PEs and CEs observed in our study indicate that dystrophin PEs present with
a weaker exon profile compared to dystrophin CEs in terms of auxiliary SREs. As poison exons are
also conserved between species in addition to CEs [28,37], the difference in the presence of auxiliary
SREs between poison exons and CEs might be due to the different function of these exons. Wild-type
poison exons are usually only expressed in very specific times during development, with restriction to
certain cell types [34]. As a very limited number of poison exons have been identified, their splicing
characteristics have not been well investigated. Therefore, although our study is small, we provide
some evidence that poison exons may show different characteristics in splicing signals regulating
their expression.

In conclusion, we identified a novel intronic DNA variant (c.7310-19A>G in intron 50) that caused
a non-canonical splicing event in DMD (partial intron inclusion), expanding the genetic spectrum of
aberrant splicing in dystrophinopathies in general. Additionally, we investigated a specific subset of
aberrant splicing, PE inclusion, and provide evidence that dystrophin PEs present a weaker exon profile
compared to dystrophin CEs in terms of auxiliary SREs. Last, we highlight for the first time that several
possible poison exons may exist in DMD and may be implicated in dystrophinopathies. These possible
poison exons also show different splicing characteristics than other dystrophin PEs and CEs, which
may be consistent with their different function in gene expression and the regulation thereof. Overall,
our paper characterizes and increases knowledge on various aberrant splicing mechanisms in DMD.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/10/1180/s1,
Figure S1. Pathological changes of the patient and Sanger sequencing of the aberrant transcript and the genomic
variant in the DMD gene. (A) and (E) hematoxylin and eosin staining (×20); (B) and (F) immunohistochemical
staining for dystrophin-N (×20); (C) and (G) dystrophin-C (×20); (D) and (H) dystrophin-R (×20); (A)–(D), a healthy
control; (E)–(H), the patient. (I) Diagrammatic representation of the dystrophin protein showing four main
domains and the positions of the epitopes of the dystrophin-N (amino-terminal), dystrophin-C (carboxyl-terminal),
and dystrophin-R (central rod) antibodies. The obvious or partial expression of dystrophin-C regardless of the
expression of dystrophin-N and dystrophin-R indicates a molecular diagnosis of Becker muscular dystrophy.
(J) Sanger sequencing of the aberrant transcript of DMD (NM_004006.2) revealed an insertion of 18 bp sequence
originating from intron 50 into the mature mRNA between exons 50 and 51. Two overlapping sequences can
be recognized following the sequence of exon 51; they can be distinguished into the sequence of exon 50 and
the inserted sequence. (K) Sanger sequencing of the genomic DNA derived from peripheral blood sample
corresponding to the area surrounding the inserted sequence revealed a single-base substitution, g.31792328T>C
(c.7310-19A>G), adjacent to the insertion. (L) Pedigree of the patient’s family. As shown in the pedigree chart, the
patient (II:1) had the genomic DMD variant (c.7310-19A>G), whereas his parents (unaffected individuals, I:1 and I:2)
did not have the variant. Figure S2. The high-level conservation of five dystrophin pseudoexons. Five dystrophin
pseudoexons (PEs) are conserved across representative placental mammals, including human, marmoset, mouse,
ferret, and dolphin. The high-level conservation of each PE is also illustrated by the Genomic Evolutionary Rate
Profiling (GERP) score across the PE region. GERP scores are calculated based on an alignment of 35 mammalian
species. A positive GERP score indicates that a site is probably under evolutionary constraint, whereas a negative
GERP score indicates that a site is probably evolving neutrally. A GERP score above the threshold of 2 indicates
a highly conserved site. These figures were modified from the UCSC Browser. (A) PE22 (median GERP score
2.63, range −6.23–5.58); (B) PE23 (median GERP score 4.69, range −0.60–5.70); (C) PE33 (median GERP score
2.20, range −7.65–4.38); (D) PE36 (median GERP score 2.07, range −8.81–4.63); (E) PE37 (median GERP score
3.19, range −5.80–5.00). Figure S3. Position weight matrix-based splice site consensus motifs of different splice
site groups. Sequence logos for (A) the 5′ ss group that were formed de novo or strengthened by a pathogenic
variant (de novo 5′ ss group) and (C) the cryptic 5′ ss group that were only activated as partners of a mutated
splice site (cryptic 5′ ss group) and the consensus sequences are MAG|GTAAGT and NAG|GTAMKT, respectively.
Sequence logos for (B) the de novo 3′ ss group and (D) the cryptic 3′ ss group and the consensus sequences are
WNTNYHTTTTTTNTYYYTAYAG|R and TKTKTNTTTTTTWTYTYTBYAG|R, respectively. The height of each letter
reflects the relative frequency of that nucleotide in the respective position. “|” indicates the exon–intron boundary
in the consensus sequence. N stands for any nucleotide, H for any nucleotide except G, B for any nucleotide
except A, Y for C or T, R for A or G, M for A or C, K for G or T, and W for A or T. Table S1. The list of primers used
for the DMD gene cDNA sequence amplification. Table S2. Details of forty-two reported pseudoexons in the
DMD gene. Table S3. Statistics data of each essential splicing signal and splicing regulatory element of different
groups of dystrophin pseudoexons and the group of dystrophin canonical exons. Table S4. Comparative analysis
of GERP score of each position in the acceptor splice site consensus motif between dystrophin canonical exons and
pseudoexons. Table S5. Comparative analyses of essential splicing signals between different splice site groups.
Table S6. Comparative analyses of essential splicing signals between de novo and canonical splice site groups.
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