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Abstract

Genotyping-by-sequencing (GBS) provides high SNP coverage and has recently emerged

as a popular technology for genetic and breeding applications in bread wheat (Triticum aes-

tivum L.) and many other plant species. Although GBS can discover millions of SNPs, a high

rate of missing data is a major concern for many applications. Accurate imputation of those

missing data can significantly improve the utility of GBS data. This study compared imputa-

tion accuracies among four genome references including three wheat references (Chinese

Spring survey sequence, W7984, and IWGSC RefSeq v1.0) and one barley reference

genome by comparing imputed data derived from low-depth sequencing to actual data from

high-depth sequencing. After imputation, the average number of imputed data points was

the highest in the B genome (~48.99%). The D genome had the lowest imputed data points

(~15.02%) but the highest imputation accuracy. Among the four reference genomes,

IWGSC RefSeq v1.0 reference provided the most imputed data points, but the lowest impu-

tation accuracy for the SNPs with < 10% minor allele frequency (MAF). The W7984 refer-

ence, however, provided the highest imputation accuracy for the SNPs with < 10% MAF.

Introduction

Wheat (Triticum aestivum L.) is a major staple food crop in the world. The fast-growing world

population demands wheat production to be increased up to 70% by 2050 to feed estimated

world population of approximately nine billion [1–3]. Application of advanced genomic tech-

nologies in breeding can speed up genetic improvement of new wheat varieties to meet the

challenge [4]. Next-generation-sequencing (NGS) technologies have revolutionized through-

put and greatly reduced DNA sequencing cost, which makes it feasible for routine screening of

breeding materials [5]. Genotyping-by-sequencing (GBS) is one application that sequences a

subset of a complex genome and also multiplexes various numbers of samples to lower the
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genotyping cost [6]. GBS can discover and genotype single nucleotide polymorphisms (SNPs)

simultaneously and it is a valuable platform for crop breeding and genomic research [6].

SNPs are the most abundant type of sequence variations in plant genomes [7] and there-

fore suitable for studies that require a large number of markers to be assayed such as marker-

trait association analysis, genetic map construction, quantitative trait locus (QTL) screening,

genomic selection, and analysis of population structure and genetic variation [8]. High-

throughput SNP genotyping platforms have been successfully used for diploid crops such as

maize [9] and barley [10]. Wheat, however, is polyploid and has a huge genome (~17 Gb)

with abundant repetitive DNA (> 80%), which present major challenges to direct sequencing

the genome for developing high-density SNP maps [11]. Recently, a GBS protocol [5] has

been optimized for cereal crops including wheat and can generate thousands of SNPs with

reasonably low cost [12–14]. However, abundance of missing data due to low sequencing

coverage significantly reduces number of usable SNPs and lowers marker density [5]. High

marker density will improve accuracy of many downstream analyses such as QTL mapping,

genome-wide association studies (GWAS) and genomic selection [15, 16]. Sequencing depth

and library complexity and quality may all affect number of missing data. Increase in

sequencing depth can lower missing data rate, but also increase sequencing cost. Marker

imputation using available information from reference genomes can increase usable SNPs

without increasing sequencing cost. Several imputation algorithms including IMPUTE [17],

MaCH [18], fastPHASE [19], BEAGLE [20] have been developed to assign allelic status of

missing values to genotypic data. Among those algorithms, IMPUTE and MaCH use hidden

Markov model (HMM) and Markov chain Monte Carlo (MCMC) iterations to conduct sub-

sampling, and the haplotypes in each iteration are considered as a sample from the haplotype

pool. FastPHASE and BEAGLE, however, cluster haplotypes and collapsed total number of

haplotypes into a smaller number of “ancestral” haplotypes [21]. Although both BEAGLE

and fastPHASE use a hidden Markov model, BEAGLE is more parsimonious by allowing

fewer possible transitions and emissions. In addition, fastPHASE fixes the number of clusters

in the model, whereas BEAGLE allows dynamic change of number of clusters to fit localized

linkage disequilibrium (LD) patterns [22]. Therefore, BEAGLE has been used to impute

missing data in many studies [23–25]. Length of LD blocks greatly affects imputation accu-

racy because recombination breaks allelic associations. The markers that are common

between samples and a reference panel serve as anchors to guide genotype imputation of any

missing haplotypes within an LD block [26].

Imputation strategies may vary from species to species depending on availability of refer-

ence genomes and well-saturated reference linkage maps in a species. A more complete refer-

ence genome allows proper alignment and ordering of the sequenced tags and helps impute

low coverage data [27]. To date, three wheat reference genomes and one barley reference

genome have been reported [28]. Among the three wheat reference genomes, Chinese Spring

survey sequence (CSSS) [29] has 10.2 Gb of sequences generated from Illumina NGS and

W7984 reference has 9.1 Gb of sequences that were assembled using large-insert libraries and

the three homoeologous genomes were assembled separately [30]. W7984 reference has lower

genome coverage than CSSS, but higher assembly quality. Wheat IWGSC RefSeq v1.0 refer-

ence is the newest version of wheat reference genome with the best assembly quality, contains

14.5 Gb sequences with 94% genome coverage and was assembled using POPSEQ data and

HiC map (chromosome conformation capture) [https://wheat-urgi.versailles.inra.fr/Seq-

Repository/Assemblies]. Here we used the four reference genomes to compare imputation effi-

ciencies and accuracies of wheat GBS data.
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Materials and methods

Plant materials

A total of 384 accessions of Iranian wheat accessions [http://biogeo.ucdavis.edu/projects/

iranwheat] were kindly provided by the United States Department of Agriculture (USDA)

germplasm collection (https://npgsweb.ars-grin.gov/gringlobal/search.aspx), International

Center for the Improvement of Maize and Wheat (CIMMYT), University of Tehran (UT), and

Seed and Plant Improvement Institute (SPII), Karaj, Iran [31]. The wheat collection includes

276 Iranian landraces collected from different climates between 1937 and 1968 and 108 culti-

vars released in Iran between 1942 and 2014. Genomic DNA of the accessions were extracted

from two-week-old seedling leaves using a modified cetyltrimethyl ammonium bromide

(CTAB) method [32]. DNA concentration was quantified using the Quant-iT PicoGreen

dsDNA Assay (Life Technologies Inc., NY) and normalized to 20 ng/μl.

GBS library preparation and sequencing

The GBS library was constructed following Poland et al. [13]. In brief, genomic DNA of each

sample was double-digested with PstI (CTGCAG) and MspI (CCGG) restriction enzymes

(New England BioLabs Inc., Ipswich, MA, USA), and ligated to barcoded adapters using T4

ligase (New England BioLabs Inc.). All the ligated products were pooled and cleaned up using

the QIAquick PCR Purification Kit (Qiagen Inc., Valencia, CA, USA). Primers complementary

to both adaptors were used for PCR. PCR amplification started at 95 ˚C for 5 min, followed by

16 cycles of 95 ˚C for 30 s, 62 ˚C for 20 s and 68 ˚C for 1 min and ended by a final extension

step at 72 ˚C for 5 min. The PCR product was then cleaned up again using the QIAquick PCR

Purification Kit, and quantified using Bioanalyzer 7500 Agilent DNA Chips (Agilent Technol-

ogies, Inc.). After size-selection for 250–300 bp fragments in an E-gel system (Life Technolo-

gies Inc.), concentration of the library was evaluated using a Qubit 2.0 fluorometer and Qubit

dsDNA HS Assay Kit (Life Technologies Inc.). The size-selected library was sequenced on an

Ion Proton system (Life Technologies Inc.).

Sequence reads were first trimmed to 64 bp, and identical reads were grouped into sequence

tags. Unique sequence tags were aligned internally to identify SNPs within the tags allowing

mismatches of up to 3 bp. SNPs were called using the Universal Network Enabled Analysis Kit

(UNEAK) GBS pipeline [33] in TASSEL 3.0 bioinformatics analysis package [34]. Tags with

low quality score (< 15) were removed. SNPs with heterozygotes or a minor allele

frequency> 10% were discarded to reduce the false positive markers. Only SNPs with lower

than 80% missing data were used for this study. BLASTn analysis was carried out to align

sequence tags to the four genome references including one from the barley reference genome

[28], and three from wheat reference genomes, the flow-sorted Chinese Spring survey

sequence (CSSS) [29], the Popseq W7984 sequence reference [30] and IWGSC RefSeq v1.0

[https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies]. The purpose of using the

barley reference genome is to show efficiency of using reference genomes of closely related

species to impute missing data in cases where reference genome sequence is absent in some

species. If a SNP could be mapped in multiple chromosome positions, the position with the

lowest E-value was used to represent the SNP location.

In this study, imputation was performed using BEAGLE v3.3.2 [20] and the four genome

reference genomes. BEAGLE used a phasing algorithm to determine haplotype phase for each

individual and to impute the missing values based upon allele frequencies. This was done by

constructing local haplotype clusters and then sampling a number of haplotypes for each indi-

vidual from a special class of HMM. Probability of each possible haplotype was estimated
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using the genotypic information and a forward-backward algorithm [35]. Then, new haplo-

types for the individuals were sampled according to the conditional probabilities to reconstruct

the local haplotype cluster as input for next iteration. This process was repeated several times.

To achieve a high level of phasing accuracy in the end, the most-likely haplotypes for each indi-

viduals were imputed using the Viterbi algorithm [35].

Imputation accuracy was calculated by comparing the imputed SNPs after five, six and

seven sequencing runs to the actual SNPs called from eight sequencing runs. Two files includ-

ing one file of the actual SNP data from five (359 million reads), six (421 million reads), seven

(488 million reads) and eight (566 million reads) sequencing runs, and an imputed data file

generated from the five, six and seven sequencing runs were compared to calculate the number

of correctly imputed data points. The ratio between correctly imputed and total imputed data

points was used to estimate imputation accuracy [36]. To evaluate the relationship between

imputation accuracy and allele frequency, allele frequencies from the original data file were

calculated for each SNP.

Results

Two GBS libraries were generated for the 384 wheat accessions with 276 landraces and 12 cul-

tivars in library 1 and 96 cultivars in library 2. To minimize missing data, an average of two

sequencing runs was performed for each plate of 96 samples, therefore, library 1 with three

plates of samples was run a total of six times and library 2 with one plate of samples was run

twice. Eight sequencing runs generated a total of 566,439,207 reads from the two libraries with

81% (458,363,607) of high-quality barcoded reads, from which 133,039 unique SNPs were

identified including 16,506, 38,642 and 65,560 SNPs with<20%, <50% and<80% missing

data, respectively. To determine the relationship between number of GBS-SNPs and number

of sequencing runs, numbers of SNPs were calculated for each increased run from first to six

sequencing runs of the library 1 (Fig 1). The number of SNPs with <20% missing data was

concave up as the run number increased (Fig 1a) but concave down for the numbers of SNPs

with<50% and <80% missing data (Fig 1b and 1c).

The average SNP density was 3.87 SNPs per Mbp when the SNPs with<80% missing data

were counted (Table 1). The sequence tags containing the SNPs with<80% missing data were

used to blast against each of the four references to map those SNPs to unique chromosome

locations. The barley reference genome mapped the lowest percentage of sequencing tags

(23.14%, Table 1), whereas IWGSC RefSeq v1.0 reference mapped the highest (94.94%,

Table 2) among the four references. CSSS (55.34%, Table 3) and W7984 (85.61%, Table 4)

were in between. Among the three wheat genomes, B genome had the most mapped SNPs and

D genome the least across the four references, thus B chromosomes had much higher marker

density than that in the D chromosomes. Among the four reference genomes, IWGSC RefSeq

v1.0 reference provided the highest SNP density in almost all chromosomes. Among 21 chro-

mosomes, chromosomes 2B and 3B had the highest SNP density, and chromosome 4D had the

lowest (Tables 1–4).

Transitions were the most observed nucleotide variations (68.63%) including A/G

(32.27%), C/T (28.36%), C/G (9.61%), A/C (7.34%), G/T (6.31%) and A/T (4.43%) transition

types (Table 1). Using the barley reference genome, more transition-type SNPs were identified

in A (3,445) and B (4,824) genomes than that in the D genome (1,714). The transition/trans-

version (Ts/Tv) SNP ratios from the A and B genomes (2.0) were relatively higher than that

(1.64) from the D genome (Table 1). A similar trend in SNP types was observed for the CSSS

assembly, but its transition/transversion SNP ratios were higher than those from the barley ref-

erence genome with 2.23 for the A genome, 2.26 for the B genome and 1.81 for the D genome

Imputation accuracy of wheat GBS data
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(Table 3). The W7984 assembly and IWGSC RefSeq v1.0 had similar transition/transversion

ratios to the CSSS assembly, but with slightly higher numbers of total SNPs (Tables 2 and 4).

The numbers of SNPs per chromosome were significantly correlated to the chromosome

sizes (Mbp) in all four references. Although they were all significant, the correlations were

much lower for the barley reference genome (R2 ~ 0.41��, Fig 2a) and wheat CSSS assembly

Fig 1. Relationship between numbers of sequencing runs and the numbers of SNPs with (a) <20%, (b)<50%, and

(c)<80% missing data for the first library of 288 Iranian wheat genotypes.

https://doi.org/10.1371/journal.pone.0208614.g001
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(R2 ~ 0.54��, Fig 2b) than those for W7984 assembly (R2 ~ 0.75��, Fig 2c) and IWGSC RefSeq

v1.0 (R2 ~ 0.74��, Fig 2d).

Five sequencing runs (three runs of the library 1 and two runs of the library 2) generated

355,197,375 total reads and 5,571 SNPs with less than 20% missing data. The number of SNPs

was almost doubled (10,213) after adding one additional sequencing run of library 1 (total six

runs) and tripled (16,506) after adding three sequencing runs of library 1 (total eight runs).

Fig 2. Relationship between the number of SNPs per chromosome and chromosome sizes when (a) barley

genome, (b) Chinese Spring survey sequence (CSSS), (c) W7984, and (d) IWGSC RefSeq v1.0 reference was used

to call SNPs.

https://doi.org/10.1371/journal.pone.0208614.g002
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For the number of SNPs with<80% missing data, increasing number of sequencing runs from

five (45,624 SNPs) to eight (65,560 SNPs) only increased 44% SNPs. However, imputation

reduced much more missing data than increasing sequencing runs from five to eight although

imputation efficiency is different among the four references (Table 5). The numbers of SNPs

with<20% missing data increased only three times when sequencing runs were increased

from five to eight (Table 5), but increased 2.8 times (the barley reference genome), 5.1 times

(CSSS), 7.0 times (W7984) and 7.8 times (IWGSC RefSeq v1.0) after imputation from the data

of five runs. Imputation using IWGSC RefSeq v1.0 reference generated the most SNPs with

only 4.9% missing data in the final imputed dataset; the barley reference genome imputed the

least SNPs with 65.5% missing data after imputation; and wheat CSSS and W7984 were in

between with 38.0% and 12.5% missing data after imputation (Table 5). These results indicate

that although both imputation and increasing sequencing depth can quickly fill up missing

data, imputation can reduce more missing data and therefore detect more SNPs than increas-

ing sequencing depth with the highest increase for SNPs with <20% missing data.

Imputation accuracy was calculated for each reference by comparing the SNP data imputed

from five, six or seven sequencing runs to the real SNP data from eight runs (Table 6). All four

references provided high imputation accuracy. Among them, the IWGSC RefSeq v1.0 pro-

vided the lowest imputation accuracy (84.16%) although it imputed the most data points in all

run combinations. The other three references had relatively higher accuracies from 87.31% for

CSSS reference to 89.80% for W7984 reference (Table 6). The number of imputed data points

was the highest using five sequencing runs, and the lowest using the data from eight sequenc-

ing runs. For all references and sequencing runs, even though the imputed data points per

chromosome were much lower in the D genome than those in the A and B genomes in general,

the D genome had the highest imputation accuracy and the B genome the lowest (Table 6).

The imputation accuracy increased with the increase in allele frequency from 25.7% accu-

racy for allele frequency < 5% and 99.7% accuracy for allele frequency > 95% (Fig 3). The pos-

itive correlations were observed for all four references. The imputation accuracy reached 94%

when allele frequency was>65%. Relatively lower imputation accuracy of IWGSC RefSeq v1.0

than other references mainly occurred at those alleles with frequency<35% (Fig 3b and 3c)

where W7984 assembly provided more accurate imputation than other references. About 75%

of imputed SNPs were distributed in allele frequencies between 0.55 and 0.95 (Fig 4), and had

high mean imputation accuracies from 88.0% to 99.7%. The difference in imputation accuracy

in this allele frequency range was negligible among the four references (Fig 4).

Discussion

Advancements in next-generation sequencing technology and high-throughput SNP genotyp-

ing can greatly accelerate crop breeding process if properly deployed [37]. GBS technology not

Table 5. Numbers of SNPs called after five (3 runs of the library 1 and 2 runs of the library 2), six (4 runs of the library 1 and 2 runs of the library 2), seven (5 runs

of the library 1 and 2 runs of the library 2) and eight (6 runs of the library 1 and 2 runs of the library 2) sequencing runs of the two GBS libraries with and without

imputation using barley genome and Chinese Spring survey sequence (CSSS) and W7984 assembly and Wheat IWGSC RefSeq v1.0 reference.

Imputation methods Missing data Number of SNPs

Five sequencing runs

(355,197,375 reads)

Six sequencing runs

(419,373,662 reads)

Seven sequencing runs

(486,646,481 reads)

Eight sequencing runs

(566,439,207 reads)

<20% <50% <80% <20% <50% <80% <20% <50% <80% <20% <50% <80%

Without imputation 5,571 26,773 45,624 10,213 31,472 53,241 13,746 35,380 59,766 16,506 38,642 65,560

Barley 15,738 30,442 45,624 20,142 35,320 53,241 23,526 39,269 59,766 26,284 42,706 65,560

Wheat CSSS 28,285 36,811 45,624 34,135 42,782 53,241 38,783 47,831 59,766 42,877 52,357 65,560

Wheat W7984 39,906 42,532 45,624 46,819 49,634 53,241 52,529 55,605 59,766 57,703 60,900 65,560

Wheat IWGSC RefSeq v1.0 43,365 44,410 45,624 50,735 51,924 53,241 57,065 58,361 59,766 62,740 64,083 65,560

https://doi.org/10.1371/journal.pone.0208614.t005
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only significantly improves throughput, but also greatly reduces SNP genotyping costs by

reducing genome complexity and multiplexing samples [13]. Although GBS can generate a

large number of SNP markers, its application in association mapping and genomics-assisted

breeding can be limited by massive amount of missing data when low coverage sequencing is

conducted [4, 38]. Biologically, missing SNP calls in GBS datasets can be due to presence-

absence variation and/or differential methylation in restriction sites. Technically, genome

complexity, low library quality, and sequence coverage [27] are among the major contributors.

Library complexity can be reduced by digesting sample DNA with restriction enzymes such as

Table 6. Numbers of data points per chromosome after imputation with barley genome, Chinese Spring survey

sequence (CSSS), W7984 and IWGSC RefSeq v1.0 references and imputation accuracy calculated by comparing

imputed data of five, six and seven runs with actual SNP data generated from eight sequencing runs.

Run Reference Missing data points A genome B genome D genome Total

Five runs Barley Total data points 157,689 221,204 85,281 464,174

Correctly imputed 141,111 195,450 77,230 413,791

Accuracy 89.49 88.36 90.56 89.15

CSSS Total data points 374,452 448,904 125,864 949,220

Correctly imputed 339,919 401,393 114,507 855,819

Accuracy 90.78 89.42 90.98 90.16

W7984 Total data points 556,620 637,680 186,281 1,380,581

Correctly imputed 502,417 568,400 169,075 1,239,892

Accuracy 90.26 89.14 90.76 89.81

IWGSC RefSeq v1.0 Total data points 691,863 841,893 243,017 1,776,773

Correctly imputed 584,917 694,667 209,385 1,488,969

Accuracy 84.54 82.51 86.16 83.80

Six runs Barley Total data points 23,138 22,979 11,552 57,669

Correctly imputed 20,356 20,016 10,294 50,666

Accuracy 87.98 87.11 89.11 87.86

CSSS Total data points 74,520 103,888 29,095 207,503

Correctly imputed 63,312 86,484 25,494 175,290

Accuracy 84.96 83.25 87.62 84.48

W7984 Total data points 393,307 517,916 154,857 1,066,080

Correctly imputed 363,152 473,970 143,550 980,672

Accuracy 92.33 91.51 92.70 91.99

IWGSC RefSeq v1.0 Total data points 467,224 574,541 162,471 1,204,236

Correctly imputed 397,638 475,980 140,790 1,014,408

Accuracy 85.11 82.85 86.66 84.24

Seven runs Barley Total data points 25,242 33,810 12,195 71,247

Correctly imputed 22,637 29,634 11,207 63,478

Accuracy 89.68 87.65 91.90 89.10

CSSS Total data points 67,293 104,296 25,254 196,843

Correctly imputed 59,247 89,933 22,647 171,827

Accuracy 88.04 86.23 89.68 87.29

W7984 Total data points 154,672 214,222 59,594 428,488

Correctly imputed 135,735 186,183 53,429 375,347

Accuracy 87.76 86.91 89.65 87.60

IWGSC RefSeq v1.0 Total data points 233,321 289,654 80,048 603,023

Correctly imputed 199,037 240,517 69,725 509,279

Accuracy 85.31 83.04 87.10 84.45

https://doi.org/10.1371/journal.pone.0208614.t006
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Fig 3. Relationship between imputation accuracy and allele frequency for (a) five, (b) six, (c) seven runs imputed

with eight runs using barley genome, Chinese Spring survey sequence (CSSS), W7984 and IWGSC RefSeq 1.0 in

Iranian wheat GBS data.

https://doi.org/10.1371/journal.pone.0208614.g003
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PstI and MspI. A combination of PstI and MspI enzymes has been successfully used for high

quality wheat library construction [13]. The sequencing coverage is a function of genome com-

plexity, multiplexing level, and output of a NGS platform [39]. In the current study, we con-

structed two libraries, library 1 with three plates of samples and library 2 with one plate of

samples. The library 1 had six sequencing runs and the library 2 had two, thus each sample in

both libraries had the same sequence depth. However, the samples in the library 1 produced

more SNPs (14,781, 32,926 and 49,717 SNPs at<20%, <50%, and <80% missing data, respec-

tively) than those from the library 2 (10,630, 23,931 and 26,198 SNPs at<20%, <50%, and

<80% missing data, respectively), suggesting that raising multiplexing level and sequencing

multiple times can significantly increase SNP number and reduce missing data in comparison

with a library at lower multiplex level with the same sequencing depth. The results in this

study showed that increasing number of SNPs with<20% missing data was concave up by

increasing run number (Fig 1a) while increasing numbers of SNPs with<50% and<80%

missing data were concave down (Fig 1b and 1c), suggesting increasing run number can

quickly reduce missing data, but slowly increase in total numbers of SNPs.

Fig 4. Number of total and correctly imputed alleles for different allele frequencies for (a) five, (b) six, (c) seven runs imputed with eight runs using barley

genome, Chinese Spring survey sequence (CSSS), W7984 and IWGSC RefSeq 1.0 in Iranian wheat GBS data.

https://doi.org/10.1371/journal.pone.0208614.g004
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Typically, two strategies can be used to reduce missing data: increasing sequencing depth

or imputing missing data using a reference genome. Increasing sequence depth can be

achieved through lowering multiplexing level in a fixed run number or increasing sequenc-

ing runs of a highly multiplexed library. Both methods will result in an increase in per-sam-

ple cost. As indicated previously, lowering multiplex level may not increase SNP number as

expected. Thus, increasing number of sequencing runs can be an option. In this study, the

first library was run six times and the number of SNPs was significantly increased especially

for the number of SNPs with <20% missing data (Fig 1), indicating that increasing number

of runs significantly decreased the number of missing data and therefore increased number

of usable SNPs. However, this also increased the per-sample cost significantly. Imputing

missing data is an effective approach to minimize missing data without increasing sequenc-

ing costs. Imputed data can be very accurate if a high-quality genome reference is available

and SNP markers can be accurately aligned on the physical map [27]. However, in the case

that genome reference is absent or incomplete, such imputation is challenging. In this study,

we compared imputation efficiency and accuracy among four genome references including

the barley reference genome and three wheat references (CSSS, W7984 and IWGSC RefSeq

v1.0) and found that all the references are useful for ordering GBS-SNPs and can signifi-

cantly reduce missing data points and provide accurate imputation to leverage the applica-

tion GBS markers in wheat [4] although imputation efficiency varied with completeness of

genome references.

Before imputation, we were able to bioinformatically map 15,172 (~23.14% of total SNPs

called), 36,278 (~55.34%), 56,125 (~85.61%) and 62,241 (94.94%) SNPs out of 65,560 SNPs

with<80% missing data to the barley reference genome (Table 1), CSSS (Table 2), W7984

(Table 3) and IWGSC RefSeq v1.0 (Table 4) references, respectively. That the most SNPs were

mapped to IWGSC RefSeq v1.0 among the four reference genomes may be due to that the

newest reference has the best genome coverage. For all four references, the highest number of

SNPs were mapped to the B genome with 47.77%, 51.43%, 48.91% and 47.87% of totally

mapped SNPs to the barley reference genome, CSSS, W7984 and IWGSC RefSeq v1.0 refer-

ences, respectively, and the lowest number of SNPs were mapped to the D genome with

18.19%, 14.26%, 14.24% and 13.38% of totally mapped SNPs, respectively (Tables 1, 2, 3 and

4). The number of SNPs mapped to the A and B genomes were 1.8 and 3.6 times higher than

those mapped on the D genome, whereas the differences in the numbers of mapped SNPs

between the D genome and the A and B genomes from previous reports were even higher

(about two-fold higher) than observed in this study [40–42], reflecting the most recent poly-

ploidy bottleneck of hexaploid wheat [2, 43]. During the evolution of modern bread wheat,

there has been extensive gene flow between hexaploid T. aestivum and tetraploid emmer

wheat (AABB), while gene flow between the hexaploid and Ae. tauschii (DD) might have not

occurred [44–47], which might explain higher polymorphism on the A and B genomes than

on the D genome [31, 48]. The greatest number of SNPs was mapped to the chromosome 3B

and the least number of SNPs was mapped to the chromosome 4D, which agrees with Edae

et al. [4] using W7984 and CSSS assemblies.

The number of transition-type SNPs (68.63%) with majority of A/G (32.27%) and C/T

(28.36%) transition was much higher than transversion-type SNPs with an average Ts/Tv SNP

ratio of 2.19 (Table 1), which agrees with several previous studies on hexaploid wheat [31, 49–

53] and barley [54–56] where Ts/Tv SNP ratios was from 1.59 to 2.12. A/G and C/T types of

mutations are usually due to methylation of cytosine that can be easily achieved from sponta-

neous deamination and transition to a thymine [57]. In this study, the Ts/Tv SNP ratios

from the A and B genomes were significantly higher than that from the D genome, which

most likely due to high methylation occurred in the A and B genomes during the two rounds
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of polyploidization [49], whereas D genome has been through only one round of such poly-

ploidization during the hexaploid wheat evolution [58].

Among the four reference genomes, IWGSC RefSeq v1.0 has the best wheat genome

sequence coverage and assembly quality therefore it is expected that the IWGSC RefSeq v1.0

generated the most imputed data points (1,776,773) from the five sequencing runs and the bar-

ley reference genome (464,174) generated the least (Table 6). However, W7984 assembly had

the highest imputation accuracy. An obvious relationship was not observed between imputa-

tion accuracy and chromosome size and between imputation accuracy and number of missing

data per chromosome. The percentages of imputed SNPs were much higher in the A

(~38.69%) and B (~48.03%) genomes than that in the D genome (~13.28). The numbers of

imputed data points in the A and B chromosomes were much higher than that from the D

chromosomes, but imputation accuracy of the SNPs in the D chromosomes was the highest

(Table 6). This could be owing to the low polymorphism level that resulted in a relatively low

number of imputed SNPs in the D genome [59]. A high LD level on the D chromosomes may

also contribute to its higher imputation accuracy than that in the A and B genomes [43, 60–63]

as observed in several other studies [36, 64–66].

A high positive correlation was observed between imputation accuracy and allele frequency.

Based on different references and runs, the greatest number of imputed data points was

observed in allele frequencies of 0.55 to 0.95 with imputation accuracy from 88 to 99% (Fig 4a,

4b and 4c). Although the numbers of imputed data points using IWGSC RefSeq v1.0 were

higher than those using other three references in different allele frequencies, especially after six

runs, the imputation accuracy using IWGSC RefSeq v1.0 was much lower than other refer-

ences in the lower allele frequency. However, imputation accuracy for 75% of missing data

were similar among four genome references, and only the missing data with lower allele fre-

quencies showed difference in imputation accuracy among references. SNPs with a low minor

allele frequency (MAF < 10%) was reported to have significantly lower power to detect true

trait-marker association [67], thus, they were removed in many GWAS [68]. Since IWGSC

RefSeq v1.0 imputed the most missing data points, it can be used to impute missing data if

SNPs with MAF < 10% was removed in a study. However, in the cases where rare variants

with MAF <10% might play a more important role than common SNPs with a MAF >10%

[69], imputation using W7984 may improve imputation accuracy.

Conclusions

Imputation using genome references is an effective tool to fill up massive missing genotypic

data generated from GBS. Among the four references (the barley reference genome and wheat

reference genomes of CSSS, W7984 and IWGSC RefSeq v1.0) used for imputation, IWGSC

RefSeq v1.0 imputed the greatest number of missing data points with adequate imputation

accuracy, especially for those alleles with high frequencies. For those alleles with low allele fre-

quency, W7984 assembly showed the best imputation accuracy although imputed number of

missing data points was slightly lower than the IWGSC RefSeq v1.0 reference. Therefore, they

both can be used as reference genomes to impute missing GBS data in wheat breeding and

genetic research.
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