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ABSTRACT
Urinary extracellular vesicles (EVs) are an attractive source of biomarkers for urological diseases.
A crucial step in biomarker discovery studies is the determination of the variation parameters to
perform a sample size calculation. In this way, a biomarker discovery study with sufficient statistical
power can be performed to obtain biologically significant biomarkers. Here, a variation study was
performed on both the protein and lipid content of urinary EVs of healthy individuals, aged
between 52 and 69 years. Ultrafiltration (UF) in combination with size exclusion chromatography
(SEC) was used to isolate the EVs from urine. Different experimental variation set-ups were used in
this variation study. The calculated standard deviations (SDs) of the 90% least variable peptides and
lipids did not exceed 2 and 1.2, respectively. These parameters can be used in a sample size
calculation for a well-designed biomarker discovery study at the cargo of EVs.
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Introduction

Extracellular vesicles (EVs) play a role in intercellular
communication under physiological and pathophysio-
logical conditions [1,2]. Urinary EVs originate from
cells lining the nephron lumen and the urinary tract
and from potentially present acute injured sites [3,4].
The cargo of EVs is thought to reflect the cell-type of
origin [4–6]. In this way, exploring the urinary EV
cargo can lead to biomarkers for the diagnosis or pre-
diction of progression of urological diseases [5].

In biomarker discovery studies, determining the mole-
cular variability allows for a correct experimental design
with sufficient statistical power to obtain biologically sig-
nificant biomarkers [7,8]. A power calculation is needed
to measure the number of samples necessary to obtain
statistically relevant biomarkers. If the sample size is too
small in the discovery phase, statistically false-positive
biomarkers will be picked up. On the other hand, too
many patient samples in the discovery phase makes the
biomarker discovery study time intensive and costly. We
believe no study to determine the variation at the cargo of
EVs exists at the moment.

Here, we perform a variation study that determines
the variability at protein and lipid level in urinary EVs.
We determined the biological and technical variation in
a limited number of samples. For this purpose, we used

urinary EVs from healthy individuals with an age above
50 years since urological diseases are more present in
this population, for example, bladder- and prostate-
related diseases [9,10]. After the determination of the
variation, a power calculation is performed to determine
the minimum number of samples required in order to
detect an effect of a given size between two groups, for
example, healthy versus diseased.

Results

Study population and variation set-ups

Urine samples of six healthy individuals (HI, two females
and four males, aged between 52 and 69 years) were used
to conduct the study. Data of the individuals can be found
in Table 2 (materials and methods).

The total variation is represented by the interbiological,
intrabiological, technical and instrumental variation. In
order to determine these variation parameters, different
experimental set-ups were used (Figure 1). To evaluate the
instrumental variation, the same sample was analysed six
times on the mass spectrometer (Pool_1 until Pool_6).
This variation parameter was only determined for the
proteomics analysis (Figure 1(a)). To evaluate the total
technical variation (EV isolation method + MS sample
preparation method + instrumental), six identical pooled
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urine samples of one individual (HI07_pool_1 until
HI07_pool_6) were used as starting material for six EV
isolations. EV samples were separately processed and
loaded on the mass spectrometer (Figure 1(b)). To estab-
lish the intrabiological variation (also including the total
technical variation), six urine samples of one individual
(HI07_B/_C/_F/_H/_K/_M) at different time points were
used (Figure 1(c)). The comparison of the urinary EV
proteins and lipids of six different individuals (HI02/
HI03/HI07/HI08/HI10/HI11) captures all the above varia-
tion and the interbiological variation, representing the total
variation (Figure 1(d)).

Protein and lipid identification and quantification

EVs were isolated from the urine samples by ultra-
filtration (UF) in combination with size exclusion
chromatography (SEC) [11]. Lipids and proteins of
the EVs were separated by methyl-tert-butyl ether
(MTBE) extraction [12,13]. In this way, variation
parameters at protein as well as lipid level were
determined using the same samples. EV protein con-
centration was determined using Micro BCA™
Protein Assay Reagent Kit (Thermo Scientific,
Waltham, USA), and values between 0.18 and 0.50
µg per mL of starting volume urine for each sample
were obtained.

Proteomic analysis
Shotgun proteomics (liquid chromatography-tandem
mass spectrometry, LC-MS/MS) was performed on
a Q-Exactive plus mass spectrometer (Thermo Fisher
Scientific). For protein identification, the raw data were
interpreted with both Sequest and Mascot as described in
the method section. Between 1630 and 3318 peptides were
identified with high confidence per sample. This results in
447 to 800 master proteins that were identified in each
sample using Proteome Discoverer 2.1 with protein data-
base Uniprot Human Proteome ID (UP000005640, down-
loaded on 25 May 2016). Figure 2 shows the number of
master proteins identified in each sample. A list of all the
1518 identified master proteins using Proteome
Discoverer 2.1 is shown in the supplementary data.

The raw data and identifications underwent a quality
control analysis using an in-house developed software in
R to check if all samples were correctly analysed and no
problems occurred during sample handling or LC-MS/
MS. For example, retention times of the same peptide in
different samples andmass calibrations were checked. All
samples passed the quality control analysis.

Differential proteomic analysis based on peptide
identification (as is routinely done in shotgun proteo-
mics) is hampered by its low analytical reproducibility
since peptides are selected in a data-dependent way
(data-dependent acquisition) and therefore, it cannot
be guaranteed that the same set of peptides is identified

Figure 1. Experimental set-ups of variation. The total variation is represented by: (a) the instrumental variation (b) the total
technical variation (c) the intrabiological variation and (d) the interbiological variation. The names of the samples are indicated.
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across different LC-MS/MS runs. This is solved using
an analytical workflow that extracts intensity chroma-
tograms from high-resolution MS1 data to quantify all
highly confident identified peptides across all samples.
Several software packages (i.e. Skyline, MaxQuant,
Progenesis QI) exist that automate this process of
data enrichment [14–17]. We used an in-house devel-
oped data enrichment process that maximizes proper
peak selection by using visual inspection and control-
ling tools like retention time curves, comparison of
measured masses, etc. We only used peptides that are
unique in the Uniprot Human Proteome ID
(UP000005640, downloaded on 25 May 2016). After
the extraction of reliable MS1 data, we were able to
quantify 4926 peptides.

Lipidomic analysis
For the lipid identification, high-resolution LC coupled
to high-resolution quadrupole time-of-flight MS was
performed on an Agilent 6545 Q-TOF mass spectro-
meter (Agilent Technologies) [9,18]. A more detailed
description of the lipidomic analysis, data processing

and lipid identification is available in material and meth-
ods. A targeted data processing of the lipid profiles was
performed based on an in-house accurate mass-reten-
tion time (AMRT) library [9]. All lipids identified in the
vesicles are shown in the supplementary data.

Normalization and variance analysis

Median intensity normalization was applied on both
proteomic and lipidomic data using R and is explained
in the material and methods section [19]. The standard
deviation (SD) of the normalized log intensities was
determined. Figure 3 represents the percentage of
unique peptides or lipids of the different variation
set-ups in the function of the SD. This graph demon-
strates that 90% of the least variable unique peptides of
the total variation set-up do not have an SD that
exceeds 2 (Figure 3(a)). For the 90% least variable
lipids of the total variation set-up, this graph demon-
strates that they do not have an SD that exceeds 1.2
(Figure 3(b)). These values can be used in the sample
size calculation. Figure 4 shows the boxplots of the SD

Figure 2. Number of master proteins per sample in each variation set-up. Samples Pool_1 until Pool_6 were used for the
instrumental variation. The samples HI07_pool_1 until HI07_pool_6 were used to calculate the total technical variation. Samples
HI07_B/_C/_F/_H/_K/_M were used to determine the intrabiological variation and HI02/HI03/HI07_M (further called HI07)/HI08/
HI10/HI11 for the interbiological variation.
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of the normalized log intensity of the different types of
variation for both the proteomic and lipidomic data.

The coefficient of variation (CV) of the quantified
peptides in the different proposed set-ups was also cal-
culated, i.e. for each quantified peptide the SD of the
intensities was divided by the mean of the intensities.
This value also gives an indication about the variation,
but normalizes the SD for the mean intensity. Figure 5
shows the boxplots of the CVs of the different types of
variation. The mean CVs were 0.01, 0.02, 0.04 and 0.05
for the instrumental, technical, intrabiological and inter-
biological variation, respectively.

Sample size calculation

A sample size calculation is based on the following fac-
tors: the SD, a peptide fold change (after normalization)
or effect size, type I error α and power. Table 1 shows the
sample size needed in each group, given a power of 80%

and α equal to 0.001. Depending on the effect size, the
amount of samples needed in each group of the biomar-
ker discovery experiment at EV level is shown.

Figure 3. Percentage of unique peptides and lipids of the different variation set-ups in the function of the standard deviation (SD)
of normalized log intensity. (a) 90% of the least variable peptides of the total variation set-up leads to an SD of 2. (b) The 90% least
variable lipids of the total variation set-up do not have an SD that exceeds 1.2.

Figure 4. Boxplot of standard deviation (SD) of normalized log intensity of the different variation set-ups. (a) SD of the instrumental,
technical, intrabiological and total variation is shown for the proteomic data. (b) SD of the technical, intrabiological and total
variation is shown for the lipidomic data.

Figure 5. Boxplots of coefficients of variance (CVs) of the pep-
tides in the different variation set-ups (instrumental, technical,
intrabiological and total variation).

4 E. OEYEN ET AL.



Discussion

Urinary EVs are a suitable source of biomarkers for
urological diseases including cancer, due to their ori-
gin, molecular content and function [20,21]. EV-based
diagnostics could be a great alternative to invasive
biopsies and cystoscopies [22]. The content of EVs
can also give more insights into the relevant pathways
of disease development to optimize personalized treat-
ment and prognosis.

Variability in the urinary EV cargo caused by biolo-
gical variation and technical variation due to sample
preparation and instrumentation has an impact on the
experimental study design as variation influences sta-
tistical power. To avoid false discoveries driven by
underpowered quantitative discovery experiments, it
is essential to determine the global variation in real
samples. This is a first step in biomarker discoveries
since a well-designed discovery study is very important.
Reliable candidates are desired rather than false-posi-
tive biomarker candidates since validation procedures
take a lot of time and money. Here, we described an
analytical set-up that can be applied for the identifica-
tion of variability arising from biological and technical
variation in EV samples at the protein and lipid level.

Experimental set-ups of variation were used to deter-
mine the technical and biological variation. The SD of
the unique peptides and lipids were determined in each
experimental set-up. The technical variation of lipids in
EVs is lower than the technical variation of peptides (0.5
versus 0.75). This is probably partly due to the targeted
method used for the lipid identification and quantifica-
tion. Here, only a certain set of lipids is quantified. For
proteomics, a shotgun method is used for the identifica-
tion and peptides are quantified using MS1 quantifica-
tion. It is important to remark that if another protocol is
used (EV isolation method, MS sample preparation,
etc.) technical variability may be different. Also, the
intrabiological variability of the lipids is lower than of
the peptides (0.8 versus 1.7). This can be expected since
the main function of the lipids in EVs is forming a lipid

bilayer that provides the EVs structure and the potential
to package signal molecules [23]. Proteins have a more
complex communication and signalling function
[18,24,25]. However, the lipid composition of the EVs
also can have biological activity and in this way can be
used as a biomarker [26–28]. Figure 3 shows that the
90% least variable peptides and lipids of the total varia-
tion set-up did not have an SD that exceeds 2 and 1.2,
respectively. The lower technical and intrabiological
variation of lipids is contributing to the lower total
variation of lipids.

We started from healthy individuals, of which the
age is related to a population that is expected to have
more urological malignancies [9,10]. It needs to be
further evaluated if the outcome for the healthy indi-
viduals is valid for patients too. Patients are expected to
have more EVs and probably with a different cargo
[29–31].

The sample size calculation gives a minimum of
samples needed for a biomarker discovery. The ques-
tion can be asked if studies using less samples are
statistically relevant. Studies with a sufficiently large
sample size are expected to be more relevant [32,33].
However, the number of samples needed is still depen-
dent on a lot of factors. In this sample size calculation
for the proteomics data, we took only one unique
peptide per protein into account to calculate the num-
ber of samples needed in a differential protein biomar-
ker discovery. If two or more unique peptides are
identified per protein, this number of samples per
group decreases to obtain statistically relevant differen-
tial protein biomarkers. Also, the effect size and power
influence the sample size.

Nagaraj et al. (2011) determined the degree of normal
urinary proteome variability of healthy individuals. The
reported interbiological CV was 0.66, including the tech-
nical as well as the intrabiological variation. The intra-
biological and technical CV was 0.48 and 0.18,
respectively [34]. In our study, Figure 5 shows that the
mean CVs of the EV proteins were lower (0.01, 0.02,
0.04 and 0.05 for the instrumental, technical, intrabiolo-
gical and interbiological, respectively). This is expected
since the variability of the urinary proteome is thought
to be high because most of the proteins in the urine have
no functional role anymore and there is no physiological
need for precise homoeostatic control [34]. On the other
hand, proteins in urinary EVs do have a functional role
in physiological and pathophysiological conditions so
are expected to be less variable [35–37].

Although less variation is expected in EVs than the
urinary proteome since most of the proteins in the urine

Table 1. Sample size in each group, depending on the effect
size (after normalization) and standard deviation, given
a power of 80% and α equal to 0.001.

Effect size (after normalization)

Standard deviation 0.6 0.8 1 1.2 1.4 1.6

1 98 56 37 26 20 16
1.2 139 80 52 37 28 22
1.4 189 107 70 49 37 29
1.6 246 139 90 63 47 37
1.8 310 176 113 80 59 46
2 382 216 139 98 72 56
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have no functional role anymore and there is no physio-
logical need for precise homoeostatic control [34] and
urinary EVs do have a functional role in physiological
and pathophysiological conditions [35–37], variability is
still high. The technical variability is already high for both
peptides and lipids causing the need for an adequate
number of technical replicates. The total variation at the
EV level is also high. It should be mentioned that it is
possible that not solely EV related proteins and lipids are
taken into account in the variance analysis. Samples can
be contaminated with urinary proteins and lipids. Also,
cell disruption due to the freeze-thaw cycle of urine
causes the presence of cell components in the cell-free
urine. Isolated non-EV related proteins and lipids can
have a higher variability. However, the EV isolation
method UF in combination with SEC will enrich the
EVs and remove most of the contaminants. A sample
size calculation using these calculated variation para-
meters can be done for a differential biomarker discovery
study at EV protein or lipid level.

Materials and methods

Urine collection

The human biological material (urine) used in this pub-
lication was provided by Biobank@UZA (Antwerp,
Belgium; ID: BE71030031000); Belgian Virtual
Tumorbank funded by the National Cancer Plan,
BBMRI-ERIC [30]. Voided urine was obtained with writ-
ten informed consent (approved by the Ethical Committee
of the University of Antwerp and the University Hospital
of Antwerp) from six healthy individuals (HI). Table 2
gives an overview of the sex and age of the individuals.

One urine sample of individuals HI02, HI03, HI08,
HI10 and HI10 was collected. Six different samples of
individual HI07 were obtained at different time points.
All samples were collected using the urine vacuette
system (Vacuette®, Greiner bio-one, Austria). The sam-
ples were stored immediately at −20°C. Based upon
literature with some modifications [38], samples were
thawed and centrifuged at 180 x g for 10 min at 4°C
and at 1550 x g for 20 min at 4°C and pellets were
discarded to prepare cell-free urine. Samples were sub-
sequently stored at −80°C until further use.

EV isolation

EVs were isolated from the urine samples as described
by [11]. Prior to the SEC isolation, ultrafiltration (UF)
was performed to reduce the volume and remove smal-
ler particles and proteins [39]. Per isolation procedure,
50 mL of cell-free urine was thawed and filtered using
100 kDa MWCO Centricon® Plus-70 Centrifugal Filter
Units (Merck Millipore Ltd, Ireland) to get rid of the
solute and small proteins.

The filtrate was placed on a qEV column (Izon
Science Ltd, New Zealand). 500 µL fractions were col-
lected, started immediately after placing the sample on
the column, with filtered PBS as the elution buffer. The
qEV columns are used according to the manufacturer’s
instructions.

EV characterization of the isolated EVs was not per-
formed since this EV isolation method was validated in
our recent publication [11]. Transmission electron
microscopy, western blotting, nanoparticle tracking ana-
lysis and asymmetrical-flow field-flow fractionation were
used to validate the isolation method, demonstrating the
enrichment of urinary EVs in the samples.

Protein concentration

Total protein content was determined using the Micro
BCA™ Protein Assay Reagent Kit (Thermo Fisher
Scientific, Waltham, USA) following the manufacturer’s
specifications. A standard curve of serially diluted Bovine
Serum Albumin (Thermo Fisher Scientific) in filtered
PBS was used. Values were extrapolated from this curve,
using a linear equation, with r2 > 0.98 for each assay [40].

MTBE extraction

UF-SEC fractions in PBS were vacuum dried in 2 mL
Eppendorf protein LoBind tubes to obtain a pellet of
EVs. An MTBE lipid extraction method was applied to
the samples, based on the procedure described by
Matyash et al. [12,13]. The pellet was suspended in
300 µL methanol and vortexed for 10 s. 1 mL of
MTBE (Sigma, Belgium) was added and samples were
shaken for 1 h at room temperature. For the phase
separation, 260 µL water was added. After 10 min of
incubation at room temperature, samples were centri-
fuged for 10 min at 1000 x g, resulting in a lower
hydrophilic and upper lipophilic phase. The first mL
of the upper phase was removed, vacuum dried and
further used for the lipidomic analysis. The lower
hydrophilic and protein layer was vacuum dried and
used in the proteomic analysis.

Table 2. Data on healthy individuals (HIs).
ID Sex Age (years)

HI02 Male 55
HI03 Male 57
HI07 Male 53
HI08 Male 69
HI10 Female 59
HI11 Female 52
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Proteomic analysis

In solution digest
The vacuum dried hydrophilic and protein layer were
resuspended in 75 µL 5 M urea. Samples were vortexed
and sonicated for 10 min. This step was repeated.
Proteins were reduced in a final concentration of 5 mM
dithiothreitol at 60°C for 30 min. Proteins were alkylated
in a final concentration of 20 mM iodoacetamide in the
dark at room temperature for 30 min. Subsequently, 680
µL 100 mM ammonium bicarbonate was added. For the
digestion step, 1 µg trypsin was added per 40 µg of protein
and digestion was carried overnight at 37°C. Digests were
desalted using Pierce C18 spin columns (Thermo Fisher
Scientific) according to manufacturer’s instructions.

LC-MS/MS
The purified peptides were vacuum dried and dissolved in
mobile phase A, containing 2% acetonitrile and 0.1%
formic acid to a final concentration of 1 µg/µL, and spiked
with 20 fmol Glu-1-fibrinopeptide B (Glu-fib, Protea bios-
ciences, Morgantown, WV). Samples were analysed in
random order. A total of 2 µg of protein was loaded on
the column and the peptide mixture was separated by
reversed-phase chromatography using an
nanoACQUITY UPLC Symmetry C18 Trap Column
(100Å, 5 µm, 180 µm x 20 mm, 2G, V/M, 1/pkg)
(Waters, Milford, MA) connected to an ACQUITY
UPLC PST C18 nanoACQUITY Column (10K psi,
130Å, 1.7 µm, 100 µm X 100 mm, 1/pkg) (Waters).
A linear gradient of mobile phase B (0.1% formic acid in
98% acetonitrile) from 1% to 45% in 95 min followed by
a steep increase to 90%mobile phase B in 10 min. A steep
decrease to 1% mobile phase B is achieved in 5 min and
1% mobile phase B is maintained for 5 min. The flow rate
is 400 nL per minute. Liquid chromatography was fol-
lowed by tandemMS (LC-MS/MS) and was performed on
a Q-Exactive plus MS (Thermo Fisher Scientific).
A nanospray ion source (Thermo Fisher Scientific) was
used. Full-scan spectrum (350 to 1850 m/z, resolution
70,000, automatic gain control 3E6, maximum injection
time 100 ms) was followed by high-energy collision-
induced dissociation (HCD) tandem mass spectra with
a run time of 90 min. Peptide ions were selected for
fragmentation by tandem MS as the 10 most intense
peaks of a full-scan mass spectrum. HCD scans were
acquired in the Orbitrap (resolution 17,500, automatic
gain control 1E5, maximum injection time 80 ms).

Peptide identification
Proteome Discoverer (2.1) software (Thermo Fisher
Scientific) was used to perform database searching against
the database containing Uniprot Human (Proteome ID:

UP000005640, downloaded on 25 May 2016), using both
Sequest and Mascot search engines. Searches were per-
formed with the following settings: precursor mass toler-
ance of 10 ppm, fragment mass tolerance of 0.02 Da.
Digestion by trypsin and two missed cleavage sites are
allowed. Carbamidomethyl was defined as a fixed modifi-
cation and phosphorylation (S, T, Y) and oxidation (of
methionine) were dynamicmodifications. The results were
filtered with the following parameters: only high confident
peptides with a global FDR < 1% based on a target-decoy
approach and first ranked peptides were included in the
results.

Quality control analysis
The MS/MS results (raw data) together with the
Proteome Discoverer results were inspected in
a quality control (QC) analysis. In our lab, QC analysis
is done systematically as it guarantees the quality of the
sample and the MS instruments at each moment for
each sample. If for several reasons, samples do not
meet the requested QC parameters, for example, repro-
ducibility of retention time and mass calibration, these
samples are excluded for further data analysis steps.

Data enrichment process
It is known that data-dependent acquisition (DDA) of
mass spectrometry-based proteomics leads inherently to
a lot of missing data points as not every peptide pre-
cursor measured in MS1 is selected for fragmentation
and only the intensities of identified peptides are taken
into account. To get quantitative data on all peptides for
each sample, we developed in-house software to look up
peak intensities in the raw MS1 data. In short, this soft-
ware tool looks up m/z values in raw MS1 data with
a delta ppm of 5 in a retention time window of 10 min.
The quality control analysis guarantees that retention
times are reproducible in all runs and mass calibration is
correct. The algorithm also cleans the resulting data by
using a decoy search and also peak shape is checked.
That way, a data matrix is obtained containing quanti-
tative information from almost all identified peptides.
This in-house developed technique is similar and avail-
able in several software packages likeMaxQuant, Skyline
and Progenesis QI [14–17].

Lipidomic analysis

MS method
The LC-MS method was adapted from Sandra et al.
[41]. The samples (10-µL injection volume) were chro-
matographically separated on an Acquity UPLC BEH
Shield RP18 column (2.1 x 100 mm; 1.7 μm; Waters).
Chromatographic separation was achieved on an
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Agilent 1290 Infinity LC system (Infinity Binary Pump
G4220A, Thermostat G1330B, Infinity Sampler
G4226A; Agilent Technologies). The column tempera-
ture was maintained at 80°C using a stand-alone
Sandra/Selerity Series 9000 Polaratherm oven (Selerity
Technologies, Salt Lake City, UT, USA). Eluting buffers
were buffer A (20 mM ammonium formate, pH 5) and
buffer B (MeOH). Starting conditions were 50% of
buffer B at a flow rate of 0.5 mL/min. Over 5 min,
a gradient was applied to 74% of buffer B. Thereafter
the percentage of buffer B was increased to 100% in
subsequent gradients (5–6 min 74–85% B; 6–16 min
85–90% B; 16–17 min 90–94% B; 17–26 min 94–100%
B), before returning to the starting conditions (50% B)
which was hold for 9 min.

High-resolution accurate mass spectra and fragmenta-
tion spectra were obtained with an Agilent 6545 Q-TOF
MS instrument (Agilent Technologies) equipped with
a Dual Jetstream electrospray ionization (ESI) source.
The instrument was operated in positive electrospray
ionization mode. Needle voltage was optimized to 3.5
kV, the drying and sheath gas temperatures were set to
300°C and 350°C and both drying and sheath gas flow
rates were set to 8 L/min, respectively. Data were collected
in centroid mode from m/z 100–1700 at an acquisition
rate of 2 spectra/s in the extended dynamic rangemode (2
GHz), offering an in-spectrum dynamic range of 105 and
a resolution of ± 20,000 FWHM in the lipidm/z range. To
maintain mass accuracy during the analysis sequence,
a reference mass solution was used containing reference
ions (m/z 121.050873 and 922.009798 for positive ESI
mode). Data acquisition was performed using
MassHunter Acquisition B.06.01. Study samples were
analysed in randomized order. Samples were kept at 4°
C in the autosampler tray while waiting for injection.

Lipid identification
An in-house accurate mass retention time (AMRT)
library with formula, exact mass and retention time of
all identified lipids in comma-separated values (.csv) for-
mat (compatible with the MassHunter software) provided
an automated and targeted data-processing of LC-MS
lipid profiles [9]. Raw LC-MS data files were processed
in a targeted fashion using the Find by Ion extraction
algorithm in Profinder B08.00 (Agilent Technologies)
using predefined mass (10 ppm) and retention time
extraction windows (10 sec). The Agile integrator was
used, with an absolute peak height cut-off of 1000 counts.

Lipid nomenclature
Throughout the manuscript, the nomenclature of the
International Lipid Classification and Nomenclature
Committee (ILCNC) has been used, i.e. ‘‘Comprehensive

Classification System for Lipids”. 32–34 Lipids for which
the exact structure of the two acyl chains could not be
elucidated are listed with the total number of carbon
atoms and double bonds of the fatty acyl moiety, e.g.
phosphatidyl inositol (PI) (34:2). The aliphatic chain com-
position and region-specificity of these compounds can be
identified with further MS/MS analyses. Regarding glyco-
sphingolipids, LC-MS cannot discriminate between galac-
tose and glucose or N-acetylglucosamine and N-
acetylgalactosamine. Therefore, lipid nomenclature of
these species contains hexose (Hex) instead of glucose or
galactose.

Statistical analysis

Statistical analysis was done in R using standard R-core
and Bioconductor packages [42,43]. The packages
Normalizer was used for normalization [19]. Median
intensity log normalization was used on the intensity of
the proteomic and lipidomic data: Here, the intensity of
each variable in a given sample is divided by the median
of intensities of all variables in the sample and multiplied
by the mean of “median of sum of intensities of all
variables in all samples”. The normalized data is then
transformed to log2. After determining the SD of pep-
tides, a sample size calculation was done in R based on
a simple t-test in order to calculate a minimum sample
size needed for a valid two-group experimental design.

EV-TRACK

We have submitted all relevant data of our experiments to
the EV-TRACK knowledgebase (EV-TRACK ID:
EV190004) (Van Deun J, et al. EV-TRACK: transparent
reporting and centralizing knowledge in extracellular vesi-
cle research. Nature methods. 2017;14(3):228–32) [44].
The EV-METRIC score was 63%. For the characterization,
we refer to our previous paper where the EV isolation
method used in this study is described extensively.
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