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Abstract
The ability to adapt to changing internal and external conditions is a key feature of bi‐
ological	systems.	Homeostasis	refers	to	a	regulatory	process	that	stabilizes	dynamic	
systems	 to	 counteract	 perturbations.	 In	 the	 nervous	 system,	 homeostatic	mecha‐
nisms	 control	 neuronal	 excitability,	 neurotransmitter	 release,	 neurotransmitter	 re‐
ceptors,	and	neural	circuit	function.	The	neuromuscular	junction	(NMJ)	of	Drosophila 
melanogaster has provided a wealth of molecular information about how synapses 
implement	homeostatic	forms	of	synaptic	plasticity,	with	a	focus	on	the	transsynap‐
tic,	homeostatic	modulation	of	neurotransmitter	release.	This	review	examines	some	
of the recent findings from the Drosophila NMJ and highlights questions the field will 
ponder in coming years.
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1  | INTRODUC TION

Most	biological	systems	rely	on	homeostatic	mechanisms	to	maintain	robust	function	when	faced	with	perturbations.	For	daily	 living,	key	
physiological	parameters,	 such	as	body	 temperature	or	water/electrolyte	balance,	 are	under	homeostatic	 control.	 In	 the	nervous	 system,	
metazoans	have	evolved	homeostatic	mechanisms	to	actively	stabilize	neuronal	excitability,	chemical	synaptic	transmission,	and	neural	circuit	
function	(Delvendahl	&	Müller,	2019;	Marder	&	Goaillard,	2006;	Pozo	&	Goda,	2010;	Turrigiano,	2008).	A	marvelous	diversity	of	homeostatic	
processes	controlling	neural	function	has	been	identified:	Homeostatic	mechanisms	compensate	for	activity	manipulations	of	single	neurons	
(Burrone,	O'Byrne,	&	Murthy,	2002;	Murthy,	Schikorski,	Stevens,	&	Zhu,	2001)	or	neural	networks	in	vitro	(Hartman,	Pal,	Burrone,	&	Murthy,	
2006;	O'Brien	et	al.,	1998;	Turrigiano,	Leslie,	Desai,	Rutherford,	&	Nelson,	1998)	and	in	vivo	(Desai,	Cudmore,	Nelson,	&	Turrigiano,	2002;	
Maffei	&	Turrigiano,	2008).	Homeostatic	signaling	controls	neural	activity	on	various	space	scales,	ranging	from	individual	synaptic	spines	
(Béïque,	Na,	Kuhl,	Worley,	&	Huganir,	2011),	dendritic	branches	(Branco,	Staras,	Darcy,	&	Goda,	2008),	to	entire	neurons	(Turrigiano	et	al.,	
1998),	or	networks	of	neurons	(Marder	&	Goaillard,	2006).	In	most	cases,	homeostatic	compensation	is	studied	after	prolonged	neural	activity	
perturbations	for	hours	to	days	(Pozo	&	Goda,	2010),	but	there	is	also	evidence	for	more	rapid	forms	of	homeostatic	signaling	in	the	peripheral	
nervous	system	(Frank,	Kennedy,	Goold,	Marek,	&	Davis,	2006;	Wang,	Pinter,	&	Rich,	2016).

At	 the	 level	 of	 synapses,	 there	 is	 evidence	 for	 homeostatic	 regulation	 of	 neurotransmitter	 release	 (Cull‐Candy,	Miledi,	 Trautmann,	&	
Uchitel,	1980;	Davis	&	Goodman,	1998;	Petersen,	Fetter,	Noordermeer,	Goodman,	&	DiAntonio,	1997)	and	neurotransmitter	receptor	abun‐
dance/function	(Turrigiano	et	al.,	1998;	Wierenga,	Ibata,	&	Turrigiano,	2005).	Homeostatic	regulation	of	neurotransmitter	release,	often	called	
presynaptic	homeostatic	plasticity,	has	been	described	for	neuromuscular	synapses	 in	different	species	 (Cull‐Candy	et	al.,	1980;	Petersen	 
et	al.,	1997;	Plomp,	van	Kempen,	&	Molenaar,	1992)	and	several	mammalian	central	nervous	system	(CNS)	synapses	(Burrone	et	al.,	2002;	
Zhao,	Dreosti,	&	Lagnado,	2011).	Presynaptic	homeostatic	plasticity	involves	modulation	of	presynaptic	Ca2+	influx	(Frank	et	al.,	2006;	Glebov	
et	al.,	2017;	Jeans,	van	Heusden,	Al‐Mubarak,	Padamsey,	&	Emptage,	2017;	Müller	&	Davis,	2012;	Zhao	et	al.,	2011)	and	the	size	of	the	readily	
releasable	pool	(RRP)	(Müller,	Liu,	Sigrist,	&	Davis,	2012;	Wang,	Pinter,	et	al.,	2016;	Weyhersmüller,	Hallermann,	Wagner,	&	Eilers,	2011)	or	the	
recycling	pool	of	synaptic	vesicles	(Jeans	et	al.,	2017;	Kim	&	Ryan,	2010).	Thus,	there	likely	exist	ancient	presynaptic	homeostatic	plasticity	
mechanisms.

The identification of the molecular pathways underlying homeostatic plasticity is especially important because of emerging links between 
homeostatic	maintenance	of	neural	function	and	several	neurological	conditions,	such	as	epilepsy,	schizophrenia	(Bliss,	Collingridge,	&	Morris,	
2014;	Wondolowski	&	Dickman,	2013),	or	autism	spectrum	disorders	(Mullins,	Fishell,	&	Tsien,	2016).	However,	little	is	known	about	the	mo‐
lecular	mechanisms	underlying	presynaptic	homeostatic	plasticity	in	the	mammalian	CNS.	Instead,	the	signaling	systems	controlling	presynaptic	
homeostatic plasticity have been most extensively studied at the larval NMJ of Drosophila melanogaster	(Delvendahl	&	Müller,	2019).	In	this	prepa‐
ration,	genetic	or	pharmacological	perturbation	of	glutamatergic	neurotransmitter	receptors	results	 in	an	 increase	 in	neurotransmitter	release.	
Remarkably,	the	increase	in	neurotransmitter	release	precisely	scales	with	the	degree	of	receptor	impairment,	thereby	maintaining	action	potential	
(AP)‐induced	postsynaptic	excitation	at	control	levels—that	is,	in	the	absence	of	receptor	perturbation	(Frank	et	al.,	2006;	Petersen	et	al.,	1997;	
Figure	1).	Intriguingly,	this	homeostatic	upregulation	of	release	can	occur	within	minutes	after	receptor	perturbation	(Frank	et	al.,	2006).

The possibility of acute pharmacological induction and rapid expression of presynaptic homeostatic plasticity in the genetic model organ‐
ism Drosophila	(Frank	et	al.,	2006)	opened	the	door	for	genetic	screens	that	are	based	on	electrophysiological	analysis	of	synaptic	transmission	
(Brusich,	Spring,	&	Frank,	2015;	Dickman	&	Davis,	2009;	Hauswirth	et	al.,	2018;	Kikuma	et	al.,	2019;	Müller,	Pym,	Tong,	&	Davis,	2011).	At	this	
point,	we	are	able	to	take	a	retrospective	view	of	these	screens	and	the	resulting	characterized	molecules.	We	note	that	around	2,000	genetic	lines	

F I G U R E  1  Presynaptic	homeostatic	plasticity.	Top	At	the	Drosophila	NMJ,	pharmacological	or	genetic	glutamate	receptor	(GluR,	blue)	
perturbation	(illustrated	as	decreased	GluR	number)	induces	presynaptic	homeostatic	potentiation	(PHP)	of	neurotransmitter	release.	
PHP	maintains	AP‐induced	postsynaptic	muscle	excitation	around	baseline	levels	(red	arrows).	Bottom	Presynaptic	overexpression	(OE)	of	
the	vesicular	glutamate	transporter	vGlut	elevates	neurotransmitter	content	per	synaptic	vesicle	(increased	vesicle	diameter)	and	induces	
presynaptic	homeostatic	depression	(PHD)	of	neurotransmitter	release,	thereby	stabilizing	AP‐evoked	muscle	depolarization	(red	arrows)
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have	been	examined,	and	more	than	three	dozen	genetic	perturbations	with	impaired	presynaptic	homeostatic	plasticity	have	been	uncovered.	
When	scrutinized	for	further	study,	the	large	majority	of	the	identified	genes	has	been	verified	using	multiple	genetic	alleles	or	loss‐of‐function	
conditions. Many of the positives that emerged from these genetic screens point to discrete presynaptic processes that regulate neurotransmitter 
release.	Less	is	known	about	the	postsynaptic	processes	that	drive	homeostatic	signaling,	but	new	clues	are	emerging	with	regularity.

Here	we	review	recent	findings	in	the	field	of	presynaptic	homeostatic	plasticity	at	the	Drosophila	NMJ.	Given	the	progress	in	the	field	and	
the	pace	of	discovery,	we	consider	an	update	to	be	timely.	This	updated	summary	should	be	viewed	as	a	companion	to	prior	reviews	(Davis	&	
Müller,	2015;	Delvendahl	&	Müller,	2019;	Wondolowski	&	Dickman,	2013;	Frank,	2014a,	2014b).	Parallel	work	on	homeostatic	plasticity	con‐
tinues	apace	at	the	mammalian	NMJ	(Homan	&	Meriney,	2018)	and	mammalian	CNS	preparations	(Li,	Park,	Zhong,	&	Chen,	2019;	Wefelmeyer,	
Puhl,	&	Burrone,	2016).

2  | NE W PHENOMENOLOGY

2.1 | Reversibility and temperature sensitivity

Reversibility	is	a	hallmark	of	homeostatic	systems.	For	synaptic	homeostasis,	the	idea	of	reversibility	is	straightforward:	If	synaptic	transmis‐
sion	is	under	homeostatic	control,	and	if	a	specific	perturbation	of	synaptic	function	initiates	a	homeostatic	signal,	then	the	effects	of	that	
signal	should	be	reversed	once	the	perturbation	is	removed.	The	fact	that	both	presynaptic	homeostatic	potentiation	(PHP)	and	presynaptic	
homeostatic	depression	(PHD,	Figure	1;	Daniels	et	al.,	2004)	occur	at	the	Drosophila NMJ means that this synapse has the capacity to bidirec‐
tionally	regulate	neurotransmitter	output.	A	formal	demonstration	of	homeostatic	reversibility	at	the	Drosophila NMJ has not been straight‐
forward.	Since	synaptic	activity	perturbations	like	glutamate	receptor	subunit	gene	deletion	(Petersen	et	al.,	1997)	or	knockdown	(Brusich	 
et	al.,	2015)	persist	throughout	development,	they	cannot	be	simply	removed.

Conditional	 expression	 of	 a	 dominant‐negative	 glutamate	 receptor	 subunit	 transgene	 (UAS‐GluRIIAM/R)	 circumvented	 this	 problem.	
Continuous postsynaptic expression of UAS‐GluRIIAM/R	reduces	quantal	size	and	induces	PHP	(DiAntonio,	Petersen,	Heckmann,	&	Goodman,	
1999).	A	recent	study	(Yeates,	Zwiefelhofer,	&	Frank,	2017)	combined	the	temperature‐sensitive	GAL4/GAL80TS	expression	system	(McGuire,	
Le,	Osborn,	Matsumoto,	&	Davis,	2003)	with	UAS‐GluRIIAM/R expression. It was found that expression of the dominant‐negative glutamate 
receptor	subunit	at	the	beginning	of	development	initiates	PHP,	and	that	PHP	is	turned	off	after	turning	off	the	expression	of	the	dominant‐
negative	glutamate	receptor	subunit,	over	a	timescale	of	two	to	three	days	(Yeates	et	al.,	2017).	These	data	demonstrate	that	PHP	is	reversible	
at the Drosophila	NMJ.	An	additional	and	unexpected	finding	was	that	if	the	ambient	temperature	is	too	high,	the	long‐term	expression	of	PHP	
fails,	likely	due	to	aberrant	synapse	development	(Yeates	et	al.,	2017).	The	temperature	sensitive	nature	of	this	system	was	also	previously	
suggested by a blunted NMJ growth phenotype at high rearing temperature for GluRIIA	loss‐of‐function	mutants	(Sigrist,	Reiff,	Thiel,	Steinert,	
&	Schuster,	2003).	Collectively,	the	data	suggest	that	there	are	limits	to	the	homeostatic	capacity	of	the	NMJ;	if	the	synapse	is	facing	high	tem‐
perature	and	concomitant	receptor	subunit	loss,	then	the	homeostatic	mechanisms	in	place	to	maintain	postsynaptic	excitation	over	chronic	
developmental time periods are no longer able to fully compensate.

The reversibility time course of two to three days after the genetic manipulations described above is limited by the half‐life of glutamate 
receptors	(Yeates	et	al.,	2017).	It	would	be	desirable	to	test	if	PHP	were	reversible	on	shorter	time	scales.	An	intuitive	way	to	test	this	would	
be	pharmacology.	PHP	can	be	induced	on	a	timescale	of	5–10	min	by	application	of	the	glutamate	receptor	antagonist	Philanthotoxin‐433	
(PhTx),	which	causes	noncompetitive,	use‐dependent	inhibition	of	glutamate	receptors	at	the	Drosophila	NMJ	(Frank	et	al.,	2006).	However,	
since	a	significant	fraction	of	PhTx	irreversibly	blocks	glutamate	receptors	at	the	Drosophila	NMJ	(Frank	et	al.,	2006),	PhTx	cannot	be	used	to	
study	the	reversibility	of	PHP.

This technical challenge for the Drosophila	NMJ	was	recently	solved	at	the	vertebrate	NMJ.	Loss	of	human	nicotinic	acetylcholine	recep‐
tors	during	the	autoimmune	disease	myasthenia	gravis	(Cull‐Candy	et	al.,	1980)	or	pharmacological	inhibition	of	rodent	nicotinic	acetylcholine	
receptors	(Plomp	et	al.,	1992)	results	in	PHP,	similar	to	the	Drosophila	NMJ.	By	reversibly	applying	the	drug	D‐Tubocurarine	(D‐TC)	to	dissected	
mouse	tibialis	anterior	NMJs,	researchers	showed	that	the	timescales	of	PHP	induction,	expression,	and	reversal	are	fast,	all	occurring	within	
minutes	of	D‐TC	exposure	and	washout	(Wang,	Pinter,	et	al.,	2016;	Wang,	McIntosh,	&	Rich,	2018).	It	remains	unknown	if	PHP	reverses	on	
similar time scales at the Drosophila	NMJ.	Yet,	taken	together,	these	studies	suggest	that	PHP	is	reversible	at	the	mouse	and	Drosophila	NMJ,	
fulfilling	a	key	criterion	of	homeostatic	systems.	It	will	be	exciting	to	test	links	between	the	molecular	mechanisms	underlying	rapid	PHP	in‐
duction,	expression,	and	reversal.

2.2 | Target and input specificity

A	long‐standing	question	in	the	field	of	homeostatic	plasticity	has	been	how	homeostatic	signaling	controls	synaptic	transmission	on	a	spatial	
scale.	Do	homeostatic	mechanisms	act	“locally”	at	the	level	of	individual	synaptic	connections,	or	“globally”	over	a	range	of	synapses	and	cir‐
cuit	hierarchies?	At	the	larval	Drosophila	NMJ,	most	muscle	cells	receive	convergent	afferent	input	from	two	motor	neuron	types.	These	two	
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types	of	motor	neurons	either	form	“type	1b”	or	“type	1s”	boutons	with	a	low	or	high	baseline	release	probability	(Pr),	respectively	(Figure	2d;	
Kurdyak,	Atwood,	Stewart,	&	Wu,	1994).	Hence,	this	system	allows	investigating	how	glutamate	receptor	perturbation	in	the	postsynaptic	
muscle	cell	affects	release	from	two	distinct	inputs.	Newman	and	colleagues	(2017)	employed	postsynaptic	Ca2+ imaging at the Drosophila 
NMJ	to	assess	presynaptic	Pr	of	synapses	formed	by	two	motor	neurons	that	provide	convergent	input	to	the	same	muscle	cell	(Figure	2a–d;	
Newman	et	al.,	2017).	They	uncovered	that	genetic	glutamate	receptor	perturbation	augmented	Pr	from	the	motor	neuron	with	low	baseline	Pr 
(1b	boutons;	Figure	2c,d).	By	contrast,	release	from	the	neuron	with	high	baseline	Pr	(1s	boutons)	was	largely	unchanged	after	glutamate	recep‐
tor	inhibition	(Figure	2c,d).	These	data	indicate	that	presynaptic	homeostatic	plasticity	is	“input	specific”	at	the	Drosophila	NMJ,	at	least	after	
genetic	receptor	perturbation	(Figure	2d).	The	study	also	revealed	a	decrease	in	postsynaptic	phosphorylated	CaMKII	levels	(pCaMKII)	upon	
genetic	glutamate	receptor	impairment,	which	occurred	opposite	to	synapses	made	by	1b	boutons	with	increased	Pr	(Newman	et	al.,	2017).	
These	results	suggest	an	input‐specific,	negative	relationship	between	the	degree	of	homeostatic	Pr	potentiation	and	postsynaptic	CaMKII	
phosphorylation upon genetic glutamate receptor perturbation. It remains to be determined if the homeostatic increase in release from the 
motor	neuron	with	low	baseline	Pr	alone	is	sufficient	to	maintain	AP‐induced	postsynaptic	potential	changes	at	control	levels.

The Drosophila	NMJ	also	permits	testing	if	compensatory	release	modulation	is	“target‐specific,”	because	most	motor	neurons	innervate	
more	than	one	muscle	cell.	Davis	and	Goodman	(1998)	biased	innervation	of	a	motor	neuron	contacting	two	postsynaptic	muscles	toward	
one	muscle	by	overexpressing	Fascilin	II	in	the	respective	muscle	cell	(Davis	&	Goodman,	1998).	Remarkably,	the	motor	neuron	had	reduced	
Pr	onto	the	hyperinnervated	muscle,	while	the	hypoinnervated	muscle	showed	increased	quantal	size.	These	results	imply	that	homeostatic	
modulations	are	target	specific.	In	the	case	of	hypoinnervation	and	increased	quantal	size,	the	phenomenon	is	somewhat	reminiscent	of	ho‐
meostatic	modulations	of	receptor	abundance	reported	for	mammalian	synaptic	preparations	(Turrigiano	et	al.,	1998).	Indeed,	a	recent	paper	
at the Drosophila	NMJ	demonstrated	that	the	increased	quantal	size	of	hypoinnervated	muscle	cells	is	due	to	increased	glutamate	receptor	
abundance	(Goel	&	Dickman,	2018).

Another	recent	study	extended	these	concepts	by	investigating	the	“target	specificity”	of	PHP	upon	glutamate	receptor	inhibition	(Li,	Goel,	
Chen,	et	al.,	2018).	The	authors	downregulated	the	GluRIIA	subunit	by	RNA	interference	in	only	one	of	two	muscle	cells	innervated	by	the	
same	motor	neuron	(Figure	2d).	It	was	found	that	release	is	predominantly	augmented	at	active	zones	of	motor	neuron	branches	contacting	the	

F I G U R E  2   Input	and	target	specificity	of	PHP.	(a)	Cumulative	AP‐evoked	quantal	release	location	heat	map	derived	from	postsynaptic	
Ca2+ imaging at the Drosophila	NMJ	(SynapGCaMP6f;	200	trials	at	0.1	Hz).	Inset	shows	baseline	SynapGCaMP6f	fluorescence.	Local	
release	probability	(Pr	=	number	of	responses/number	of	trials	at	individual	sites)	is	represented	as	a	color	scale.	Reprinted	and	adapted	
from	(Newman	et	al.,	2017)	with	permission	from	Elsevier.	(b)	Ca2+	imaging	traces	(ΔF/F)	for	the	synapse	indicated	with	the	arrowhead	in	
(a)	during	40	trials.	Reprinted	and	adapted	from	(Newman	et	al.,	2017)	with	permission	from	Elsevier.	(c)	Cumulative	probability	for	pooled	
evoked	single	synapse	Pr	at	wild‐type	(WT)	and	GluRIIASP16	1b	NMJs	(left)	and	1s	NMJs	(right).	Note	the	increased	Pr at type 1b boutons of 
GluRIIA	mutants.	Reprinted	and	adapted	from	(Newman	et	al.,	2017)	with	permission	from	Elsevier.	(d)	Cartoon	illustrating	PHP	input	and	
target	specificity.	At	the	Drosophila	NMJ,	two	motor	neurons	(“type	1s”	and	“type	1b”	synapses)	innervate	two	muscle	cells	(“Muscle	6”	and	
“Muscle	7”).	PHP	(red)	is	predominantly	expressed	at	type	1b	motor	neuron	boutons	contacting	the	muscle	cell	with	perturbed	glutamate	
receptor	function	(“GluRIIARNAi”; G‐14‐Gal4 > UAS‐GluRIIARNAi,	(Li,	Goel,	Chen,	et	al.,	2018).	This	is	correlated	with	reduced	phosphorylated	
CaMKII	levels	(“pCaMKII,”	green;	light	green	indicates	reduced	pCaMKII	levels)

(a)

(c) (d)

(b)
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muscle	with	impaired	glutamate	receptor	function	(Figure	2d).	This	implies	that	a	given	presynaptic	motor	neuron	can	differentially	regulate	
release depending on the glutamate receptor function of the postsynaptic partner cell. The same study provided evidence for target‐specific 
homeostatic	modulation	of	phosphorylated	CaMKII	levels,	RRP	size,	and	functional	release	sites.	The	results	of	this	investigation	suggest	that	
PHP	induction	and	expression	mechanisms	are	locally	transmitted	and	restricted	to	specific	branches	of	the	presynaptic	motor	neuron	and	
the	postsynaptic	muscle	cell	with	reduced	glutamate	receptor	activity.	Together,	the	experimental	evidence	argues	against	“global,”	cell‐wide	
PHP	signaling	at	the	Drosophila	NMJ.	It	will	be	interesting	to	assess	if	local	PHP	signaling	occurs	even	at	smaller	space	scales,	possibly	at	the	
level	of	individual	active	zones	and	postsynaptic	densities.

2.3 | PHD versus PHP

Most work on presynaptic homeostatic plasticity has focused on the mechanisms of homeostatic potentiation of release upon neural activity 
perturbation	(PHP;	Figure	1).	Yet,	there	is	also	evidence	for	presynaptic	homeostatic	depression	of	release	(PHD;	Figure	1).	Overexpression	of	
the	vesicular	glutamate	transporter	vGlut	in	Drosophila	motor	neurons	causes	larger	glutamatergic	vesicles	(Daniels	et	al.,	2004).	As	a	result,	
one	observes	increased	quantal	size	and	decreased	quantal	content,	thereby	precisely	maintaining	AP‐evoked	postsynaptic	potentials	at	base‐
line	levels	(Figure	1).	It	had	remained	elusive	if	opposing	mechanisms	drive	PHP	and	PHD.	On	the	one	hand,	the	two	processes	result	in	the	
exact	opposite	outcomes	with	regard	to	presynaptic	release.	On	the	other	hand,	there	are	distinct	differences	between	the	induction	of	PHP	
and	PHD.	While	PHP	can	be	induced	by	postsynaptic	receptor	impairment	(see	Frank,	2014a,	for	a	summary),	there	is	so	far	no	evidence	that	
PHD	compensates	for	postsynaptic	perturbations	that	increase	quantal	size	at	the	Drosophila	NMJ	(Davis,	DiAntonio,	Petersen,	&	Goodman,	
1998;	DiAntonio	et	al.,	1999;	Petersen	et	al.,	1997).	This	brings	up	the	question	if	PHD	is	achieved	through	retrograde	signaling	mechanisms.

A	 recent	 study	demonstrated	 that	 the	vGlut	 overexpression‐induced	decrease	 in	 release	during	PHD	correlates	with	 reduced	 levels	 of	 a	
transgenically	expressed	GFP‐tagged	CaV2 Ca2+	channel	subunit	(Cacophony‐GFP)	and	decreased	AP‐induced	presynaptic	Ca2+	 influx	(Gaviño,	
Ford,	Archila,	&	Davis,	2015).	As	PHP	requires	enhanced	presynaptic	Ca2+	influx	(Frank	et	al.,	2006;	Müller	&	Davis,	2012)	that	is	correlated	with	
increased levels of voltage‐gated Ca2+	channels	(Gratz	et	al.,	2019;	Li,	Goel,	Wondolowski,	Paluch,	&	Dickman,	2018),	these	data	suggest	that	PHD	
could	be	implemented	in	an	opposite	type	of	mechanism	as	PHP.	However,	the	same	study	(Gaviño	et	al.,	2015),	as	well	as	another	recent	study	(Li,	
Goel,	Wondolowski,	et	al.,	2018),	uncovered	that	genes	that	are	required	for	PHP	are	dispensable	for	PHD,	implying—at	least	in	part—different	mo‐
lecular	pathways.	Moreover,	both	studies	revealed	that	glutamate	receptor	perturbation	still	results	in	enhanced	release	at	vGlut‐overexpressing	
synapses,	suggesting	that	these	two	forms	of	synaptic	plasticity	act	independently	to	bidirectionally	modulate	presynaptic	release	in	a	homeostatic	
fashion.	Finally,	unlike	PHP,	PHD	does	not	seem	to	be	an	input	specific	process	(Li,	Goel,	Wondolowski,	et	al.,	2018).

New	work	has	reported	that	endogenous	synaptic	protein	levels	of	the	active	zone	protein	Bruchpilot	(Brp,	an	ELKS/CAST	homolog,	(Kittel	
et	al.,	2006))	and	CaV2/Cacophony	do	not	change	upon	PHD	induction	(Gratz	et	al.,	2019).	These	data	are	consistent	with	a	model	in	which	the	
deceased	release	associated	with	PHD	is	executed—at	least	in	part—through	functional	modulations	of	existing	active	zone	components.	Are	
those	modulations	executed	through	muscle‐to‐nerve	retrograde	signaling?	Work	from	Li	and	colleagues	posits	that	an	autocrine	glutamate	
homeostat	might	be	responsible	for	effecting	PHD	at	the	NMJ	(Li,	Goel,	Wondolowski,	et	al.,	2018).	This	model	awaits	affirmative	data—that	
is,	a	mechanism	that	signals	excess	cleft	glutamate	to	the	motor	neuron	to	dampen	presynaptic	release.

There	are	relevant	parallels	to	vertebrate	models.	At	mouse	hippocampal	synapses,	prolonged	elevation	of	neural	activity	upon	Gabazine	
treatment induces a homeostatic decrease in presynaptic Ca2+	influx	and	release	(Jeans	et	al.,	2017;	Zhao	et	al.,	2011),	which	is	mediated	by	
the activity of CaV2.1	(P/Q)‐type	Ca

2+	channels	(Jeans	et	al.,	2017).	There	is	also	evidence	for	a	homeostatic	reduction	of	neurotransmitter	
release	after	prolonged	depolarization	at	hippocampal	synapses	(Moulder,	Jiang,	Taylor,	Olney,	&	Mennerick,	2006).	This	reduction	depends	on	
the	ubiquitin–proteasome	system	(UPS)	and	is	correlated	with	decreased	protein	levels	of	Munc13‐1	and	Rim1	(Jiang	et	al.,	2010).	Moreover,	
effective	recovery	from	homeostatic	reduction	of	release	depends	on	adenylyl	cyclase	activity	(Conti	et	al.,	2009).	Thus,	PHD	can	be	induced	
by several activity perturbations and may involve different molecular mechanisms. Future work should address if and how these different 
forms	of	PHD	are	related	to	one	another.

3  | NE W GENES AND MECHANISMS

3.1 | Presynaptic mechanisms

3.1.1 | Physiology and genes

Most work on presynaptic homeostatic plasticity at the Drosophila	NMJ	has	focused	on	the	presynaptic	mechanisms	underlying	PHP.	Two	
major	presynaptic	parameters	are	modulated	during	PHP—RRP	size	and	Pr	(Davis	&	Müller,	2015).	There	is	evidence	that	homeostatic	Pr poten‐
tiation is driven by enhanced presynaptic Ca2+	influx	(Müller	&	Davis,	2012;	Figure	3a).	Several	genes,	which	have	been	discovered	by	genetic	
screens,	have	been	linked	to	homeostatic	regulation	of	RRP	size	and/or	Pr	(for	a	recent	review	see	Delvendahl	&	Müller,	2019).	Two	studies	
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F I G U R E  3  Molecular	mechanisms	underlying	PHP.	(a)	Cartoon	of	a	synapse	under	control	conditions	(left)	and	after	GluR	perturbation	
(right).	Glutamate	receptor	perturbation	enhances	presynaptic	Ca2+	influx	(red)	(Frank	et	al.,	2006;	Müller	&	Davis,	2012)	and	RRP	size	
(green)	(Weyhersmüller	et	al.,	2011).	Cav2.1	(cacophony,	cac;	Frank	et	al.,	2006;	Müller	&	Davis,	2012),	α2δ‐3	(Wang,	Jones,	et	al.,	2016),	
endostatin/multiplexin	(Wang	et	al.,	2014),	and	rim‐binding	protein	(rbp)	(Müller	et	al.,	2015)	have	been	implicated	in	homeostatic	regulation	
of presynaptic Ca2+	influx.	The	following	genes	have	been	implicated	in	RRP	size	regulation	under	baseline	conditions	and/or	during	PHP:	
The	presynaptic	proteasome	(“26S”)	(Wentzel	et	al.,	2018),	fife	(Bruckner	et	al.,	2017),	mctp	(Genç	et	al.,	2017),	mical	(Orr	et	al.,	2017),	pgrp, 
tak1	(Harris	et	al.,	2015,	2018),	dKaiR1D	(Kiragasi	et	al.,	2017),	α2δ‐3	(Wang,	Jones,	et	al.,	2016),	plexB/sema2b	(Orr	et	al.,	2017),	syntaxin‐1A 
(syx‐1A),	unc18	(rop)	(Ortega	et	al.,	2018),	rbp	(Müller	et	al.,	2015),	and	rim	(Müller	et	al.,	2012).	Retrograde	PHP	signaling	involves	multiplexin/
endostatin	(Wang	et	al.,	2014)	and	Sema‐2B/Plexin	B	(Orr	et	al.,	2017).	PHP	requires	postsynaptic	mTOR	signaling	(Goel	et	al.,	2017;	Penney	
et	al.,	2012),	class	II	PI3	kinase	function	(Hauswirth	et	al.,	2018),	and	reduced	pCaMKII	levels	(Goel	et	al.,	2017;	Li,	Goel,	Chen,	et	al.,	2018;	
Newman	et	al.,	2017).	Note	that	the	cartoon	only	summarizes	recent	genes	implicated	in	PHP.	More	molecular	PHP	mechanisms	are	
reviewed	in	(Davis	&	Müller,	2015;	Delvendahl	&	Müller,	2019;	Wondolowski	&	Dickman,	2013;	Frank,	2014a).	(b)	At	wild‐type	NMJs	(gray),	
application	of	the	glutamate	receptor	antagonist	philanthotoxin‐433	(“PhTX”)	decreases	miniature	EPSP	amplitudes	(inset)	and	enhances	
presynaptic	release,	thereby	maintaining	AP‐evoked	EPSP	amplitudes	at	control	levels.	Acute	or	sustained	proteasome	perturbation	(blue)	
enhances	presynaptic	release	in	the	absence	of	glutamate	receptor	inhibition	and	blocks	PHP.	Reprinted	and	adapted	from	(Wentzel	et	al.,	
2018)	with	permission	under	a	Creative	Commons	Attribution	4.0	License	(https	://creat	iveco	mmons.org/licen	ses/by/4.0/).	(c)	Presynaptic	
Ca2+	imaging	(motor	neuron	boutons	were	loaded	with	the	nonmembrane	permeable	Ca2+	indicator	Oregon‐Green‐BAPTA‐1,	“OGB‐1,”	and	
the	reference	dye	Alexa	568)	revealed	that	presynaptic	proteasome	perturbation	(elavc155‐Gal4 > UAS‐DTS)	results	in	increased	amplitudes	
of presynaptic Ca2+	transients	upon	single	AP	stimulation.	These	data	suggest	that	presynaptic	proteasomal	degradation	has	the	capacity	to	
regulate Ca2+	influx.	Reprinted	and	adapted	from	(Wentzel	et	al.,	2018)	with	permission	under	a	Creative	Commons	Attribution	4.0	License	
(https	://creat	iveco	mmons.org/licen	ses/by/4.0/)

(a)

(b)

(c)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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identified	the	first	genes	that	are	required	for	both,	the	homeostatic	control	of	RRP	size	and	presynaptic	Ca2+ influx. These genes encode 
RIM‐binding	protein	(RBP;	Müller,	Genç,	&	Davis,	2015)	and	the	auxiliary	voltage‐gated	Ca2+ channel subunit α2δ‐3	(Wang,	Jones,	Whippen,	
&	Davis,	2016),	two	proteins	that	biochemically	interact	with	presynaptic	voltage‐gated	Ca2+	channels.	There	is	also	evidence	that	RIM,	which	
also binds to the C‐terminus of voltage‐gated Ca2+	channels,	participates	in	homeostatic	regulation	of	RRP	size,	but	not	presynaptic	Ca2+ influx 
(Müller	et	al.,	2012).	This	suggests	that	the	homeostatic	modulations	of	RRP	size	and	presynaptic	Ca2+ influx are genetically separable.

A	major	factor	determining	Pr is the relative “coupling distance” between voltage‐gated Ca2+ channels and the vesicular Ca2+ sensor for 
synaptic vesicle fusion. The slow Ca2+	chelator	EGTA	can	be	used	to	assess	“Ca2+	influx‐release	coupling,”	because	it	predominantly	interferes	
with the release of synaptic vesicles that are “loosely‐coupled” to Ca2+	 influx.	Several	studies	revealed	that	PHP	 is	disrupted	after	 loss	of	
molecules that confer tight coupling between presynaptic Ca2+	influx	and	release	under	baseline	conditions,	such	as	α2δ‐3	(T.	Wang,	Jones,	et	
al.,	2016), mctp	(Genç	et	al.,	2017), rbp	(Müller	et	al.,	2015),	and	rim	(Müller	et	al.,	2012).	One	of	the	recently	discovered	genes	promoting	tight	
coupling	and	PHP	is	fife,	a	Drosophila	Piccolo‐RIM	homolog	(Bruckner	et	al.,	2017;	Figure	3a).	In	addition	to	tightly‐coupled	synaptic	vesicles,	
recent	experimental	evidence	suggests	a	role	for	“loosely‐coupled”	vesicles	in	PHP	(Wentzel,	Delvendahl,	Sydlik,	Georgiev,	&	Müller,	2018).	
Specifically,	it	was	found	that	release	at	NMJs	undergoing	PHP	is	more	sensitive	to	EGTA‐AM,	and	that	EGTA‐sensitive	vesicles	are	required	
for	PHP	(Wentzel	et	al.,	2018)	(but	see	Genç	et	al.,	2017).	This	implies	that	loosely	coupled	vesicles	have	to	be	recruited	in	addition	to	tightly	
coupled	vesicles	to	potentiate	release	during	PHP	(see	also	paragraph	“Proteostasis”).

Among	the	more	recently	identified	genes	that	are	required	for	homeostatic	release	modulation	is	pgrp,	a	gene	encoding	an	evolutionarily	
conserved	innate	immune	receptor	(Harris	et	al.,	2015).	The	authors	demonstrate	that	presynaptic	PGRP	is	required	for	homeostatic	RRP	size	
expansion	(Figure	3a).	Moreover,	several	molecules	that	act	downstream	of	PGRP	were	implicated	in	PHP	(Harris,	Fetter,	Brasier,	Tong,	&	Davis,	
2018).	It	was	found	that	tak1	(map3K)	selectively	controls	the	rapid	expression	of	PHP.	Together,	these	findings	suggest	links	between	innate	
immune	and	PHP	signaling.	Another	gene	that	has	been	recently	linked	to	PHP	is	mctp	(Multiple	C2	Domain	Protein	with	Two	Transmembrane	
Region,	Figure	3a;	Genç	et	al.,	2017).	MCTP	was	shown	to	localize	to	the	presynaptic	ER,	and	to	regulate	homeostatic	potentiation	of	release	
downstream of presynaptic Ca2+	influx	(Genç	et	al.,	2017;	Figure	3a).	The	study	also	demonstrates	that	MCTP’s	C2‐Ca2+‐binding domains are 
required	for	PHP.	Together	with	the	localization	of	this	Ca2+	sensor,	these	results	imply	a	role	for	ER‐related	Ca2+	signaling	in	PHP.	In	addition,	
a	recent	investigation	revealed	that	the	concerted	action	of	Unc18,	Syntaxin1A	and	RIM	maintain	a	constant	ratio	between	primed	to	super‐
primed	synaptic	vesicles	during	PHP	(Ortega,	Genç,	&	Davis,	2018;	Figure	3a).	Another	study	implicated	an	uncharacterized	presynaptic	gluta‐
mate	receptor	in	PHP	(Kiragasi,	Wondolowski,	Li,	&	Dickman,	2017).	Presynaptic	expression	of	this	kainate	receptor	(dKaiR1D)	was	found	to	be	
required	for	rapid	and	sustained	PHP	expression,	but	not	for	the	acute	induction	of	PHP	(Figure	3a).	Notably,	dKaiR1D	localizes	to	presynaptic	
active	zones,	where	it	was	shown	to	conduct	Ca2+	(Kiragasi	et	al.,	2017),	indicating	that	autocrine	presynaptic	Ca2+ signaling through this glu‐
tamate	receptor	may	participate	in	PHP.	Intriguingly,	both,	dKaiR1D and mctp	promote	PHP	at	low	extracellular	Ca2+ levels. This indicates that 
different	molecules	may	control	PHP	at	different	Ca2+	concentrations.	Thus,	a	number	of	new	genes	have	been	identified	to	be	required	for	
homeostatic	regulation	of	release,	and	some	of	these	genes	have	been	linked	to	specific	presynaptic	mechanisms.

3.1.2 | Proteostasis

Despite	progress	 in	discovering	new	genes	that	are	required	for	PHP,	comparably	 little	 is	known	about	how	the	proteins	encoded	by	the	
identified	genes	are	regulated	during	PHP.	A	recent	study	tested	if	synaptic	proteostasis	plays	a	role	in	PHP.	Wentzel	and	colleagues	(2018)	
demonstrated	that	presynaptic	protein	degradation	is	needed	for	rapid	and	long‐term	PHP	expression.	It	was	found	that	synaptic	proteasome	
inhibition	increases	neurotransmitter	release	(Figure	3b),	presynaptic	Ca2+	influx	(Figure	3c)	and	RRP	size,	which	occludes	release	potentia‐
tion	during	PHP	(Figure	3b).	Moreover,	it	was	shown	that	the	vesicles	that	are	recruited	upon	proteasome	perturbation	and	PHP	are	more	
EGTA	sensitive,	implying	looser	Ca2+	influx‐release	coupling	(Wentzel	et	al.,	2018)	(see	above).	Interestingly,	homeostatic	recruitment	of	these	
loosely	coupled	vesicles	requires	the	schizophrenia	susceptibility	gene	dysbindin	(dysb),	a	gene	previously	identified	to	be	required	for	PHP	by	
a	genetic	screen	(Dickman	&	Davis,	2009).	Future	work	should	address	how	proteasomal	degradation	is	involved	in	homeostatic	regulation	of	
neurotransmitter release.

3.1.3 | Active zone structure

How	do	the	physiological	changes	during	PHP	manifest	on	the	structural	 level?	Using	STED	and	confocal	microscopy,	Weyhersmüller	and	
colleagues	(Weyhersmüller	et	al.,	2011)	provided	evidence	that	the	abundance	of	the	presynaptic	active	zone	(AZ)	protein	bruchpilot	(Brp)	is	
slightly	increased	after	acute	or	chronic	glutamate	receptor	perturbation	(Figure	4a,b).	Several	labs	confirmed	increased	Brp	abundance	dur‐
ing	rapid	or	sustained	PHP	expression	(Böhme	et	al.,	2019;	Goel,	Li,	&	Dickman,	2017;	Gratz	et	al.,	2019).	Intriguingly,	acute	and	prolonged	
glutamate receptor perturbation also increases the fluorescence intensity of fluorescently‐tagged presynaptic voltage‐gated Ca2+ channels 
(Figure	4;	Gratz	et	al.,	2019;	Li,	Goel,	Wondolowski,	et	al.,	2018).	Moreover,	the	fluorescence	intensity	of	antibody	stainings	of	several	other	
presynaptic	proteins—RBP,	Unc13A,	and	Syntaxin‐1A	(Syx‐1A)—	increased	after	acute	glutamate	receptor	inhibition	(Böhme	et	al.,	2019).	This	
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implies	that	the	abundance	of	these	synaptic	proteins	is	modulated	on	a	minutes‐long	time	scale,	depending	on	the	perturbation	of	glutamate	
receptors.	Rapid	remodeling	of	the	synaptic	abundance	of	these	proteins	was	blocked	at	synapses	lacking	Brp,	RBP,	Unc13A,	App‐like	interact‐
ing	protein‐1	(aplip‐1),	a	selective	RBP	transport‐adaptor,	as	well	as	serine–arginine	(SR)	protein	kinase	at	location	79D	(Srpk79D29)	Srpk79D	
(Böhme	et	al.,	2019).	Intriguingly,	except	for	rbp and unc13A,	 loss‐of‐function	mutations	in	these	genes	did	not	impair	the	rapid	expression	
of	PHP,	suggesting	partial	separation	between	functional	and	structural	changes	during	PHP	expression.	Sustained	glutamate	receptor	 in‐
hibition in the GluRIIASP16	mutant	background	increased	the	fluorescence	 intensity	of	antibodies	targeting	Brp,	RBP,	Unc13A,	Syx‐1A,	and	
Unc18	(Böhme	et	al.,	2019)	or	GFP‐tagged	Cacophony	(Gratz	et	al.,	2019;	Li,	Goel,	Chen,	et	al.,	2018),	implying	a	sustained	increase	in	the	
levels	of	these	proteins	during	PHP.	In	this	case,	three	of	the	above‐mentioned	genes	that	have	been	tested	for	PHP	in	the	GluRIIASP16 mutant 
background—cacophony	(Frank	et	al.,	2006),	Brp	(Böhme	et	al.,	2019;	Penney	et	al.,	2012),	and	Srpk79D	(Böhme	et	al.,	2019)—are	required	for	
PHP,	indicating	a	correlation	between	structural	and	functional	changes	after	sustained	glutamate	receptor	perturbation.	Recently,	Goel	et	
al.	 (2019)	uncovered	a	role	for	Arl8‐dependent	axonal	transport	of	synaptic	material	 in	AZ	remodeling	during	PHP.	Similar	to	Böhme	et	al.	
(2019),	Arl8‐dependent	structural	plasticity	was	dispensable	for	rapid	PHP	expression,	but	required	for	sustained	PHP	expression.	Given	that	
AZ	remodeling	can	be	uncoupled	from	rapid	PHP	expression,	it	remains	to	be	determined	how	structural	changes	relate	to	PHP,	and	which	
mechanisms regulate the abundance of these proteins. The finding of a role for axonal transport in the regulation of synaptic protein levels 
constitutes an interesting starting point.

3.2 | Retrograde, transsynaptic signaling

At	the	Drosophila	NMJ,	PHP	likely	involves	retrograde	signaling	from	the	postsynaptic	muscle	cell	to	the	presynaptic	motor	neuron	(Figure	3a).	
Several	lines	of	evidence	support	a	model	of	retrograde	PHP	signaling:	first,	genetic	manipulations	targeting	postsynaptic	receptor	function—
including	ablation	of	the	GluRIIA	subunit	(Davis	&	Goodman,	1998;	DiAntonio	et	al.,	1999;	Petersen	et	al.,	1997)	or	postsynaptic	expression	
of	RNAi	transgenes	targeting	glutamate	receptor	subunits	(Brusich	et	al.,	2015;	Li,	Goel,	Chen,	et	al.,	2018)—induce	changes	in	presynaptic	
release.	One	long‐standing	puzzle	in	the	field	has	been	the	identity	of	“the	retrograde	signal”	that	conveys	information	from	the	muscle	to	the	
nerve—or	alternatively,	the	multiple	signals	that	are	used	by	the	NMJ	at	distinct	sites	or	developmental	time	points.	Because	PHP	is	quantita‐
tive	and	precise,	these	signaling	pathways	likely	contain	information	about	the	magnitude	of	the	postsynaptic	impairment.

Transsynaptic	signaling	processes	have	been	characterized	that	satisfy	some	of	the	requirements	of	a	retrograde	signal.	Drosophila mul‐
tiplexin	 is	one	such	molecule.	Multiplexin	 is	a	homolog	of	Collagen	XV/XVIII;	 in	 the	context	of	 tumor	cell	 lines,	 it	 is	known	that	Collagen	
XVIII	 is	 cleaved	 to	 release	 the	anti‐angiogenesis	 factor	endostatin	 (Felbor	et	al.,	2000).	At	 the	Drosophila	NMJ,	 loss	of	multiplexin	blocks	
both,	 the	 rapid	expression	and	 the	sustained	maintenance	of	PHP	 (Figure	3a;	Wang,	Hauswirth,	Tong,	Dickman,	&	Davis,	2014).	This	de‐
fect is rescued by expressing wild‐type multiplexin	 transgenes	either	 in	the	muscle	or	the	motor	neuron	 in	the	mutant	background	(Wang	
et	al.,	2014).	This	suggests	 that	multiplexin	 is	 involved	 in	 transsynaptic	PHP	signaling.	However,	based	on	 the	 finding	 that	presynaptic	or	

F I G U R E  4  Structural	changes	during	PHP.	(a)	Confocal	images	of	immunostainings	against	the	presynaptic	protein	Bruchpilot	(BRP)	
and	Cacophony	(Cac)	of	representative	NMJs	transgenically	overexpressing	Cac‐GFP	(elavc155‐Gal4 > UAS‐cac‐GFP)	in	wild	type	(WT)	
and GluRIIASP16	mutants	(GluRIIASP16).	Note	the	increased	BRP	and	Cacophony	fluorescence	intensity	in	GluRIIASP16	mutants	(red	data	in	
cumulative	frequency	plots).	Reprinted	and	adapted	from	(Li,	Goel,	Wondolowski,	et	al.,	2018)	with	permission	from	Elsevier.	(b)	Cartoon	
summarizing	structural	changes	during	PHP.	GluR	(blue)	perturbation	increases	Ca2+	channel	levels	(red)	and	Brp	abundance	(green).	Further	
structural	changes	during	PHP	are	summarized	in	the	section	“Active zone structure”

(a)

(b)
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postsynaptic multiplexin	expression	restores	PHP,	it	is	unknown	if	endogenous	multiplexin	is	an	instructive	muscle‐to‐nerve	retrograde	PHP	
signal. Drosophila	multiplexin	contains	Thrombospondin‐like	domains	(Meyer	&	Moussian,	2009),	and	in	the	context	of	vertebrate	CNS	synap‐
togenesis,	Thrombospondin	has	been	proposed	to	act	as	an	extracellular	signal	that	binds	to	the	α2δ subunit of voltage‐gated Ca2+ channels 
(Eroglu	et	al.,	2009).	Interestingly,	at	the	Drosophila	NMJ,	loss‐of‐function	α2δ‐3	alleles	block	PHP	(Wang,	Jones,	et	al.,	2016),	and	multiplexin	
is required for homeostatic control of presynaptic Ca2+	influx	(Wang	et	al.,	2014).

A	major	 new	 finding	 in	 terms	of	 how	 retrograde	 signaling	 governs	PHP	at	 the	Drosophila NMJ arose from a recent study of classical 
axon	guidance	molecules,	the	semaphorins	and	plexins,	with	new	roles	revealed	for	these	molecules	 in	the	context	of	PHP	(Orr,	Fetter,	&	
Davis,	2017).	The	semaphorin	2b	(Sema2b)	signaling	molecule	and	its	receptor	plexin	B	(PlexB)	act	as	a	ligand–receptor	pair	required	for	PHP	
(Figure	3a;	Orr	et	al.,	2017).	At	the	NMJ,	Sema2b	secreted	from	muscle	acts	upon	PlexB	in	the	neuron	to	induce	PHP	(Orr	et	al.,	2017).	This	is	
an	instructive	process,	as	acute	application	of	exogenous	Sema2b	to	the	NMJ	induces	an	increase	in	quantal	content	on	its	own,	in	a	way	that	
depends	upon	normal	PlexB	activity	(Orr	et	al.,	2017).	Thus,	the	axon	guidance	functions	of	Sema2b–PlexB	may	have	been	co‐opted	in	sup‐
port	of	PHP	at	the	NMJ.	Indeed,	canonical	downstream	activity	of	the	cytoplasmic	actin	regulator	Mical	also	mediates	PHP	(Orr	et	al.,	2017).

Bone	morphogenetic	protein	(BMP)	activity	is	another	intriguing	extracellular	signal.	Past	work	has	shown	that	BMP	plays	a	complex	set	
of	roles	at	the	NMJ,	governing	both	homeostatic	synaptic	plasticity	at	the	NMJ	and	NMJ	development	(Goold	&	Davis,	2007;	Haghighi	et	al.,	
2003;	McCabe	et	al.,	2003).	Recent	work	at	the	NMJ	has	added	molecular	detail,	implicating	a	possible	role	at	the	presynapse	for	the	BMP	
effector	molecule	Mothers	against	decapentaplegic	(Mad).	By	NMJ	immunostaining,	phospho‐Mad	(pMad)	levels	diminish	at	the	presynaptic	
neuron	when	muscle	GluRIIA‐containing	receptors	are	lost	(Sulkowski,	Kim,	&	Serpe,	2014).	This	positive	correlation	between	pMad	protein	
levels	at	presynaptic	sites	and	GluRIIA	abundance	in	the	muscle	works	in	the	reciprocal	direction,	as	specific	reduction	of	presynaptic	pMad	
also	causes	a	reduction	of	GluRIIA‐containing	receptors	(Sulkowski	et	al.,	2014).	Since	loss	of	GluRIIA	constitutes	a	well‐known	homeostatic	
challenge	that	induces	PHP,	the	BMP‐related	signaling	mechanisms	that	control	neuronal	pMad	at	synaptic	sites	could	be	relevant.

Future	work	should	address	how	these	transsynaptic	signaling	processes	 integrate	with	one	another,	and	 if	other	molecular	pathways	
participate	in	trans‐synaptic	PHP	signaling.	Does	PHP	signaling	modulate	postsynaptic	secretion	of	diffusible	factors,	such	as	Sema2b	(Orr	 
et	al.,	2017),	or	does	it	also	involve	signaling	via	transsynaptic	molecules	previously	implicated	in	PHP,	such	as	cell‐adhesion	molecules?	It	will	
be exciting to elucidate how these retrograde signaling systems encode the magnitude of glutamate receptor impairment.

3.3 | Postsynaptic mechanisms

The	majority	of	genes	that	have	been	implicated	in	PHP	at	the	Drosophila	NMJ	were	shown	to	regulate	neurotransmitter	release	(Delvendahl	
&	Müller,	2019).	Comparably	little	is	known	about	postsynaptic	molecular	mechanisms	underlying	PHP.

Several	lines	of	evidence	suggest	a	regulatory	role	of	postsynaptic	CaMKII	in	PHP	(Figure	3a):	Postsynaptic	expression	of	a	constitutively	
active	CaMKII	transgene	impairs	long‐term	PHP	expression	(Haghighi	et	al.,	2003;	Li,	Goel,	Chen,	et	al.,	2018).	Two	groups	recently	reported	
a	decreased	phosphorylation	state	of	CaMKII	(pCaMKII)	in	the	muscle	cell	upon	long‐term	glutamate	receptor	perturbation	(Goel	et	al.,	2017;	
Li,	Goel,	Chen,	et	al.,	2018;	Newman	et	al.,	2017;	see	Section	2.2.	above).	PHP	can	be	induced	in	the	absence	of	extracellular	Ca2+	(Goel	et	al.,	
2017),	and	the	decrease	in	pCaMKII	levels	after	glutamate	receptor	inhibition	occurs	in	the	absence	of	extracellular	Ca2+	(Goel	et	al.,	2017).	
This indicates that decreased Ca2+ influx through Ca2+‐permeable	 glutamate	 receptors	 is	 unlikely	 involved	 in	 inducing	PHP	and	 reducing	
pCaMKII.

Further	studies	have	demonstrated	postsynaptic	roles	for	a	discrete	set	of	molecules	in	PHP	expression,	including	canonical	BMP	signal‐
ing	components	(Goold	&	Davis,	2007),	a	regulatory	network	of	Src‐family	tyrosine	kinases	(Spring,	Brusich,	&	Frank,	2016),	as	well	as	the	
Drosophila	homologs	of	proteins	known	to	regulate	cap‐dependent	translation,	target	of	rapamycin	(TOR),	S6	kinase	(S6K),	eIF43,	and	4E‐BP	
(Kauwe	et	al.,	2016;	Penney	et	al.,	2012).	Recently,	 it	was	 found	 that	postsynaptic	glutamate	 receptor	 inhibition	and	postsynaptic	mTOR	
overexpression	enhance	release	through	similar	presynaptic	mechanisms	(Figure	3a;	Goel	et	al.,	2017).	However,	while	postsynaptic	gluta‐
mate	receptor	impairment	resulted	in	decreased	pCaMKII	levels,	this	was	not	observed	after	postsynaptic	mTOR	overexpression	(Goel	et	al.,	
2017).	This	indicates	that	postsynaptic	glutamate	receptor	impairment	and	mTOR	signaling	likely	control	presynaptic	release	through	different	
pathways.

An	electrophysiology‐based	genetic	screen	identified	a	postsynaptic	role	for	class	II	PI3K	in	PHP	(Figure	3a;	Hauswirth	et	al.,	2018).	The	
results	of	this	study	suggest	that	postsynaptic	class	II	PI3K	regulates	endosomal	PI3P	levels,	which	in	turn	recruit	the	small	GTPase	Rab11	to	
recycling	endosomes.	Thus,	postsynaptic	vesicle	trafficking	likely	participates	 in	PHP.	Another	recent	genetic	screen	implicated	 insomniac,	
a	gene	encoding	an	alleged	Cullin‐3	ubiquitin	ligase	complex	adaptor,	in	PHP	(Kikuma	et	al.,	2019).	Postsynaptic	insomniac was found to be 
required	 for	 rapid	and	chronic	PHP	expression.	The	study	also	provided	evidence	 for	 rapid	and	 local	monoubiquitination	at	postsynaptic	
densities	during	PHP,	and	links	between	 insomniac and postsynaptic vesicle trafficking targeting multiplexin,	 (see	Section	3.2.;	Wang	et	al.,	
2014).	In	summary,	while	there	has	been	a	significant	progress	in	uncovering	molecular	substrates	of	postsynaptic	PHP	signaling,	several	major	
questions	remain:	Which	postsynaptic	parameter	is	sensed	during	PHP,	and	how	do	the	molecular	pathways	identified	so	far	intersect	with	
each	other,	as	well	as	transsynaptic	signaling?
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4  | OPEN QUESTIONS AND OUTLOOK

Despite considerable progress in identifying the physiological and molecular underpinnings of homeostatic regulation of neurotransmitter 
release at the Drosophila	NMJ,	several	outstanding	questions	remain	unanswered.	We	consider	the	following	three	major	open	questions	as	
especially interesting:

1. PHP induction and maintenance—It	 is	 currently	 completely	 unknown	which	 parameters	 are	 “sensed”	 during	 PHP.	What	 are	 the	 biolog‐
ical	 substrates	 of	 PHP	 induction?	 How	 do	 these	 mechanisms	 relate	 to	 the	 rapid	 and	 sustained	 expression	 of	 PHP?	 A	 recent	 study,	
which	 provides	 evidence	 for	 a	 functional	 separation	 between	 the	 induction	 and	 maintenance	 phases	 of	 PHP	 (James,	 Zwiefelhofer,	
&	 Frank,	 2019),	 constitutes	 an	 interesting	 starting	 point	 for	 future	 work.

2. Structural plasticity and proteostasis—Genetic	screens	have	identified	a	number	of	genes	that	are	required	for	PHP	at	the	Drosophila NMJ. 
Nevertheless,	it	is	largely	unclear	how	the	corresponding	proteins	are	regulated	during	PHP.	Recent	data	suggests	modulation	of	the	abun‐
dance	of	several	presynaptic	proteins	during	PHP	(Böhme	et	al.,	2019),	and	an	involvement	of	axonal	transport	(Böhme	et	al.,	2019;	Goel	 
et	al.,	2019).	However,	many	of	these	proteins	are	not	required	for	PHP	expression	on	rapid	time	scales.	Another	related	open	question	
concerns	the	role	of	synaptic	proteostasis	during	PHP.	While	impairing	the	presynaptic	UPS	blocks	PHP	(Wentzel	et	al.,	2018),	it	remains	to	
be	determined	how	the	UPS	participates	in	PHP	signaling.

3. Evolutionary conservation and disease relevance—There	is	evidence	for	PHP‐like	phenomena	at	various	synapses	in	different	species,	but	it	
is	unknown	how	much	is	shared	mechanistically.	For	chronic	challenges	to	synapse	function,	there	are	some	indications	for	conserved	ho‐
meostatic	mechanisms.	These	responses	include	retrograde	signaling	mediated	by	TOR	(Henry	et	al.,	2012),	a	requirement	for	presynaptic	
Ca2+‐channel	activity	to	effect	potentiation	(Jakawich	et	al.,	2010),	as	well	as	changes	in	presynaptic	Ca2+ influx that offset various perturba‐
tions	(Zhao	et	al.,	2011)	or	vesicle	pool	size	(Jeans	et	al.,	2017;	Kim	&	Ryan,	2010).	Less	is	known	about	the	conservation	of	rapid	forms	of	ho‐
meostatic	plasticity.	A	rapid	form	of	PHP	akin	that	at	the	Drosophila	NMJ	has	been	discovered	at	mammalian	NMJs	(Wang	et	al.,	2018;	Wang,	
Pinter,	et	al.,	2016).	A	similar	mode	of	rapid	PHP	has	not	been	described	for	CNS	synapses.	Yet,	shared	mechanisms	between	the	Drosophila 
NMJ	and	mammalian	CNS	synapses	could	be	at	play.	PHP	at	the	Drosophila	NMJ	requires	retrograde	Sema2b–PlexB	signaling	to	the	actin	
regulator	Mical	(Orr	et	al.,	2017)	or	control	of	small	GTPase	activity	by	the	Rho‐type	guanine	exchange	factor	Ephexin	(Frank,	Pielage,	&	
Davis,	2009).	These	signals	are	reminiscent	of	events	previously	described	at	mammalian	synapses	to	regulate	vesicle	pool	size—and	pos‐
sibly,	homeostatic	plasticity.	For	example,	inhibition	of	the	cytoskeletal	regulator	myosin	light	chain	kinase	(MLCK)	increases	RRP	size	at	the	
mouse	calyx	of	Held	(Srinivasan,	Kim,	&	Gersdorff,	2008).	Related	work	suggests	that	tonic	inhibition	of	MLCK	by	Rho‐associated	kinase	
(ROCK)	underlies	a	mechanism	of	RRP	maintenance	(González‐Forero	et	al.,	2012).	It	will	be	exciting	to	test	if	these	molecular	mechanisms	
also	participate	in	PHP.	Intriguingly,	there	is	evidence	for	presynaptic	potentiation	of	release	after	sustained	glutamate	receptor	inhibition	at	
the	calyx	of	Held	(Yang	et	al.,	2011).	Thus,	this	synapse	provides	an	intriguing	entry	point	to	test	if	MLCK	signaling	participates	in	PHP.

Given	that	most	genes	that	are	required	for	PHP	at	the	Drosophila	NMJ	have	been	implicated	in	various	neural	disorders	(Wondolowski	&	Dickman,	
2013)—and	given	emerging	links	between	PHP	signaling	and	factors	involved	in	critical	everyday	functions,	such	as	sleep	(Kikuma	et	al.,	2019)—it	
will be exciting to explore potential roles of homeostatic synaptic plasticity in the physiology and pathophysiology of neural function.
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