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A B S T R A C T   

Introduction: SARS-CoV-2 was declared a pandemic by the WHO on March 11th, 2020. Public protective measures 
were enforced in every country to limit the diffusion of SARS-CoV-2. Its transmission, mainly by droplets, has 
been measured by the effective reproduction number (Rt) that counts the number of secondary cases caused in a 
population by an average infectious individual at time t. Current strategies to calculate Rt reflect the number of 
secondary cases after several days, due to a delay from symptoms onset to reporting. We propose a comple-
mentary Rt estimation using supervised machine learning techniques to predict short term variations with more 
timely results. 
Material and methods: Our primary goal was to predict Rt of the current day in the twelve provinces of Lombardy 
with the highest possible accuracy, and with no influence of the local testing strategies. We gathered data about 
mobility, weather, and pollution from different public sources as a proxy of human behavior and public health 
measures. We built four supervised machine learning algorithms with different strategies: the outcome variable 
was the daily median Rt values per province obtained from officially adopted algorithms. 
Results: Data from 243 days for every province were presented to our four models (from February 15th, 2020, to 
October 14th, 2020). Two models using differential calculation of Rt instead of the raw values showed the 
highest mean coefficient of determination (0.93 for both) and residuals reported the lowest mean error (-0.03 
and 0.01) and standard deviation (0.13 for both) as well. The one with access to the value of Rt of the day before 
heavily relied on that feature for prediction, while the other one had more distributed weights. 
Discussion: The model that had not access to the Rt value of the previous day and used Rt differential value as 
outcome (FDRt) was considered the most robust according to the metrics. Its forecasts were able to predict the 
trend that Rt values would have developed over different weeks, but it was not particularly accurate in predicting 
the precise value of Rt. A correlation among mobility, atmospheric, features, pollution and Rt values is plausible, 
but further testing should be performed.   

1. Introduction 

Human transmission of novel Severe Acute Respiratory Syndrome 
coronavirus 2 (SARS-CoV-2) was initially reported at the end of 2019, in 
Hubei province in China [1]. Italy was the second country to have a large 
outbreak of cases with locally transmitted cases first detected on 
February 20th 2020, and SARS-CoV-2 was declared a pandemic by the 

World Health Organization on March 11th, 2020 [2,3]. COVID-19 dis-
ease is characterized by multi-organ involvement, with a clinical syn-
drome in severe cases which is dominated by bilateral interstitial 
pneumonia, often requiring hospitalization and intensive care admission 
[4]. Other organs, including kidney, heart and brain, may also be 
affected [5,6]. SARS-CoV-2 is transmitted by droplets and airborne 
transmission [7], while contact transmission has a secondary role. SARS- 
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CoV-2 may remain viable for three hours in aerosols [8,9]. To reduce the 
burden of the epidemic, protective measures such as social distancing 
and universal masking were enforced in different countries [10]. In 
addition, lockdowns and curfews have been applied in many countries to 
slow down the spread of the virus and to reduce the burden on the 
healthcare settings that were saturated with COVID-19 patients [11]. 
SARS-CoV-2 transmission is measured by the basic reproductive number 
index, at time zero (R0), and subsequently by the effective reproduction 
number (Rt, number of secondary cases in a population at time t), which 
is calculated a posteriori from epidemic curves (number of cases per day) 
and it may be influenced by testing strategies [12–14]. In Italy, a delay 
of about two weeks from symptoms onset to reporting has been esti-
mated [15], which may result in a delay in the implementation of social 
measures. To better assess relevant social distancing measures and the 

resulting public health responses, economical and psychological costs 
[16,17], Rt calculation should be as fast and precise as possible. 

We propose a novel Rt estimation algorithm using supervised ma-
chine learning techniques and based on regularly and automatically 
updated data from different public sources to predict short term varia-
tions of Rt estimates. 

2. Material & methods 

Our primary objective was to build a model able to predict Rt with 
the highest possible accuracy up to the current day, not influenced by 
the local testing strategies and the physiological delay from symptoms 
onset to reporting; the final objective would be to autonomously 
calculate and reproduce the function that links SARS-CoV-2 infectivity 
to the gathered data. As a secondary objective we also decided to explore 
the capability of machine learning techniques to forecast Rt values based 
on the current day data. 

We gathered public data from several public sources, including 
mobility, pollution, and weather data. The daily value of Rt was calcu-
lated using established methods, deriving its posterior distribution from 
a Markov Chain Monte Carlo algorithm applied to a known likelihood 
function of the observed epidemic curves [15,18]. Rt values estimated in 
this way were considered as model reference (“ground truth”) and used 
to assess predictive performance. All data collected were preprocessed 
and analyzed through different exploratory data analyses to confirm the 
coherence and to interpolate missing data. The models were created 
using supervised machine learning techniques for Rt prediction. We 
divided data in a training set and a validation set. Our models were 
validated, cross-validated and assessed on coefficient of determination, 
mean squared error and explained variance. 

2.1. Data source 

Each dataset from public environmental data represents either an 
external factor influencing human behavior or a proxy of human 
behavior itself. Mobility data were considered as a proxy of human ac-
tivity and movements and were retrieved from Google and Apple online 
public mobility data [19,20]. Weather and pollution data were freely 
available from Lombardy regional environmental agency (ARPA) [21] 

Table 1 
Classification of models created for our analysis.   

Outcome as Rt 
raw 

Outcome as Rt 
differential 

Access to Rt value of the previous day CRt CDRt 
Denied access to Rt value of the 

previous day 
FRt FDRt  

Table 2 
Descriptive analysis of data from the 12 provinces of Lombardy regions.  

Full dataset (n) (2916, 50) 

Unique Lombardy provinces (n) 12 
Unique days (n) - from February 15th, 2020, to October 14th, 

2020 
243 

Mobility features: 9s 
provided by Google (n) 6 
provided by Apple (n) 3 

Weather features provided by ARPA* (n) 16 
Pollution features provided by ARPA (n) 8 
Rt estimates from official algorithms (median, (InterQuartile 

Range)) 
0.99 
[0.73–1.32] 

Rt estimates from official algorithms (mean (Standard 
Deviation)) 

1.12 (0.59) 

*ARPA, Regional Environmental Protection Agency. 

Fig. 1. Comparison between Rt values and some mobility features. On the x axis the date is reported, on the y axis Rt is reported as a bold and blue line while some 
macro mobility features are reported as thinner lines in other colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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and were included as a proxy of human activity. Both datasets were 
processed to achieve daily time series of average values for each prov-
ince and variable of interest. Weather features and temperature describe 
variables which are independent from human activities, but that 
strongly influence human behavior itself. Pollution is a direct conse-
quence of human behavior: higher levels of particulate in the air 
represent increased vehicle circulation and pollution from industrial 
activity. 

We separated every province to consider geographical and demo-
graphical variations (i.e., city inhabitants may act differently from 
people from mountainous provinces, even when considering similar 
weather and pollution conditions) to provide the models with an 
improved representation of Lombardy region. 

Google mobility data report aggregated anonymized movement 
trends. Data include six different categories of places (groceries and 
pharmacies, parks, retail and recreation shops, transit stations, work-
places, and residential areas) daily updated with provincial granularity. 
The baseline is calculated using the median value from a timespan be-
tween January 3, 2020, and February 6, 2020. Every weekday is 
compared to the baseline of the same weekday, reporting day-by-day 
percent changes. 

Apple similarly report aggregated, anonymized movement trends 
compared to a baseline day (January 13th, 2020). Data are updated 
daily and are divided in three main categories: walking, driving and 
public transportation. Apple dataset, differently from google, provides 
data only at regional level. We kept both sets in models, although highly 
correlated, and let a purely data driven approach for feature selection 
derive which best suits the task. 

We created high-level features representing known national holidays 
(i.e., June 2nd), regional lockdowns, indication of national restrictions. 
All these features were represented as categorical features. 

In the end, the dataset contained mobility, weather, pollution, and 
lockdown covariates. The outcome variable was defined as daily median 
Rt values for each province up to October 16th, 2020. Apart from Rt, all 
other covariates were obtained by implementing an Extraction- 
Transform-Load algorithm which updates data automatically (see Sup-
plementary Materials). 

2.2. Modelling 

We built a machine learning regression algorithm leveraging inter-
pretability under a supervised framework, using the Gradient Boosting 
technique. We excluded support vector machine and deep learning 
techniques as interpretability was fundamental to preserve the decision- 
making process of the models. Among decision trees models, we trained 
with a random forest, but it showed significantly lower performances 
under any circumstances than the gradient boosting technique. More-
over, we favored Gradient Boosting since it provided us with quantile 
loss, which in turn allowed us to have lower and higher bound estimates 
with one training pass. The model predicts the 80% confidence interval 
of Rt by means of quantile loss training. We combined two different 
strategies according to how heavily Rt[T] depends on past Rt values and 
to whether differential or raw Rt[T] values are used as outcome. 

The four models are as follows (Table 1):  

1. CRt: has access to the Rt value of the previous day and the outcome is 
an Rt raw value.  

2. CDRt: has access to the Rt value of the previous day and the outcome 
is an Rt differential value.  

3. FRt: has not access to the Rt value of the previous day and the 
outcome is an Rt raw value.  

4. FDRt: has not access to the Rt value of the previous day and the 
outcome is an Rt differential value. 

Training was performed by means of 10-fold cross validation and 
hyperparameters were optimized by means of randomized selection 
over 50.000 different models, for a total of 500.000 models trained. 
Computations were performed on a cloud VM with 64CPUs and 58 GB of 
RAM. The optimal model was selected as the one maximizing the coef-
ficient of determination (R2). 

The earliest 75% of the available Rt samples for each province were 
used as training sample (from February 15th to August 14th, 2020), 
while the remaining timestamps available after that date were used for 
validation (from August 15th to October 14th, 2020). 

Python environment (Python Software Foundation. Python Lan-
guage Reference, version 3.8, available at https://www.python.org) was 

Table 3 
Coefficient of determination (R2) performance of the four models after validation. Legend of colors: green: >0.9, red: < 0.5, white in between red and green. Colors 
shades are darker for the highest (green) and lowest (red) values.  
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used for preprocessing, data analysis and visualization, model training 
and validation. 

More extensive methods are reported in supplemental material. 

3. Results 

Descriptive analysis of the data from the twelve provinces of Lom-
bardy regions are reported in Table 2: data from 243 days (from 
February 15th, 2020, to October 14th, 2020) were structured and pre-
sented to all the models with an average Rt of 1.12 (Standard Deviation: 
0.59) and a median value of 0.99 [InterQuartile Range? 0.73–1.32]. All 
median values and interquartile range for major features can be found in 
the supplemental Table 1. 

Graphic representation of some mobility covariates together with Rt 
over time are reported in Fig. 1. Mobility features are expressed rela-
tively to a pre-COVID-19 period, thus often resulting in a negative me-
dian and interquartile range. In contrast, atmospheric data are always 
expressed as positive real numbers. 

Coefficient of determination (R2) is computed as 1− (residual error / 

horizontal line error). When the residual error is greater than horizontal 
line error, the equation yields a negative value for R2. The fit of the 
model was worse than the fit of a horizontal line. Thus, the sum-of- 
squares from the model is larger than the sum-of-squares from the 
horizontal line. 

The coefficient of determination (R2) of model validation results 
after training are presented in Table 3. R2 was computed as one minus 
the ratio between the residual error and an horizontal line error: when 
the residual error is greater than an horizontal line error, the equation 
yields a negative value for R2. 

CDRt and FDRt models have a mean coefficient of determination (R2) 
across provinces of 0.93 and 0.925 respectively, which are the highest 
across the models. Analyzing the single provinces, it is possible to see 
that the lowest R2 is in the Cremona province (shortened as CR) with a 
value of 0.825 for both models. 

Fig. 2 reports model residuals, defined as the difference between the 
observed value and the predicted one, where differential models (CDRt 
and FDRt) show lower mean error and lower standard deviation 
compared to CRt and FRt. In addition, the models based on differential 

Fig. 2. Residual distribution. These graphs show how accurate the models are comparing the Rt ground truth value to the estimated ones. On the x axis the value of 
the estimated Rt from official algorithms (considered as ground truth) is reported while on the y axis the difference between that value and the estimated value of our 
models is represented. Differential based models (CDRt and FDRt) consistently handle all the considered values of Rt while the performance of CRt and FRt decreases 
inversely to the ground truth value of Rt reported. 
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Rt values can more consistently handle all the considered values of Rt 
while the performance of CRt and FRt decrease inversely to the ground 
truth value of Rt reported. 

Fig. 3 shows feature importance bars of all the four models. Models 
keeping the value of Rt of the previous day as an input heavily rely on it. 
The relative weight of previous Rt for CRt is 0.9. For CDRt, previous Rt 
accounts for around 0.4 of the predicted value; features importance is 
more sparsely distributed in FRt and FDRt. 

Derivative models (FDrt and CDrt) achieve higher scores across 
provinces compared to direct Rt predictors (CRt and FRt). Accuracy in 
60 days forecasts of some provinces by derivative best models are re-
ported in Fig. 4. All the provinces’ forecasts can be found in the sup-
plemental material, Supplemental Fig. 1. 

4. Discussion 

Among the four built models, FDRt outperformed the others, with a 
very high mean coefficient of determination (R2) across every province 
(0.925): ranging from 0.852 in the Cremona province (CR) to 0.988 in 
the Milano province (M). It is capable to handle any value of Rt due to its 

derivative nature as showed by the residuals, and it relies principally on 
four different features (Days since the pandemic begun, public trans-
portation, temperature, workplaces) although it was modulated by 
many others. Its forecasts on the test set were able to predict, in most 
cases and nearly in every province, the trends that Rt would have 
developed over different weeks, especially the upcoming surge of Rt 
value. Although trends were correctly detected, even our best model was 
not able to calculate precisely the Rt values. 

FRt model, the non-derivative version that does not carry past Rt 
values, has very low performances, probably due to the dataset that is 
not well suited for this kind of modeling. 

Residuals are markedly skewed for FRt, highlighting the poor per-
formances, and marginally skewed in CRt. In the latter, residual skew-
ness is most pronounced for Rt values above 1.5, signaling that the 
model is less precise with values that are above that threshold. This 
limitation was not found in the CDRt and FDRt models as they are more 
stable due to the lower influence of high and low values of Rt on models 
that are based on differential values. 

Despite quite promising performances, the CDRt model demon-
strated to be too much conservative in the test phase, as most of 

Fig. 3. Feature importance bar. Every graph represents a different model: on the × axis are reported all the features analyzed, while on the y axis is reported the 
weight given to that specific feature by every model. Rt calculated the day before (Previous Rt) is the most important feature when available, while the models (FDRt 
and FRT) spread the features importance much more when previous Rt is not available. 
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predictions are linear and thus unable to predict variations and surges. 
This might be due to the excessive weight given to the value of Rt of the 
day before (Previous Rt) that does not let the model predict variations in 
the trends of the Rt values and anchors the forecasts to the values of the 
day before, leaving too narrow space to correctly modulate Rt. 

The FDRt model automatically selected temperature as the most 
important variable to make decisions and this variable finds its impor-
tance confirmed in the literature as Wang et al. [22] described a negative 
correlation among temperature, relative humidity and the reproduction 
number of SARS-CoV-2 both in USA and China. A similar correlation has 
been described by Xiaohan et al. [23] that analyzed the city of Wuhan 
between January and March 2020, and by other studies [24,25], but 
causation is far from being defined and further studies are required [26]. 

Another interesting feature selected by the FDRt model was the 
counter of the number of days since the first detected case was discov-
ered. We added this variable because time might be a general proxy of 
adaptation to the pandemic situation (instauration of correct preventive 
measures, higher awareness in the general population and a bigger 
number of research conducted on the virus that revealed new ways to 
address the problem). 

Overall, FDRt provides satisfactory results without full loss of 
interpretability. Deep learning models may yield to better raw predict-
ing performances, but at cost of more complex and non-interpretable 
models. 

5. Limitations 

Despite the promising performances reported in this paper, several 

limitations must be pointed out. First, these models have been trained 
and tested on a limited time interval (until the beginning of the second 
wave in Lombardy) and the relation between our variables and the Rt 
function might be different now. Second, our models are tailored to the 
Lombardy region, thus generalization cannot be done on other locations 
without a correct retraining of the models to recalibrate their weights; 
but if the same data are available, a new set of models can be easily 
trained on other geographical locations. 

The results of our models not meant to be considered for epidemio-
logical purposes but mostly as an evaluation of new techniques for the 
rapid estimation of Rt. 

6. Conclusion 

We trained different machine learning algorithms with the goal of 
estimating timelier Rt values based solely on mobility, weather, and 
pollution data. We used interpretable machine learning algorithms to 
derive predictions and identified trends associated with Rt fluctuations 
in a data-driven manner. FDRt, the differential model that did not rely 
on previous Rt values is the most promising one: it showed a high co-
efficient of determination, low residual values and a plausible distri-
bution of the most important selected features. 

In addition, the forecasts made with FDRt model were promising as 
well, showing a capability to predict future trends of Rt in the following 
weeks, even if it was not able to predict its value with precision. For 
future development, we plan to develop an automatic calibration 
routine to retrain these models periodically; to adjust for modifications 
in the relations between human behavior (e.g., vaccinations) and virus 

Fig. 4. Forecasts of some provinces* made by the models with the highest coefficient of determination (CDRt and FDRt) from 15th August to 14th October 2020 (60 
days). On the × axis the date is reported, while on the y axis the values of Rt and the abbreviation of the name of the province. The first column visualized the 
forecasts made by CDRt while the second one is for FDRt. The area in blue indicates the forecast made by the model, while the blue line represents the Rt value 
computed using traditional methods. *BG: ‘Bergamo’, BS: ‘Brescia’, MI: ‘Milan’, MB: ‘Monza and Brianza’, SO: ‘Sondrio’. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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diffusion; and as such identify the major drivers correlated with brisk 
changes in Rt as the pandemic evolves. 

Summary Table: 
What was already know on the topic?  

• Prediction of SARS-CoV-2 diffusion is pivotal and very hard to 
achieve.  

• Reproduction number (Rt) was used as proxy of virus diffusion in 
most developed countries, but its intrinsic limitation is a fourteen- 
days delay.  

• Human behaviors and environmental conditions could play a role in 
the virus diffusion and could be considered to predict Rt variations. 

What this study added to our knowledge?  

• Trends of our forecasts could give insights on narrowed ranges of Rt 
with reduced delay compared to classic Rt calculation.  

• Analysis of human behaviors and environmental conditions might 
help in earlier and better decision-making. 

• Machine learning models perform better when calculating the vari-
ation in the slope of Rt more than in raw estimations.  

• Further tests in other geographical regions/countries should be 
carried to validate our models. 
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