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Abstract

In community ecology, drift refers to random births and deaths in a population. In microbial ecology, drift is estimated
indirectly via community snapshots but in this way, it is almost impossible to distinguish the effect of drift from the effect of
other ecological processes. Controlled experiments where drift is quantified in isolation from other processes are still
missing. Here we isolate and quantify drift in a series of controlled experiments on simplified and tractable bacterial
communities. We detect drift arising randomly in the populations within the communities and resulting in a 1.4-2% increase
in their growth rate variability on average. We further use our experimental findings to simulate complex microbial
communities under various conditions of selection and dispersal. We find that the importance of drift increases under high
selection and low dispersal, where it can lead to ~5% of species loss and to ~15% increase in f-diversity. The species extinct
by drift are mainly rare, but they become increasingly less rare when selection increases, and dispersal decreases. Our results
provide quantitative insights regarding the properties of drift in bacterial communities and suggest that it accounts for a
consistent fraction of the observed stochasticity in natural surveys.

Introduction processes that drive community stochasticity act both in the

past and in the present [2]. Processes acting in the past

The assessment and quantification of community stochas-
ticity, i.e., the degree to which communities form and
change in a random and non-predictable way, is a major
challenge for ecology and more so for microbial ecology
[1, 2]. In the past decades, even the mere existence of sto-
chastic, ecologically neutral, processes was questioned [3].
Nowadays, it is widely recognized that the ecological
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include historical contingency [4] (in the sense that past
community states can constrain present communities) and
priority effects [5], and processes driving community
assembly in the present include selection, dispersal, spe-
ciation, and drift [6].

Identifying the contribution of each assembly process to
stochasticity is even more challenging because all processes
except selection, which depends by definition on species
identity and on the environment [7], have a stochastic
component. For dispersal, the movement and establishment
of species across space actively or passively [8], the sto-
chastic component lies in the fact that passive dispersal
(e.g., through water currents in the sea) is, in most cases,
independent of species identity [2]. Speciation, i.e., the rise
of novel species via the accumulation of genetic variation, is
also partly stochastic because the mutation is a stochastic
process [9, 10].

Ecological drift, i.e., changes in species population size
due to random births and deaths [6], is perhaps the only
unambiguously stochastic community assembly process in
nature [2]. Just like genetic drift, ecological drift is expected
to be more significant with decreasing population size [6]
because random demographic events will likely matter more
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Fig. 1 Schematic representation of the experimental assays.
a Experiments for the quantification of the “background noise”.
b Experiments for the quantification of drift. LB Luria—Bertani broth,

the smaller a population is. Indeed, a recent study in plant
communities supported this inverse relationship between
population size and the effect of drift and highlighted the
role of dispersal in connecting communities and effectively
increasing the population sizes of species, thus reducing
drift’s weight [11].

However, drift’s contribution to stochasticity is still
unclear in bacterial communities [2] where the population
sizes are generally large, and the effect of drift is hard to
quantify in natural systems where the other ecological
processes act simultaneously [2, 6, 12, 13]. With typical
bacterial densities ranging from millions of cells per ml of
seawater to billions of cells per gram of soil or sediment
[14, 15], it has been argued that drift might be most
important for the rare taxa in bacterial communities [16].
Moreover, in natural surveys, it is almost impossible to
distinguish the effect of drift from the effect of inter-
mediate dispersal and/or relatively weak selection using
community snapshots (e.g., via 16S rRNA gene amplicon
sequencing) [13].

Here, we aimed to detect and quantify drift in isolation
from other processes by conducting controlled experiments
on simplified synthetic bacterial communities (Fig. 1). We
assembled synthetic communities using three strains whose
populations we could monitor accurately and in a high
temporal resolution using flow cytometry (Fig. 2a). We first
quantified the error introduced by the monitoring method
and by the experimental handling (referred to as “back-
ground noise” or “noise” henceforth—Fig. la). We then
performed the main experiments by assembling identical
triplicate communities of all seven possible combinations,
and growing them under identical and controlled conditions
starting from three different total cell densities for a total of
21 replicated assays (Fig. 1b). We monitored the bacterial
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Repeat for a total of 21 assays;

seven possible strain combinations over three starting cell densities

CV coefficient of variation. a The inoculated cell densities per strain
are corresponding to the expected range of cell densities in the main
experiments.

populations using our recently developed method [17] that
is based on direct and strain-specific cell detection through
flow cytometry. If drift had not occurred, the variation in the
population densities across replicate communities at a given
time point should be indistinguishable from “noise”. This is
because in our experiments replicate communities were
originally identical (we verified that before every assay—
Fig. 1b) and grew under the same environmental conditions
and biotic interactions without dispersal from any external
source. Consequently, any deviation from the expected
“noise” could only be attributed to random differences in
births and deaths, i.e., to ecological drift.

Materials and methods

Assembling and monitoring the synthetic bacterial
communities

We selected three bacterial strains, a Chryseobacterium sp.,
a Staphylococcus sp., and a Bacillus sp., from a large col-
lection of soil isolates, and we screened them with
fluorescence-independent flow cytometry as we did pre-
viously [17]. We measured at an acquisition speed of 14 ul
min~' for 2min per sample and setting a threshold of
10,000 regarding the height signal of the front scatter (FSC-
H). Differently than in our previous work, here we acquired
all scattering profiles based on growth assays at 30 °C that
was the temperature at which we performed all the experi-
ments. In addition, we screened the growing cultures with a
temporal resolution of 20, rather than 30, min. We recorded
significant interactions among the strains by comparing
their single and mixed growth profiles at 30 °C (Dataset 1).
These interactions were mainly positive, similarly to what



Direct quantification of ecological drift at the population level in synthetic bacterial communities

57

B
30 Experimental observations
. e z > 3, positive after FDR correction
25 | z > 3, negative after FDR correction
e0<z<3
| ez<0
| .
20 \ . Expected noise
= \ . —— mean
o~
< 154 \ — — 99.5% CI
>
(8]
10
5 -] ° . -. % .. .
TH g s eV e . _ _
"'f'_ e — — — — — — — —
‘0‘92“ T I
0 .
T T T T T
1 2 3 4 5
Log (cells ul")
c DR
o o 8 ® 7 —
"Upper threshold" quantification [ o "Mean threshold" quantification L
2 - Fa ~
Contributing observations 8 QT[] Contributing observations L @
@ M «z > 3, positive after FDR correction < -z > 3, positive after FDR correction °
> ] o > o z> 3, negative after FDR correction
9 a2 g« «0<z<3 2
o ©p o ®
ze 1 MY w8 B FSg
2 L gn:: e a
< o o
. = - F s
N 8 o
o —‘ ’_‘ H ’_‘ L8 o il ] il L e
T T T T ° T T T T T °
0 5 10 15 0 5 10 15 20

Drift magnitude (%)

Fig. 2 The experimental detection and quantification of drift.
a Scanning electron microscopy images of example synthetic com-
munities (left) and their respective flow cytometry scatterplots (right).
b The coefficient of variation (CV, y axis, %) among the populations in
the three flasks (for a given strain and time point) as a function of the
cell density of the respective community (x axis, log scale). Curves
represent the noise function and its 99.5% confidence intervals,
whereas dots represent experimental observations (n =360) that are
painted according to their z-score from the noise function as per the

we found previously at other temperatures [17]. We per-
formed all the related growth assays in biological triplicates.
All flow cytometry data are available in .fcs format online
(http://flowrepository.org) under the “FR-FCM-Z25Q”
identifier. Henceforth, when referring to the experiments we
use the term “population” to describe the cells of a given
strain within a flask at a given assay and the term “com-
munity” to describe the total bacterial cells within a flask at
a given assay.

Quantification of “background noise”

Our flow cytometry method for screening the mixed bac-
terial cultures has an accuracy of 97% for sample densities

Drift magnitude (%)

legend at the upper right. ¢ The distribution of the magnitude of drift
following quantification based on the “upper threshold”. d The dis-
tribution of the magnitude of drift following quantification based on
the “mean threshold”. ¢, d Observations are plotted as a histogram
with frequency shown on the left y axis and legends indicate the
contributing observations with color-coding as per b. The density of
the fitted distributions (red solid lines - log-normal for ¢ and expo-
nential for d) is shown on the right y axis.

above 10° cellsml™! [17]. However, at lower densities
sampling errors and instrument inconsistencies become
increasingly important because the signal-to-noise ratio
drops. This can result in substantially different counts
among identical samples and can artificially inflate the
observed variability. Thus, it was essential to quantify this
“noise” before performing the main experiments and sub-
tract it from the observed variability when quantifying drift.

To that end, we made a series of separate experiments to
quantify “noise”. In these experiments, we mixed overnight
cultures of the three strains in all the seven possible com-
binations and in final cell densities ranging from 1.6 x 10* to
6.3x 107 strain”! ml™! (corresponding to the expected
range of cell densities in the main experiment, see below),
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and we measured repeated aliquots from the same flask to
determine the coefficient of variation (CV—Fig. la). We
treated the samples in exactly the same way as in the main
experiments to include the effect of sampling errors in our
calculations. We acquired in total of 99 triplicate mea-
surements of 1-3 populations for a total of 148 observations
(Fig. la, Dataset 2). We hypothesized that the level of
“noise” should be inversely related to the cell density of the
sample, because the signal-to-noise ratio decreases at low
cell densities in the flow cytometer. Accordingly, we fit
different functions for the dependency of CV to cell density
(Supplementary Table S1). Finally, we calculated the 99.5%
confidence intervals of the best-fitting function (i.e.,
Michaelis-Menten) using the confint function of the MASS
package [18] in R [19], and we defined the false discovery
rate based on the number of observations that were above
the upper 99.5% confidence interval (Supplementary
Fig. S1). Finally, we verified that the levels of noise
determined in this study are similar to the variability
recorded from technical replicate samples taken during our
previous experiment where we used the same bacterial
system and instrument with identical settings [17] (Sup-
plementary Fig. S2).

Main experiments

To quantify drift, we monitored the changes in population
densities across identical starting communities incubated
under the same environmental conditions (Fig. 1b). To that
end, we mixed the three strains in all seven possible com-
binations, i.e., three monocultures, three mixed cultures of
two strains and a mixed culture of all three strains, and in
three different starting total cell densities (5 x 10* cells ml’l,
10° cells ml™!, and 10° cells ml™"). To perform each growth
assay, we first inoculated the respective strains from over-
night pure cultures in a single flask containing 300 ml of
Luria-Bertani medium (Sigma). To reach the desired
starting total cell density, we estimated the cell density of
the overnight pure cultures with flow cytometry [17] and we
inoculated the respective volume. We then mixed the cul-
ture thoroughly and we immediately split the volume
equally into three flasks. We next sampled 500 pl from each
flask and we compared the variability in the bacterial
populations across the three flasks to the expected “back-
ground noise” for the same cell density. In specific, we
examined the CVs of the bacterial populations and their
z-scores compared to the “background noise”, i.e., how
many standard deviations an observed CV differs from the
expected “background noise” CV at a given cell density.
If the observed z-scores were larger than 2 (95% CI), we
aborted the given experiment because it indicated that we
introduced variability when we mixed and split the cultures
and thus the starting cultures could not be considered
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identical; this happened in ~50% of the cases. If the
observed z-scores were lower than 2, indicating that the
recorded variability was not statistically different or was
less than the expected variability based on the “background
noise”, we proceeded with the experiment, incubating the
three flasks in the same chamber (New Brunswick Innova
42R, Eppendorf) at 30 °C and with shaking at 80 rpm.

We recorded the starting densities (Dataset 3, z-scores
between —6.68 and 1.17) and the densities every 20 min
until the end of the fourth hour of incubation starting from
the 60th minute. To detect and quantify drift, our main
assumption was that any larger-than-expected deviations in
the population densities of identical starting communities
incubated under the same environmental conditions could
only be because of drift. Thus, we compared the observed
CVs to the expected CVs based on the “background noise”
by deploying the z-score. We quantified drift using two
different thresholds:

1. The “upper threshold” that focused on excluding
false-positive observations. In this quantification, we
used a cutoff significance level of z>3 (99.5% CI)
and we ignored the lowest 17.57% of positive
observations (i.e., 15 observations, corresponding to
the FDR level of the “background noise”) to minimize
the detection of false positives.

2. The “mean threshold” that focused on excluding false
negatives and increasing detectability. In this quanti-
fication, we used a cutoff significance level of z>0,
meaning that we scored any observation greater than
the mean noise function as positive.

The “upper threshold” quantification probably over-
estimates drift by taking into account only the highest
among the recorded CV values while the “mean threshold”
quantification underestimates drift by taking into account
some low CV values that are very close to the noise levels.
Thus, the “upper threshold” and “mean threshold” quanti-
fications do not represent the true levels of drift (which are
hard to define whatsoever in the presence of noise) but they
rather represent the upper and lower boundaries within
which the true levels of drift lie.

Estimating potential growth variability due to
temperature differences within the incubation
chamber

To ensure that the recorded variability in the population
counts was not due to slight differences in temperature
within the incubation chamber, we estimated the potential
variability that could have resulted if each strain grew
within the extremes of the recorded temperatures in the
chamber. For that, we first measured the temperature within
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each flask at each experimental time point, five times per
flask, using a digital immersion thermometer with an
accuracy of 0.1 °C. The temperature varied by 0.15°C +
0.08 °C on average and by 0.28 °C at maximum. We then
calculated the growth rates of each of the strains under the
recorded temperature extremes at each time point by inter-
polating from previously recorded growth rates [17]. We
interpolated both with respect to time and with respect to
temperature because the previous data were recorded at
intervals of 30 min and 0.5 °C (the latter at a range of
25-42 °C). Finally, for each strain, we calculated how the
CV in the hypothetical population densities would increase
if the strains were constantly growing within the recorded
temperature extremes for the duration of the experiment and
if the CV was calculated from three observations (like in the
real experiments) of the resulting population density dis-
tributions. We note that with this analysis, we probably
overestimated the hypothetical increase in population den-
sities because we used growth rates from mixed cultures
that were generally higher than those in monocultures
because of the positive interactions among the strains
(Dataset 1).

Simulations

To simulate drift in complex bacterial communities, we
used in silico communities with diversity and abundance
distributions similar to nature [20] where drift acts
with magnitude according to our experimental data.
A conceptual flowchart of the simulations can be found
in Supplementary Information (Supplementary Fig. S3).
Each simulation involved a metacommunity of 100
communities that were connected with dispersal and that
initially contained 2000 species each.

We simulated dispersal occurring in a unidirectional way
within a closed system; individuals from community n
disperse to the community (n+ 1) and individuals from
community 100 disperse back to community 1. The strength
of dispersal equaled to the percentage of individuals that
disperse to the respective community and it varied between
2 and 20%. Our aim in modeling dispersal in this way was
to create a setting where habitat fragmentation was high and
therefore drift’s importance is expected to be more pro-
nounced [21, 22], and where there was no gain or loss of
individuals from outside the metacommunity.

We simulated selection as differences in the growth rates
among species within a community. The growth rates were
distributed normally with a mean of 1 (resembling systems
at their carrying capacity) and with a standard deviation
between 0.071 and 0.167. Growth rates changed at every
generation by being re-drawn from the same distribution in
an effort to represent fluctuating habitats where a given
species is not always favored or disfavored. Therefore, in

our simulations, the standard deviation in the growth rates
represents the strength of selection, because the higher it is
the bigger are the differences in the growth rates in a
community and the changes in the growth of a species from
generation to generation. The distribution of the abundances
in a community at time zero was log-normal (mean = 4, sd
=1.1) and the distribution of the abundances of a given
species across all communities was normal with a standard
deviation equal to the strength of selection.

The metacommunity grew for 1000 generations under
given dispersal and selection conditions with drift, where drift
changed the assigned growth rates at every generation
according to a distribution based on the defined threshold
from the experimental data (“upper” or “mean” threshold). In
parallel, an initially identical metacommunity grew under the
same dispersal and selection conditions but without drift,
meaning that the assigned growth rates at every generation
did not change further. More details and an example on how
we modeled changes in growth rates due to drift are presented
in the Supplementary Text in Supplementary Information.

For a given generation, we calculated the effect of drift
by comparing a given community in the metacommunity
that grew under drift to the same community in the meta-
community that grew without drift. In specific, we exam-
ined the P-diversity by means of the Bray—Curtis (BC)
community similarity and the differences in species richness
and in Pielou’s evenness among drift-impacted and drift-
free communities, calculating the metacommunity-wise
mean and standard deviation on all these properties.
Moreover, we kept track of the extinct species at the end of
each simulation and we mapped their initial relative abun-
dances, but here we report the metacommunity-wise median
because the distribution of the relative abundances is
skewed (Supplementary Fig. S4). We ran simulations under
50 different scenarios resulting from five levels of selection
strength over ten levels of dispersal rate. To estimate the
effect of drift on Bray—Curtis similarity in metacommunities
with increasing number of species, we ran the same simu-
lation at the highest selection and lowest dispersal levels, at
intermediate selection and dispersal and at the lowest
selection and highest dispersal, but we changed the number
of species; we ran the simulation three times in meta-
communities of 500, 1000, 2000, 4000, 6000, 8000, and
10,000 species. We performed all simulations in R. All code
is available on GitHub (https://github.com/sfodel/Drift).

Reported B-diversity in stochastically assembled
communities in nature

To compare our simulation results with the results from
environmental surveys regarding the p-diversity in stochasti-
cally assembled communities, we searched for related studies
using the following two criteria: (1) the study cites the works
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of Stegen and colleagues [12, 13], where the term “undomi-
nated” community assembly is presented formally for
microbial ecology, (2) the study reports data on the range of
the observed p-diversity in terms of Bray—Curtis dissimilarity
(or similarity) in stochastically assembled communities, or
this range can be inferred from the data presented in
that study.

Results
Quantifying the background noise

Performing a series of dedicated experiments (Fig. 1a), we
found a significant decreasing relationship between ‘“noise”
and the cell density of a sample with a Michaelis-Menten
function best-fitting that decrease (Supplementary Table S1).
Over 82% of the total “noise” observations (122 out of 148)
fell below the upper 99.5% confidence interval (CI) limit of
the fitted function (Supplementary Fig. S1), resulting in a
FDR of 17.57%. We then set two different thresholds based
on the fitted “noise” function to quantify drift: the “upper
threshold” and the “mean threshold”. The former uses
the upper 99.5% CI of the expected “noise” function and the
detected FDR to minimize false positives and the latter
uses the mean expected “noise” to minimize false negatives
(see “Materials and methods” section for more details).

Quantifying drift

Following the quantification based on the “upper thresh-
old”, drift was detectable in 19.4% (70 out of 360) of the
populations (Fig. 2b). Community-wise, it was detectable in
at least one population in 26.7% of the communities (56 out
of 210). The magnitude of drift following the ‘“upper
threshold” quantification, i.e., the observed CV minus the
upper 99.5% confidence interval of the expected noise
CV, had a median of 2% and it fitted best a log-normal
distribution (mean = 0.625, sd =0.889, Fig. 2c and Sup-
plementary Table S2).

Following the “mean threshold” quantification, drift was
detectable in 42.8% (154 out of 360) of the populations
(Fig. 2b). Community-wise, it was detectable in at least one
population in 29% of the communities (61 out of 210). The
magnitude of drift following the “mean threshold” quanti-
fication, i.e., the observed CV minus the mean expected
noise CV, had a median of 1.4% and it fitted best an
exponential distribution (rate = 0.423, Fig. 2d and Supple-
mentary Table S3).

Additional analyses indicated that the observed varia-
bility (which we perceived as drift) was random with
respect to the experimental parameters and it could not be
due to the slight recorded temperature differences within the
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incubation chamber. First, the z-score did not correlate to
the cell density, to the identity of the strain, the species
richness of the community or to the starting cell con-
centration (linear mixed-effects model, n =360, —1.439 <
t<1.537, 0.155<p<0.843—Supplementary Table S4)
indicating that the deviance from the expected “noise” was
random. Second, the recorded deviance cannot be explained
by growth under slightly different temperatures because that
would cause a lower (and constant) increase of the observed
magnitude of drift with time for all three strains than what
was recorded (Supplementary Fig. S5).

Simulating drift in metacommunities under various
dispersal and selection scenarios

We next used the experimental results from our simplified
bacterial system to simulate drift in complex metacommu-
nities under various scenarios of dispersal and selection.
Overall, our simulations showed that drift can generate a
substantial amount of (-diversity and can lead to con-
siderable species loss with the extinct species being mostly
rare (Fig. 3 and Supplementary Fig. S6). The results were
very similar when we used either the “upper threshold” or
the “mean threshold” drift distributions (Fig. 2c, d,
respectively); P-diversity increases when dispersal is low
and selection is high (Fig. 3a and Supplementary Fig. S6a)
along with the number of extinct species (Fig. 3b and
Supplementary Fig. S6b) that become increasingly less rare
(i.e., having higher initial relative abundances on average)
under these conditions (Fig. 3c, d and Supplementary
Fig. S6c, d). The highest generated p-diversity was 15.1%
and 11.7% in terms of BC dissimilarity when using the
“upper threshold” and “mean threshold” drift distributions,
respectively. The maximum observed species loss due to
drift was —112 and —68 species per community on average
using the “upper threshold” and “mean threshold” drift
distributions, respectively, corresponding to 5.6% and 3.4%
of the initial species being lost. The median starting relative
abundance of the species that got extinct due to drift was
0.035% and 0.034% at maximum in the simulations using
the “upper threshold” and “mean threshold” drift distribu-
tions, respectively. The potentially extinct species belong to
the “rare” fraction of the communities where most species
reside so that the range of potentially extinct species
includes 40.4% + 1.1% of the total species (Fig. 3d and
Supplementary Fig. S6d).

Given that drift’s effect on species abundances is
expected to increase with time [6], we further examined in
our simulations the change in the generated p-diversity,
species richness, and community evenness due to drift
through time. We found that the change in the generated f3-
diversity saturates after ~500 generations for most selection/
dispersal scenarios except at the highest selection and
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lowest dispersal (Fig. 4a and Supplementary Fig. S7a). On
the contrary, the decrease for both species richness and
evenness in drift-impacted communities compared to drift-
free communities does not saturate for most simulations
(Fig. 4b, ¢ and Supplementary Fig. S7b, ¢), indicating that
for these properties the effect of drift would increase with
prolonged time.

Finally, we hypothesized that the amount of p-diversity
generated by drift depends on the diversity of the meta-
community because changes caused by drift would accu-
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10,000 species under the highest selection and lowest dis-
persal. The results were unchanged when we repeated the
simulations under two more selection/dispersal scenarios
(0.071/0.2 and 0.1/0.1—Supplementary Table S5).

Discussion

A direct quantification of drift with population-level
resolution

Our study contributes to previous works in microbial ecology
by providing a quantification of ecological drift at the popu-
lation level. In our experiments, we have focused on quanti-
fying explicitly and directly the variability due to random
births and deaths across populations that is the definition of

SPRINGER NATURE



62

S. Fodelianakis et al.

>

0.15
I

BC dissimilarity
0.10
Il

0.05
|

0.00
|

0 200 400 600 800 1000
Generations

Cc

T T T T T T
0 200 400 600 800 1000

Generations

0.01
I

AEvenness
-0.01

-0.02

-0.03

High Selection
Low Dispersal

Low Selection
High Dispersal

T T T
0 200 400

T T T
600 800 1000

Generations

Fig. 4 The effect of drift (following the ‘“upper threshold” quan-
tification) on the generated P-diversity, on species loss and on
community evenness with increasing time in simulations under
various selection and dispersal scenarios. a The generated (-
diversity (Bray—Curtis dissimilarity). b The average difference in the
number of species between drift-free and drift-impacted communities

drift [6], using an experimental setup that isolates drift from
other processes and subtracts the experimental and metho-
dological noise (Fig. 1). In contrast, in previous experimental
works that laid the foundation on drift in microbial commu-
nities “drift” could be resulting from other processes as well.
For example, in two relevant experiments on electrolysis cell
reactors [5] and on leaf decomposer communities [23], the
observed stochasticity that the authors refer to as “drift” could
be resulting from priority effects in addition to random births
and deaths, from the methodological noise introduced by
sequencing or from the uncontrolled spatial variability. On the
contrary, here we quantified drift via direct observations at the
population level using absolute cell counting (Fig. 2a) in
highly controlled and replicable microbiological assays
and we accounted for the major possible sources of experi-
mental variability (Fig. 2b and Supplementary Fig. S5). Our
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(AS). Negative values indicate species loss in drift-impacted com-
munities. ¢ The difference in Pielou’s evenness (AEvenness). Negative
values indicate lower evenness in drift-impacted communities. The
strength of selection and the rate of dispersal change as per the legend
on the bottom right.

estimates of drift, which we found to be independent of the
experimental parameters, could be used to predict drift’s
effects in laboratory and natural settings when selection and
dispersal can be parameterized. However, even though in our
study drift was independent of the examined populations and
communities, experiments with other bacterial strains that
have a wide spectrum of growth rates and phylogenies could
further broaden our estimates on drift’s magnitude and on
drift’s effects on o- and B-diversity.

Drift generates B-diversity by leading mainly rare
species to extinction

Fed by our experimental data, our simulations support the
existing notion that drift affects mainly rare taxa in micro-
bial communities [16]. Expanding that notion, our results
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Fig. 5 The generated B-diversity by drift (Bray—Curtis dissim-
ilarity — BC), following the ‘“upper threshold” drift quantification,
(y axis) as a function of the number of species in the meta-
community (x axis). Black dots correspond to the values from dif-
ferent simulations (i.e., for metacommunities of 500, 1000, 2000,

also point that the species loss is more prominent at low
dispersal rates and in fluctuating environments where drift
can affect non-rare taxa as well. For example, half of the
extinct species due to drift in the simulation under the
lowest dispersal and highest selection were above the 40th
percentile, and thus not in the “rare” tail, of the relative
abundance distribution (Fig. 3d and Supplementary
Fig. S4). Moreover, the species loss and the resulting
negative effect of drift on community evenness did not
attenuate with time in most of our simulations (Fig. 4b, c
and Supplementary Fig. S7b, c¢), suggesting that drift may
partially drive the skewed microbial distributions in nature
[20] and that other processes such as dormancy and spe-
ciation are important for counterbalancing species loss over
long temporal scales [24]. Notably, in this work, we made
no assumptions on species equality like, for example, the
neutral model of Hubbell [3] that is used widely to explain
stochastic patterns in a- and p-diversity.

Even though we aimed to make our simulation as general
as possible by avoiding assumptions on neutrality, our
simulations do not by any means reproduce the species
interactions and the possible environmental settings that can
be found in nature, but rather a range of them. For example,
our modeled changes in growth rates could be the result of
both abiotic and biotic interactions, but biotic interactions

4000, 6000, 8000, and 10,000 species, n =3 for each level). The line
corresponds to the mean and the shaded gray area to the 99.5% con-
fidence intervals of the fitted, non-significant, linear model (adjusted
R*=-0.047, p=0.76).

could also be weighted by the abundance of other species in
a given community. Similarly, our model metacommunity
represents a system of low connectivity because a given
community therein is connected with only two other com-
munities via dispersal. Changing the form of dispersal, e.g.,
by randomizing the community order throughout the gen-
erations, would most probably change the model output and
would be very interesting to examine in future studies that,
for example, ask questions about the effect of habitat
fragmentation on microbial community stochasticity. In
addition, here we used a dispersal gradient of 2-20% of
growing cells because in our previous study we found that
dispersal of 20% homogenizes the metacommunity [17] and
thus we set the lower limit to one-tenth of that. Lower
dispersal would definitely result in higher species loss and
generated P-diversity but it is questionable if such a degree
of isolation really exists in nature [25, 26].

Interestingly, the P-diversity generated by drift in our
simulations even in very diverse metacommunities (Fig. 5
and Supplementary Fig. S8) is a considerable part of the
reported P-diversity among stochastically assembled com-
munities in nature [27-35] (Table 1). This suggests that drift
is a significant driver of the stochasticity observed in nature
along with other stochastic processes such as priority effects
[5] and historical contingency [2], which might account for
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Reference display element within the

respective study

Justification

Reported/inferred B-diversity
(Bray—Curtis dissimilarity)

Stochasticity component

Table 1 The reported B-diversity (Bray—Curtis community dissimilarity, mean or minimum values) in example studies on natural systems where at least a part of microbial community assembly

was stochastic.
Study (in alphabetical order)
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Fig. 5

Minimum observed across all

samples

>40%

Dispersal limitation and random processes leading community

assembly

Beaton et al. [25]

Fig. 2

Minimum observed across all

samples

~30%

Undominated community assembly in 0—15% of community pairs

Graham et al. [26]

Supplementary Fig. S1

Minimum observed across all

samples

~45%

Drift contribution 55.71% in the whole metacommunity

Langenheder et al. [27]

Fig. 3

Minimum observed across all

samples

Spatial factors, representing neutral processes, governed community >40%

assembly

Mo et al. [28]

Mean observed across all samples + Table 2

~28.5%
1 standard deviation

Undominated community assembly in 8-23% of community pairs

Xiao et al. [29]

Table 2

Observed centroid in “adult”

sample group

~41.5%

Stochastic processes dominating the assembly of adult shrimp gut

microbiota

Xiong et al. [30]

Table 2

Observed centroids in “adult”

sample groups

67-78%

Stochastic processes dominating the assembly of adult fish gut

microbiota

Yan et al. [31]

Table 3

Observed centroid in “Group A”

sample group

41%

Stochastic processes dominating the assembly of microbial

communities in bioreactors

Zhang et al. [32]

Table 1

Observed centroids in “intermediate

60-62%
phase” sample groups

Stochastic processes dominating the assembly of microbial

Zhou et al. [33]

communities at the intermediate phases after emulsified vegetable oil

amendment

the part of the stochasticity not explained by drift. The
unexplained component of the observed stochasticity is
further amplified by the noise introduced by sequencing-
based community screening [36, 37] that is absent in the
approach we have deployed. Moreover, some of the studies
that we report in Table 1 for comparison did not deploy
phylogenetic null modeling. Thus some community pairs
therein could be re-classified as being deterministically dri-
ven if phylogenetic null modeling was performed, deflating
the amount of observed p-diversity in stochastically assem-
bled communities. At the same time, our estimates are
necessarily conservative because in our experimental calcu-
lations, we aimed to exclude false-positive observations
based on the expected noise distribution (Fig. 2b) and this
resulted in <50% of detectability for both the applied quan-
tification thresholds.

Methodological constraints and future perspectives

The fact that we did not detect drift in all the populations does
not mean that drift did not occur in all of them, but rather
points to the constraints of the applied method to determine
cell densities. Since births and deaths are inherently stochastic
[6], there should have always been differences across the
populations of a given strain at a given time point in all the
assays. In other words, if we had the perfect method to
determine cell densities we would always detect drift. How-
ever, this is not the case in reality and thus it is necessary to
establish the levels of “noise” and subtract it from the
observations, resulting in false-negative observations espe-
cially when the level of “noise” is high (e.g. at low cell
densities in our study—Fig. 2b). Moreover, detectability also
depends on the number of samples per observation. Here we
used three samples for both “noise” establishment and during
the main experiments (Fig. 1) to calculate CV, but increasing
that number could have resulted in narrowing down varia-
bility and increasing detectability. However, the desired
temporal resolution (20 min) was the limiting factor dictating
the maximum number of samples that we could handle effi-
ciently between time points because we were measuring in
real-time while the cultures were growing. On top of that, the
maximum experimental time was also constrained by the flow
cytometer, because if we reached further in time the samples
would have high cell densities and would require dilution
before measuring; that would further inflate the experimental
noise. Recent advances in flow cytometry such as acoustic
focusing for parallel measurements [38] could lift some of
those constraints by allowing fast measurements of samples
with high density and with lower noise levels. In addition,
experiments such as ours, where relative abundances can be
quantified both by sequencing and without sequencing, could
be an ideal way to quantify the introduced sequencing noise
in synthetic bacterial communities and thus to provide
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“sequencing noise” thresholds for field studies. The limiting
factor in such experiments is the ability to discriminate the
different strains that are used, but recent advances in prob-
abilistic algorithms allow for the use of strains with largely
overlapping flow cytometry scattering profiles [39].

Despite its limitations, our study experimentally demon-
strates the existence, and offers quantitative insights, of drift
in bacterial populations. Our simulations place drift as a
process that results in significant loss of a-diversity and gain
of B-diversity in microbial communities, especially under low
dispersal and in fluctuating environments. Overall, our results
serve as a starting point for future studies to investigate the
effect of drift in more complex microbial systems when
methodological constraints are lifted and more precise cell
quantification methods become available.
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