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Background:Carbohydrate restrictionmay benefit β-cell function and glucose

metabolism in type 2 diabetes (T2D) but also leads to weight loss which in itself

is beneficial.

Methods: In order to determine the additional e�ect of carbohydrate

restriction in addition to a fixed body weight loss, we randomly assigned 72

adults with T2D and obesity (mean ± SD HbA1c 7.4 ± 0.7%, BMI 33 ± 5 kg/m2)

to a carbohydrate-reduced high-protein diet (CRHP; energy percent from

carbohydrate/protein/fat: 30/30/40) or an isocaloric conventional diabetes diet

(CD; 50/17/33) for 6 weeks. All foods were provided free of charge and total

energy intake was tailored individually, so both groups lost 6% of baseline

body weight.

Results: Despite significantly greater reductions in HbA1c (mean [95% CI]

−1.9 [−3.5, −0.3] mmol/mol) after 6 weeks, the CRHP diet neither improved

glucose tolerance, β-cell response to glucose, insulin sensitivity, during a 4-

h oral glucose tolerance test, nor basal proinsulin secretion when compared

to the CD diet, but increased C-peptide concentration and insulin secretion

rate (area under the curve [AUC] and peak) significantly more (∼10%, P

≤ 0.03 for all). Furthermore, compared with the CD diet, the CRHP diet

borderline increased basal glucagon concentration (16 [−0.1, 34]%, P = 0.05),

but decreased glucagon net AUC (−2.0 [−3.4, −0.6] mmol/L × 240min,
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P < 0.01), decreased basal triglyceride and total AUC (∼20%, P < 0.01 for both),

and increased gastric inhibitory polypeptide total AUC (14%, P = 0.01).

Conclusion: Amoderately carbohydrate-restricted diet for 6 weeks decreased

HbA1c but did not improve β-cell function or glucose tolerance beyond the

e�ects of weight loss when compared with a conventional diabetes diet in

people with T2D.

Clinical trials registration: www.Clinicaltrials.gov, Identifier: NCT02472951.

KEYWORDS

β-cell function, carbohydrate restriction, insulin sensitivity, low-grade inflammation,

type 2 diabetes, weight loss

Introduction

Type 2 diabetes (T2D) is characterized by hyperglycemia,

which occurs when insulin resistance is not adequately

compensated by hyperinsulinemia. In fact, despite ongoing

insulin resistance, T2D does not manifest until pancreatic β-

cells fail to produce sufficient amounts of insulin to maintain

normal glucose tolerance (1). At this point, patients have

lost over 80% of their β-cell function and the overworked

β-cells are believed to be “exhausted” although the exact

mechanisms are yet to be identified (2). “Lipotoxicity,” i.e.,

chronically elevated levels of circulating non-esterified fatty

acids (NEFAs), may impair normal insulin secretion (3), but

the weight of evidence suggests that “glucotoxicity” is primarily

responsible for β-cell function impairment (4). Indeed, short-

term amelioration of hyperglycemia by intensive insulin therapy

may to some extent improve β-cell responsiveness to glucose

and incretin hormones (5, 6). Furthermore, decreasing the β-

cell workload, without changing plasma glucose concentrations,

by overnight exogenous infusion of somatostatin, enhances first-

phase insulin secretion and decreases proinsulin/insulin ratio

(7), which is suggestive of more appropriate intracellular insulin

processing and less β-cell stress (8). Accordingly, increased

plasma proinsulin relative to insulin or C-peptide has been

suggested to be a sensitive index of β-cell failure, often found in

individuals with T2D in the fasted state but, particularly, when

requirements for insulin secretion increase (9).

Lifestyle modification is pivotal in T2D management, with

weight loss being the cornerstone (10). In fact, remission

of T2D can be achieved after a >15% weight loss in most

patients with short-term diabetes (11), partly associated with the

recovery of first-phase insulin secretion, traditionally believed

to be irreversibly lost in long-lasting T2D (12). Even without

significant changes in body weight, however, several meta-

analyses have suggested that additional metabolic benefits,

in terms of lower concentrations of glycated hemoglobin

(HbA1c), triglyceride, and high-density lipoprotein cholesterol,

are achievable following dietary carbohydrate restriction, at least

in the short term (13–15). Accordingly, carbohydrate restriction

has been suggested as the first approach in diabetes management

(16), and the American Diabetes Association (ADA) recently

recognized carbohydrate restriction as a viable dietary strategy

to improve glycemic control (17).

Previously, we demonstrated that a carbohydrate-reduced

high-protein (CRHP) diet improved glycemic control and

lipid metabolism when compared with a conventional diabetes

(CD) diet (18), which noteworthy also improved β-cell

responsiveness to glucose and proinsulin processing although

the participants had a mean T2D duration of 7 years (19).

Thus, the loss of β-cell function may be at least partially

restored by restricting carbohydrate intake independently of

weight loss, even in patients with a longer duration of T2D.

Unfortunately, carbohydrate-restricted eucaloric diets readily

reduce body weight despite considerable efforts to prevent this

from happening (18, 20); hence, the results of carbohydrate

restriction beyond weight loss are often difficult to interpret.

Accordingly, we aimed to evaluate the effects of matched 6%

weight loss, induced by 6 weeks of a hypocaloric CRHP or CD

diet, on β-cell function and insulin sensitivity, and pancreatic

and gut hormone secretion in people with T2D and overweight

or obesity. The current study represents a secondary analysis of

a trial for which the primary and secondary outcomes (glycemic

control, basal triglyceride, and ectopic fat) have been reported

elsewhere (21).

Materials and methods

Study design and eligibility criteria

This open-labeled, parallel, randomized clinical trial was

conducted at Copenhagen University Hospital Bispebjerg

from January 2018 to July 2019 and included people with

T2D from the Capital Region of Denmark. A full list

of eligibility criteria has been provided previously (21).

In brief, individuals with an HbA1c of 6.5–11.0% (48–97
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mmol/mol), body mass index (BMI) >25 kg/m2, and glucose-

lowering therapy restricted to metformin and/or dipeptidyl

peptidase 4 (DPP-4) inhibitors, and without critical illness,

renal dysfunction (estimated glomerular filtration rate <30

mL/min/1.73 m2 or urine albumin/creatinine ratio >300

mg/g), and without treatment with systemic corticosteroids,

sulfonylureas, sodium–glucose co-transporter 2 inhibitors

or injectable hypoglycemic medications, were eligible for

enrolment. The patients consented in writing, after appropriate

oral and written information, to participate in the study,

which was approved by the Health Ethics Committee of

Copenhagen and the Danish Data Protection Agency. The

study was registered with clinicaltrials.gov (NCT02472951)

and was conducted in accordance with the Declaration

of Helsinki.

Diet intervention and weight loss
management

Participants were randomly assigned in a 1:1 ratio to 6 weeks

of a fully provided hypocaloric CD or CRHP diet consisting of 50

and 30% of total energy (E%) from carbohydrates, 17 and 30 E%

from proteins, and 33 and 40 E% from fats, respectively. Other

dietary components varied with the foods included, for instance,

the contents of monounsaturated fat (higher in the CRHP diet)

and fiber (higher in the CD diet; Supplementary Table 1). Diets

were provided free of charge two times weekly and included

three main meals with or without two snacks and all daily

calories. Alcohol, soft drinks, and any other calorie-containing

foods or beverages not provided by the investigational teamwere

not allowed during the study. Participants were instructed to

consume all meals, and dietary adherence was evaluated at each

diet provision by the use of food records. Meals were prepared in

the metabolic kitchen at the Department of Nutrition, Exercise

and Sports (NEXS), University of Copenhagen, as seven different

daily menus.

The weight loss regimen aimed for a 6% reduction in

baseline body weight over the first 5 weeks and stabilization at

this new lower body weight during the last week, so that the post-

intervention testing was performed in a state of relative energy

balance without being confounded by possible acute effects of

energy restriction. A fixed weight loss algorithm was applied

to each participant, which has been detailed elsewhere (21). To

ensure the targeted weight loss, body weight was evaluated two

times weekly and, if necessary, adjustments in dietary energy

were made by adding or subtracting CRHP or CD food items.

Participants were instructed not to change their habitual physical

activity during the study, and the International Physical Activity

Questionnaire (IPAQ) long form was used at baseline and week

5 to assess adherence. All pharmacotherapy affecting glucose,

lipids, or blood pressure was kept constant in the 2 months prior

to study commencement and throughout the intervention.

Oral glucose tolerance test and analyses

An oral glucose tolerance test (OGTT) was performed on

weeks 0 and 6 to assess β-cell function, insulin sensitivity,

and hormonal responses involved in glucose homeostasis and

satiety. Participants were instructed not to participate in any

strenuous activities for 48 h prior to testing. In the morning

of the testing days, after an overnight 10-h fast, a cannula

was inserted in an antecubital vein and two fasting blood

samples were drawn (at time points −10 and 0min). Then, a

standardized OGTT solution (75 g glucose dissolved in 300ml

of water) was ingested over 5min and additional blood samples

were drawn at time points 10, 20, 30, 45, 60, 90, 120, 150,

180, 210, and 240min. Participants remained sedentary in a

reclined position throughout the OGTT. Blood was processed

accordingly for the separation of plasma or serum and stored at

−80◦C until analysis.

Plasma was analyzed for glucose, cholecystokinin (CCK),

and gastrin at all available time points and glucagon, glucagon-

like peptide-1 (GLP-1), and gastric inhibitory polypeptide

(GIP) at times 0, 30, 60, 90, 120, 150, 180, and 240min;

whereas serum was used for the measurement of insulin,

C-peptide, triglyceride, and NEFAs at every time point

(21). Concentrations of total glucagon, GLP-1, and GIP

were determined (following extraction from plasma with

70% ethanol) by radioimmunoassay (RIA) using C-terminally

directed antisera code nos. 4305, 89390, and 867, respectively

(22). Likewise, CCK concentrations were measured by RIA

using an antiserum directed at the C-terminal sequence (Ab. no.

92128), which specifically binds all the bioactive forms of CCK

without cross-reactivity with any of the homologous gastrin

(23). The gastrin concentrations were also measured by RIA, but

using an antiserum (Ab. no. 2604), which specifically binds all

the bioactive forms of gastrin without cross-reactivity with any

of the homologous CCK peptides (24).

Fasting samples (at time point −10min) were used

for measuring C-reactive protein (CRP), tumor necrosis

factor (TNF)-α, interleukin (IL)-6, and IL-8 as markers of

inflammation, and intact proinsulin (IP) and 32,33 split

proinsulin (SP) as indicators of proinsulin processing, as

these comprise the major portion of circulating proinsulin-like

molecules (25). Serum CRP was measured by enzyme-linked

immunosorbent assay (VICTORNivo; PerkinElmer, MA, USA),

and serum TNF-α, IL-6, and IL-8 by multi-spot immunoassay

(V-PLEX; Meso Scale Discovery, MD, USA); all were measured

in duplicate where an intra-assay coefficient of variation (CV)

of >20% excluded data from analysis. Serum IP and SP were

determined in duplicate with a fluorometric immunoassay
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(Auto-DELFIA; PerkinElmer, MA, USA) with a lower detection

limit of 1.25 pmol/L (26). The results were summed to give

total proinsulin. Considerable cross-reactivity between these two

assays exists which has been accounted for previously (19). The

intra-assay CV for duplicate measurements of CRP, TNF-α, IL-6,

and IL-8 was 6, 3, 5, and 3%, respectively.

Outcomes and calculations

Basal concentrations were obtained from samples taken

at time point 0min or as the mean of time points 0 and

−10min when both were available. Responses to the OGTT

were evaluated as the area under the curve (AUC), calculated

by the trapezoidal method including net AUC (i.e., total AUC

minus the area below baseline) where variables suppressed by

the OGTT, i.e., triglyceride, NEFAs, and glucagon, took negative

values. In addition, we determined the peak/nadir values,

defined as the greatest increment/decrement above/below

the baseline, as well as the time point when these values

were reached.

Prehepatic insulin secretion rates (ISR) were estimated

by the deconvolution of C-peptide concentrations using the

ISEC software which integrates postprandial peripheral

concentrations of C-peptide and individual subject

characteristics in a two-compartment model (27). ISR and

its relation to plasma glucose were used to evaluate the β-cell

responsiveness or sensitivity to glucose in the early phase from

0 to 30min and expressed as the insulinogenic index (IGI30
= [ISR AUC0−30min]/[glucose AUC0−30min]). IGI240 = [ISR

AUC0−240min]/[glucose AUC0−240min] was calculated as an

index of the full insulin response during the OGTT. Btotal was

calculated as an index of changes in insulin secretion relative

to changes in glucose and incretin hormones, represented

as the slope of individual regression lines achieved by the

cross-correlation of corresponding values of ISR and plasma

glucose during the total 240min of the OGTT.

As a marker of whole-body insulin sensitivity, the composite

index (ISIcomp) was calculated as follows: 10,000/
√
[basal

glucose x basal insulin x Ḡ x Ī; where Ḡ is mean glucose and

Ī is mean insulin during the 4-h OGTT (28). Included values

of glucose and insulin were in units of mg/dL and µU/ml

[conversion factor: 1 µU/ml = 6.0 pmol/L (29)], respectively.

Given the hyperbolic relationship between insulin sensitivity

and β-cell responsiveness to glucose, which has been validated

in another study (30), the disposition index, calculated as

their product (Di = ISIcomp x Btotal), was used to assess β-

cell function (31). The metabolic clearance rate of insulin was

estimated as the ratio between newly secreted insulin and total

serum concentration of insulin throughout the OGTT after

adjustment for body weight by using the following formula:

MCRi = [ISR AUC0−240min]/[insulin AUC0−240min] × body

weight (30).

Sample size, statistics, and randomization

Sample size calculations, together with primary and

secondary outcomes, have been reported elsewhere (21). In

brief, the study evaluated changes in HbA1c and liver fat as

its primary and leading secondary outcomes, respectively, and

adequate power was expected with 80 participants enrolled,

allowing for 20% attrition. β-cell function, insulin sensitivity,

and hormonal responses following the OGTT, presented here,

were pre-specified exploratory outcomes and interpreted as

such. Accordingly, no adjustments were made for multiplicity in

data analysis, and the two-sided statistical tests were considered

significant when P < 0.05.

Summary statistics included only completing participants.

All data—except for net AUCs and time to peak/nadir—were

log-transformed because of distribution skewness. Therefore,

unless otherwise stated, baseline data are shown as geometric

means (95% CI), and changes from baseline are shown as

a percentage. Statistical inference was accomplished using all

available data in a constrained linear mixed model with inherent

baseline adjustment, and the treatment effect was evaluated

as the marginal mean (95% CI) of CRHP vs. CD diet. The

model used an unstructured pattern of covariance to account

for repeated measurements. Missing data were assumed to

be missing at random and implicitly handled by maximum

likelihood estimation. Model assumptions were assessed from

residual diagnostics, and skewed variables were handled by

log-transformation prior to analysis, in which case differences

between diets are given in percentage. To account for possible

confounders, a secondary model was adjusted for the covariates

sex, age, duration of T2D, BMI, and therapy with metformin and

DPP-4 inhibitors.

An unrelated study nurse was responsible for the

randomization which upon the allocation of the participants

was unblinded for the investigators; whereas participants

were kept blind until the first meal provision. Randomization

was performed in blocks of random size through a generated

randomization list which was conducted in R (Version 3.6.0,

R, Boston, MA, USA) together with all statistical analyses

and graphics.

Results

Participants and baseline characteristics

From a total of 338 telephone pre-screenings and 102

screening visits, 72 participants were enrolled in the present

study of whom 67 completed all visits; three withdrew

consent during the intervention, and two before the first

visit but after randomization. Reasons for withdrawal have

been described elsewhere (21) but were not related to trial

outcomes or any study-related adverse events. Because of
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TABLE 1 Baseline characteristics of participants with T2D.

Characteristic CD diet CRHP diet

Participants/white ethnicity, n 33/33 34/34

Male/female sex, n 15/18 20/14

Age, years 67.0 (±8.8) 66.4 (±6.9)

Duration of T2D, years 7.7 (2.8, 10.1) 8.5 (3.5, 11.9)

HbA1c , % 7.40 (±0.70) 7.42 (±0.77)

HbA1c , mmol/mol 57.4 (±7.7) 57.6 (±8.4)

Body mass index, kg/m2 33.2 (±5.1) 33.6 (±4.6)

Body weight, kg 97.5 (±25.4) 98.0 (±14.2)

Estimated daily TEE, kcal 2,600 (±632) 2,652 (±364)

Medication use, n (%)

No glucose-lowering therapy 12 (36) 8 (24)

Glucose-lowering therapy 21 (64) 26 (76)

1 hypo-glycemic agent 18 (54) 16 (47)

2 hypo-glycemic agent 3 (9) 10 (29)

Metformin 21 (64) 25 (74)

DPP-4 inhibitors 3 (9) 11 (32)

Lipid-lowering therapy 23 (70) 26 (76)

Anti-hypertensive therapy 26 (79) 29 (85)

Data are presented as means (±SD), medians (25th, 75th percentiles), or frequencies.

CD, conventional diabetes; CRHP, carbohydrate-reduced high-protein; DPP-4, dipeptidyl

peptidase 4; T2D, type 2 diabetes; TEE, total energy expenditure.

the COVID-19 pandemic lockdown, fewer than the expected

80 participants were enrolled but power was sufficient due

to lower than anticipated attrition rates (CD 8.3%, CRHP

5.6%). Randomization was successful and, apart from uneven

distribution of sex and use of DPP-4 inhibitors, the baseline

characteristics were well balanced between groups (Table 1).

Importantly, the results were robust when adjusting for baseline

differences in sex, age, duration of T2D, BMI, and use of

metformin and DPP-4 inhibitors.

Weight loss

Weight loss in the two diet groups was well-matched (CHRP

vs. CD: 0.1 [−0.6, 0.7] kg, P = 0.83) with a 5.8 kg mean decrease

in both groups. No differences in dietary energy restriction (4

[−149, 158] kcal/day, P = 0.95) or physical activity level (0

[−27, 37]%, P = 0.99) were found. These outcomes have been

published in detail elsewhere (21).

Glucose and lipid metabolism

Overall, glycemic control was improved by the CRHP diet

after 6 weeks compared with the CD diet as HbA1c decreased by

1.9 [−3.5, −0.3] mmol/mol and diurnal mean glucose by −0.8

(−1.2,−0.4) mmol/L; both reported elsewhere (21).

Basal concentrations of glucose, insulin, C-peptide, and ISR

did not differ between diets and were all reduced after the 6-week

intervention (Table 2). When compared with baseline, weight

loss with both diets increased total AUC, net AUC, peak, and

time to peak of insulin, C-peptide, and ISR; and decreased total

AUC, net AUC, and peak of glucose (Table 2; Figure 1). After

6 weeks, the CRHP diet increased total AUC (9 [2, 18]%) and

net AUC (203 [11, 394] pmol/L × 240min) of C-peptide and

ISR response (10 [1, 19]%) (P < 0.05 for all) to a significantly

greater extent compared with the CD diet, but no differences in

glucose response were found (Table 2; Figure 1). Peak values of

C-peptide and ISR also increased to a significantly greater extent

by the CRHP than the CD diet (Supplementary Table 2).

Triglyceride and NEFA total AUCs and nadirs were reduced

with both diets when compared with baseline. The CRHP diet

reduced basal triglyceride (−19 [−30, −6]%) and triglyceride

total AUC and nadir (−21 [−31, −9]% and −25 [−35, −13]%,

respectively) (P < 0.01 for all) and tended to also suppress NEFA

nadir (−20 [−36,−0.1]%, P = 0.05) to a greater extent than the

CD diet.

Insulin sensitivity and β-cell function

Weight loss induced by either diet significantly increased

ISIcomp by approximately 42% and indices of β-cell

responsiveness (Btotal, IGI30, and IGI240) and function by 24–

68% and 138%, respectively (P < 0.001 for all). Improvements

were seen in most participants: 88% for ISIcomp, 93% for

Btotal, and 99% for Di (Figure 2). The CRHP diet did not

improve measures of insulin sensitivity, β-cell responsiveness

to glucose, or β-cell function when compared with the CD diet

(Supplementary Table 3). No difference was found for MCRi

between diets (Figure 2), and only small changes were observed

when compared with baseline.

Glucagon and gut hormones

Changes in basal concentrations of GLP-1, GIP, CCK,

and gastrin after 6 weeks were similar between diets, and all

hormones except for gastrin decreased significantly with weight

loss (Table 3). Basal glucagon tended to decrease to a lesser

extent following the CRHP diet when compared with the CD

diet (16 [−0.1, 34]%, P = 0.05), whereas glucagon net AUC was

reduced significantly more after the CRHP diet (−2.0 [−3.4,

−0.6] mmol/L × 240min, P < 0.01, Figure 3). Moreover, GIP

total AUC, but not net AUC, was higher on the CRHP than

on the CD diet (14 [3, 27]%, P = 0.01), and a tendency for

higher peak was found (Supplementary Table 2). No differences

between diets were found in the OGTT response of GLP-1, CCK,

and gastrin (Figures 3, 4). Nonetheless, peaks and total AUCs
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TABLE 2 Basal concentrations and responses to an oral glucose tolerance test of glucose, insulin, C-peptide, triglyceride, NEFAs, and insulin

secretion at baseline and after matched ∼6% weight loss by a CD or a CRHP diet in individuals with T2D and overweight or obesity.

CD diet, n = 33 CRHP diet, n = 34 Between diets

Baseline Changea Baseline Changea Differenceb
P value

Plasma glucose

Basal glucose, mmol/L 8.8 (8.2, 9.5) −21 (−26,−16)‡ 8.7 (8.1, 9.3) −22 (−26,−17)‡ −2 (−8, 5) 0.63

AUC, mmol/L x 240min 13.9 (12.8, 15.1) −19 (−24,−15)‡ 14.1 (13.3, 15.0) −18 (−23,−14)‡ 1 (−5, 9) 0.70

Serum insulin

Basal insulin, pmol/L 125 (106, 148) −26 (−36,−16)‡ 117 (101, 135) −27 (−35,−18)‡ −0.4 (−16, 18) 0.96

AUC, pmol/L x 240min 281 (223, 355) 2 (−7, 11) 266 (215, 328) 13 (4, 23)† 11 (−0.5, 24) 0.06

Serum C-peptide

Basal C-peptide, pmol/L 1,252 (1,125, 1,394) −15 (−22,−8)‡ 1,249 (1,126, 1,386) −12 (−18,−6)‡ 3 (−6, 14) 0.50

AUC, pmol/L x 240min 2,501 (2,183, 2,865) 8 (1, 14)† 2,464 (2,171, 2,797) 18 (11, 25)‡ 9 (2, 18) 0.02

Insulin secretion rate

Basal ISR, pmol x kg−1 x min−1 3.3 (3.0, 3.6) −11 (−17,−4)† 3.2 (3.0, 3.5) −8 (−13,−2)* 3 (−6, 13) 0.50

AUC, pmol x kg−1 x 240 7.2 (6.2, 8.2) 14 (7, 22)‡ 7.0 (6.2, 7.8) 26 (18, 34)‡ 10 (1, 19) 0.03

Serum triglyceride

Basal triglyceride, mmol/L 1.7 (1.5, 1.9) −13 (−24,−0.7)* 1.6 (1.3, 1.9) −27 (−37,−15)‡ −19 (−30,−6) <0.01

AUC, mmol/L x 240min 1.5 (1.3, 1.8) −15 (−25,−5)† 1.5 (1.2, 1.8) −31 (−40,−21)‡ −21 (−31,−9) <0.01

Serum NEFA

Basal NEFA, mmol/L 0.71 (0.64, 0.78) −11 (−17,−4) 0.61 (0.55, 0.68) −5 (−14, 6) −1 (−11, 10) 0.85

AUC, mmol/L x 240min 0.32 (0.29, 0.36) −14 (−18,−9)† 0.29 (0.26, 0.33) −13 (−23,−1)‡ −4 (−14, 7) 0.46

Data are presented as mean (95% CI) following log-transformation. Between-diet differences are estimated marginal means (CRHP vs. CD) derived from constrained linear mixed models

with inherent baseline adjustment using all available data.
aRelative change (%) from baseline.
bRelative difference (%) between diets.
*P < 0.05, †P < 0.01, and ‡P < 0.001 vs. baseline.

CD, conventional diabetes; CRHP, carbohydrate-reduced high-protein; ISR, insulin secretion rate; NEFAs, non-esterified fatty acids.

for these hormones except for gastrin decreased with weight loss

which only minutely affected net AUCs and time to peak/nadir.

Proinsulin-like molecules

When compared with the CD diet, the CRHP diet did not

reduce absolute concentrations of intact, 32,33 split, or total

proinsulin; or total proinsulin in relation to insulin or C-peptide

(Table 4). However, all variables were reduced significantly and

similarly after weight loss (by 28–51%, P < 0.001 for all).

Participants benefitted robustly as all but one experienced a

reduction in the total proinsulin/C-peptide ratio.

Low-grade inflammation

None of the included markers of inflammation differed

between groups after the diet interventions, and few changed

with weight loss, except for CRP and TNF-αwhich were reduced

and increased, respectively, on the CD diet (Table 4). Notably,

the data included much variation and outliers for TNF-α and

IL-6 (Supplementary Figure 1), but the results remained robust

after excluding these data points (not shown).

Adverse events

No serious adverse events occurred during the study.

Reported adverse events were generally mild and not statistically

different between groups. Nevertheless, one participant

(CRHP) experienced episodes of transient excessive sweating

and increased plasma creatinine concentration but no

underlying medical cause was identified. Also, more time of

the day was spent with plasma glucose below 3.9 mmol/L

(from 7-day continuous glucose monitoring) while on the

CRHP diet (21) which, however, did not correspond to

symptoms of hypoglycemia. Most adverse events experienced

by the participants were gastrointestinal with symptoms of

constipation being the most predominant (CD 5, CRHP 8);

all but one was easily remedied by sufficient fluid intake and

laxatives. Few episodes of diarrhea (CD 2, CRHP 2), dizziness

(CD 1, CRHP 2), and feelings of increased tiredness or lack of

energy (CD 0, CRHP 2) occurred.
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FIGURE 1

Concentrations of plasma glucose (A), serum insulin (B), serum C-peptide (C), insulin secretion rate (ISR) (D), serum triglyceride (E), and serum

non-esterified fatty acids (NEFAs) (F) during an OGTT at baseline and after 6 weeks of a CD or CRHP diet. Inserted plots represent net AUC in the

units stated x 240min. Data are presented as mean (±SEM) following log-transformation, except for net AUCs; **P < 0.01; ***P < 0.001.
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FIGURE 2

Changes in the composite index (ISIcomp) (A), metabolic clearance rate of insulin (MCRi) (B), β-cell responsiveness to glucose (Btotal) (C), and

disposition index (Di) (D) derived from an OGTT at baseline and after 6 weeks of a CD or CRHP diet. Data are presented as median (25th, 75th)

with individual changes. No di�erences between diets were evident from linear mixed model analysis: P = 0.47, P = 0.77, P = 0.65, and P = 0.99

for (A–D), respectively. Estimates are in units: L2 x mg−1 × µU−1 × 10−4 (ISIcomp), L × min−1 (MCRi), L x kg−1 × min−1 × 10−9 (Btotal), and L3 ×
g−2 x min−1 × µU−1 × 10−1 (Di).

Discussion

We hypothesized that a clinically relevant weight loss

induced by a CRHP diet would ameliorate β-cell dysfunction,

impaired glucose tolerance, and stress on the β-cells to a greater

extent than a matched weight loss induced by a CD diet in

individuals with T2D and overweight or obesity. Instead, we

found no improvements in these measures when consuming a

CRHP diet relative to a CD diet, but rather a small increase in

the secretion of insulin and C-peptide during an oral glucose

challenge, despite similar decrements in glucose. Nevertheless,

weight loss, as expected, was highly effective in improving

β-cell function, insulin sensitivity, and proinsulin processing

independently of diet composition.

Weight loss has consistently been shown to be a key

component of effective treatment in T2D; indeed, a 15 kg
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TABLE 3 Basal concentrations and responses to an oral glucose tolerance test of glucagon, GLP-1, GIP, CCK, and gastrin at baseline and after

matched ∼6% weight loss by a CD or a CRHP diet in individuals with T2D and overweight or obesity.

CD diet, n = 33 CRHP diet, n = 34 Between diets

Baseline Changea Baseline Changea Differenceb
P value

Plasma glucagon

Basal glucagon, pmol/L 17.6 (15.7, 19.7) −30 (−37,−22)‡ 17.8 (16.1, 19.6) −19 (−28,−9)‡ 16 (−0.1, 34) 0.05

AUC, pmol/L x 240min 14.2 (12.7, 15.8) −30 (−39,−20)‡ 13.7 (12.6, 14.9) −27 (−33,−20)‡ 3 (−10, 19) 0.65

Plasma GLP−1

Basal GLP−1, pmol/L 6.6 (5.1, 8.7) −65 (−75,−51)‡ 5.7 (4.2, 7.7) −42 (−62,−14)‡ 48 (−4, 128) 0.08

AUC, pmol/L x 240min 13.3 (11.2, 15.8) −30 (−43,−14)‡ 10.8 (9.4, 12.5) −20 (−32,−7)† 3 (−18, 30) 0.79

Plasma GIP

Basal GIP, pmol/L 9.9 (8.0, 12.4) −59 (−69,−45)‡ 7.5 (6.0, 9.5) −43 (−58,−23)‡ 22 (−17, 78) 0.31

AUC, pmol/L x 240min 28.7 (25.7, 32.0) −17 (−25,−9)‡ 23.4 (21.2, 25.9) −4 (−10, 1) 14 (3, 27) 0.01

Plasma CCKc

Basal CCK, pmol/L 1.1 (0.8, 1.7) −40 (−55,−20)‡ 1.1 (0.7, 1.6) −30 (−49,−4)* 14 (−24, 72) 0.52

AUC, pmol/L x 240min 1.4 (1.0, 1.8) −22 (−30,−12)‡ 1.3 (0.9, 1.8) −12 (−21,−2)* 12 (−4, 31) 0.14

Plasma gastrinc

Basal gastrin, pmol/L 13.2 (10.0, 17.4) −11 (−22, 2) 10.3 (8.1, 13.2) −11 (−21, 0.3)* −4 (−19, 13) 0.61

AUC, pmol/L x 240min 14.3 (11.5, 17.8) −8 (−15,−2)* 11.3 (9.4, 13.6) −2 (−8, 4) 3 (−5, 12) 0.43

Data are presented as mean (95% CI) following log-transformation. Between-diet differences are estimated marginal means (CRHP vs. CD) derived from constrained linear mixed models

with inherent baseline adjustment using all available data.
aRelative change (%) from baseline.
bRelative difference (%) between diets.
cTotal analyzed n= 66 (CD 32 and CRHP 34). Missing data due to insufficient plasma required for analysis.

*P < 0.05, †P < 0.01, and ‡P < 0.001 vs. baseline.

CCK, cholecystokinin; CD, conventional diabetes; CRHP, carbohydrate-reduced high-protein; GIP, gastric inhibitory polypeptide; GLP-1, glucagon-like peptide-1.

reduction has been shown to almost eliminate hyperglycemia

and result in the remission of T2D (11). In fact, this amount

of weight loss and/or severe energy restriction may lead to the

normalization of β-cell function and hepatic insulin sensitivity to

levels typical of individuals without T2D (33, 34). Accordingly,

in the present study, we found that the modest 6% weight loss

significantly improved β-cell function and responsiveness to

glucose and whole-body insulin sensitivity in response to an

OGTT, independent of diet composition. We have previously

demonstrated—using diets of similar composition and for the

same duration—that a moderate substitution of carbohydrate

with protein and fat improves β-cell responsiveness to glucose in

response to CHRP vs. CD meals (19), but this could have been

because of the acute changes specific to the different composition

of the CRHP and CDmeals (22). This is likely, given that we did

not confirm these observations in this study, in response to the

same oral challenge (OGTT). It is also likely that the effects of

concurrent weight loss in the present study far outweighed and

masked any independent effects of macronutrient composition.

However, the use of an OGTT may be limited when evaluating

carbohydrate restriction as the response in healthy individuals

was found to depend on the carbohydrate content of the

preceding dinner meal (32).

The β-cell sensitivity to glucose and to incretin hormones

seems to improve from short-term amelioration of

hyperglycemia by intensive insulin therapy (5, 6), which

possibly relieves β-cells from the toxic byproducts of increased

insulin production in response to hyperglycemia and the

deteriorating effect of glucotoxicity (35). In T2D, stressed β-cells

increase the proportion of secreted proinsulin and proinsulin

conversion intermediates that remain inactive precursors

of insulin, altogether suggestive of impaired intracellular

processing of proinsulin to insulin (9, 36). Accordingly, β-cell

rest induced by overnight administration of somatostatin

reduces proinsulin secretion and improves β-cell function (7).

We recently demonstrated that the release of proinsulin-like

molecules was decreased after 6 weeks of a weight-maintaining

CRHP diet when compared with a CD diet, which we suggested

was the result of decreased demand on the β-cells (19), caused

by reductions in postprandial hyperglycemia occurring after the

CRHP meals (18, 22). We could not replicate this finding in

the present study, as there was no difference in basal proinsulin

secretion between diets despite the improved glycemic control

including a considerably larger reduction in mean diurnal

glucose, by 0.8 mmol/L (∼50%), after the CRHP diet compared

with the CD diet [discussed in Thomsen et al. (21)]. In fact,

in response to the OGTT, we found minute increments in ISR

and C-peptide total AUCs and peak values after the CRHP

diet compared with the CD diet (by ∼10%, P < 0.05 for both);

this was despite identical decreases in glucose responses to the
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FIGURE 3

Plasma concentrations of glucagon (A), GLP-1 (B), and GIP (C)

during an OGTT at baseline and after 6 weeks of a CD or CRHP

diet. Inserted plots represent net AUC in the units stated x

240min. Data are presented as mean (±SEM) following

log-transformation, except for net AUCs; *P < 0.05.

OGTT. The clinical relevance of this finding remains uncertain,

but could potentially translate into increased demand on the

β-cells when transitioning from a carbohydrate-restricted diet

to a carbohydrate-rich diet. Nevertheless, weight loss in the

present study, induced by either diet, ameliorated inappropriate

FIGURE 4

Plasma concentrations of CCK (A) and gastrin (B) during an

OGTT at baseline and after 6 weeks of a CD or CRHP diet.

Inserted plots represent net AUC in the units stated x 240min.

Data are presented as mean (±SEM) following

log-transformation, except for net AUCs; *P < 0.05.

proinsulin secretion efficiently, consistent with what others have

found (37).

GLP-1 and GIP have well-known insulinotropic properties

during glucose stimulation, which account for most of the

incretin effect (38), but other secretagogues including glucagon

through intra-islet crosstalk (39) and circulating CCK and

gastrin are also recognized for contributing to insulin secretion

(40). In the present study, only GIP total AUC increased

significantly after the CRHP diet compared with the CD diet,

which may explain the increase in insulin secretion although the

action of GIP in T2D is usually impaired (41). Basal glucagon

concentration tended to be reduced to a smaller extent by the

CRHP diet than the CD diet, but was suppressed similarly

during the OGTT, resulting in a significant reduction in net

AUC. Several studies have found that fasting hyperglucagonemia

is associated with fasting hyperglycemia through increased

hepatic glucose production (39, 42), but the higher glucagon
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TABLE 4 Basal concentrations of proinsulin-like molecules and markers of inflammation at baseline and after matched ∼6% weight loss by a CD or a

CRHP diet in individuals with T2D and overweight or obesity.

CD diet, n = 33 CRHP diet, n = 34 Between diets

Baseline Changea Baseline Changea Differenceb
P value

Proinsulinc

Intact proinsulin, pmol/L 9.5 (7.6, 12.0) −45 (−54,−35)‡ 9.4 (7.8, 11.3) −43 (−50,−36)‡ 1 (−16, 22) 0.88

Split 32,33 proinsulin, pmol/L 14.5 (11.3, 18.6) −49 (−58,−38)‡ 12.8 (10.2, 16.2) −51 (−58,−43)‡ −9 (−27, 15) 0.43

Total proinsulind , pmol/L 24.2 (19.1, 30.7) −47 (−56,−37)‡ 23.0 (19.1, 27.6) −48 (−55,−40)‡ −4 (−22, 17) 0.66

Total proinsulin / insulin 0.19 (0.17, 0.23) −28 (−36,−19)‡ 0.20 (0.17, 0.23) −29 (−39,−19)‡ −3 (−17, 13) 0.69

Total proinsulin / C-peptide 0.019 (0.016, 0.023) −38 (−45,−29)‡ 0.018 (0.016, 0.021) −41 (−48,−34)‡ −9 (−21, 4) 0.18

Inflammation markersd

CRP, ng/mL 1.4 (0.9, 2.0) −33 (−50,−10)† 1.5 (0.9, 2.4) −14 (−45, 33) 43 (−10, 127) 0.14

TNF-α, pg/mL 2.0 (1.8, 2.2) 8 (0.8, 17)† 2.0 (1.8, 2.2) 1 (−3, 6) −7 (−14, 1) 0.08

IL-6, pg/mL 1.1 (1.0, 1.3) 0.1 (−10, 12) 1.2 (1.0, 1.4) 11 (−8, 35) 12 (−9, 38) 0.29

IL-8, pg/mL 7.4 (6.6, 8.4) −1 (−13, 11) 6.8 (6.1, 7.5) −5 (−11, 2) −6 (−17, 6) 0.28

Data are presented as mean (95% CI) following log-transformation. Between-diet differences are estimated marginal means (CRHP vs. CD) derived from constrained linear mixed models

with inherent baseline adjustment using all available data.
aRelative change (%) from baseline.
bRelative difference (%) between diets.
cTotal analyzed n= 64 (CD 30 and CRHP 34). Missing data due to hemolyzed (n= 1) or insufficient serum required for analysis (n= 2).
dTotal analyzed n= 52 (CD 25 and CRHP 27) for CRP and n= 66 (CD 33 and CRHP 33) for IL-6. Missing data due to measurements under (n= 2) and above (n= 3) the detection range,

and intra-assay CV >20% exclusion (n= 11).
†P < 0.01 and ‡P < 0.001 vs. baseline.

Total proinsulin, sum of intact and split 32,33 proinsulin; CD, conventional diabetes; CRHP, carbohydrate-reduced high-protein; CRP, C-reactive protein; TNF-α, tumor necrosis factor α;

IL, interleukin.

concentration in the CRHP group was not accompanied by

a concomitant increase in basal glucose concentration in

the present study. We have previously demonstrated that a

CRHP meal elicits an increased postprandial glucagon response

(because of its higher protein content) even after 4 h (19, 22)

and, thus, the observed difference may simply reflect a higher

postprandial glucagon secretion from the preceding CRHP

dinner, maintained overnight, although some studies suggest

that this effect dissipates after an overnight fast (43, 44).
In the present study, the triglyceride total AUC was reduced

more by the CRHP diet than the CD diet. This was likely because

of the greater reduction in basal triglyceride concentration,

maintained during the OGTT. We have previously speculated

that decreased de novo lipogenesis following each CRHP meal

accounted for the observed intrahepatic fat mobilization and

improved dyslipidemia (21). Lipotoxicity may affect the β-

cells (45), and several studies have found intrapancreatic fat

accumulation to be inversely associated with β-cell function

in T2D (46). Accordingly, the normalization of β-cell function

by short-term severe energy restriction and weight loss

was found to depend on the reduction in pancreatic fat

in one study (33), which was partly corroborated by the

present study as participants in both groups experienced

a decrease in intrapancreatic fat [previously published in

Thomsen et al. (21)] and an increase in β-cell function.

Nonetheless, the role of macronutrient composition is still

unclear (18, 21).

Chronic low-grade inflammation is involved in β-cell

dysfunction in T2D (47), presumably due to increased

proinflammatory adipokine release from enlarged and

dysfunctional adipose tissue depots (48). Accordingly,

diet-induced weight loss attenuates markers of systemic

inflammation in individuals with obesity and T2D (49) and in

individuals with obesity irrespectively of dietary carbohydrate

content (50). In contrast, individuals with T2D may benefit

more from weight loss induced by a severely carbohydrate-

restricted diet (20E% vs. 55–60E% from carbohydrates) (51). At

odds with these observations, the systemic inflammation (CRP,

IL-6, IL-8, and TNF-α) was not ameliorated by the moderate

carbohydrate restriction in the present study or by weight

loss itself, which suggests that the resolution of inflammation

is not an important factor in the metabolic improvement

after modest weight loss. These findings corroborated those

of a weight-maintaining CRHP diet in a similar study design

reported by us previously (52).

The primary strength of this study was the highly controlled

setting with full provision of the experimental diets, which

we believe is necessary to minimize poor dietary adherence in

assessing different eating patterns. Adherence to the present

diets was confirmed by measuring 24-h urea excretion in urine

[i.e., a surrogate marker of protein intake, published in Thomsen

et al. (21)]. Moreover, conclusions on dietary regimens are often

confounded by competing lifestyle interventions, e.g., exercise

or weight loss unequally distributed between groups or with
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significant interindividual variation, which we minimized by

inducing a matched weight loss between groups and reinforcing

and confirming the maintenance of habitual physical activity

throughout the study period (21). Medication use was also

unchanged. Nevertheless, our study has several limitations,

namely, unblinded study design, lack of objective assessment

of physical activity, imbalance in sex and DPP-4 inhibitor use

between groups, and issues of multiple comparisons that require

our results to be interpreted with caution. In addition, we

did not properly assess gastric emptying which may increase

following a CRHP meal (19) and thereby could influence the

metabolic response to the OGTT. However, as the time of

peak plasma glucose did not differ between diets, differences

between groups in gastric emptying of ingested glucose were

likely negligible. When substituting carbohydrates with protein

and fat, we allowed other dietary components to vary naturally,

reflecting the real foods used. As such, the CRHP diet had

more monounsaturated fat and less dietary fiber than the

CD diet, and these nutrients may have affected our outcomes

independent of carbohydrate restriction. Finally, the duration

of our intervention was 6 weeks which may not be sufficient to

allow for all metabolic changes to manifest and thus, may not

accurately reflect what could be expected in people with T2D

undergoing dietary modification for a longer period of time.

This is particularly true for the primary outcome of this study,

HbA1c, which may not have reached a new steady state within 6

weeks, as discussed previously (21).

In conclusion, a modest ∼6% weight loss induced after 6

weeks on a diet moderately restricted in carbohydrates and

enriched in protein and fat did not improve markers of β-

cell function, insulin sensitivity, or proinsulin processing to a

greater extent than the same amount of weight loss induced

after 6 weeks on a conventional carbohydrate-rich diet despite

improved glycemic control. Weight reduction in itself was very

efficient in ameliorating metabolic dysfunction, independently

of dietary macronutrient composition. These results reinforce

the key role of weight loss in the management of T2D.
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