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Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important 
effectors of anticancer immune response. These cells can survey and control tumor 
initiation due to their capability to recognize and kill malignant cells and to regulate the 
adaptive immune response via cytokines and chemokines release. However, several 
studies have shown that tumor-infiltrating NK cells associated with advanced disease can 
have profound functional defects and display protumor activity. This evidence indicates 
that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, 
a further level of complexity is due to the extensive heterogeneity and plasticity of these 
lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic 
and functional features, may be involved and play distinct roles in the tumor context. 
Accordingly, many studies reported the enrichment of selective NK cell subsets within 
tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant 
microenvironment can significantly impact NK  cell activity, by recruiting specific sub-
populations and/or influencing their developmental programming or the acquisition of a 
mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived 
factors take part in these processes. In this review, we will summarize and discuss the 
recently acquired knowledge on the possible contribution of distinct NK cell subsets in 
the control and/or progression of solid and hematological malignancies. Moreover, we 
will address emerging evidence regarding the role of different components of tumor 
microenvironment on shaping NK cell response.

Keywords: natural killer cell subset, tumor microenvironment, natural killer cells, hematological malignancies, 
solid tumors

inTRODUCTiOn

Natural killer (NK) cells are innate lymphoid cells (ILCs) (1) with a crucial role in immunosurveil-
lance. They display cytotoxic activities against transformed or viral infected cells but are also an 
important source of chemokines and cytokines highly impacting on adaptive immune responses 
(2, 3).

Natural killer cell activity is dependent on activating and inhibitory signals transmitted by a 
large repertoire of surface receptors. Inhibitory receptors prevent NK cells from killing healthy cells 
and include KIRs, CD94/NKG2A, and ILT2/CD85. The activating receptors recognize self-proteins 
mainly expressed on stressed target cells and include NCRs (NKp46, NKp30, NKp44), NKG2D, and 
DNAM1, among others (4).
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Natural killer cells develop in the bone marrow (BM) from 
lineage restricted progenitors, although maturation can also 
occur in the periphery (5–7). Fully mature NK cells circulate in 
the peripheral blood (PB), where they represent 5–20% of total 
lymphocytes, but they are also found in several lymphoid and 
non-lymphoid organs (8, 9).

Phenotypically, NK cells are defined by the expression of CD56 
and the lack of CD3–TCR complex. Moreover, based on CD16 
and CD56 expression levels, they are classically distinguished 
in two subsets: CD56highCD16± and CD56lowCD16high. The 
CD56lowCD16high NK cell subset expresses high levels of KIRs, the 
maturation marker CD57, and mediates natural and antibody-
dependent cellular cytotoxicity, exhibiting high levels of perforin 
and enhanced killing; CD56highCD16± NK cells are characterized 
by NKG2A, low levels of perforin, and are primarily specialized 
for cytokine production. It is still debated whether these subsets 
are functionally distinct NK cells or different stages of maturation. 
A linear differentiation relationship between CD56high CD16± 
NK cells and CD56lowCD16high NK cells has been proposed (10, 11), 
but it is not supported by observations on human NK cell deficien-
cies (12, 13); moreover, the possibility that tissue-resident NK cells 
develop locally is also considered (14).

Besides CD56highCD16± and CD56lowCD16high, additional 
NK  cell subpopulations have been identified under normal 
and pathological conditions, based on their receptor repertoire 
(15–17). Thus, human NK cells emerge as a highly heterogene-
ous and plastic population including subtypes with different and 
specific functions.

Natural killer cell subsets also differ in tissue distribution that 
is related to distinct homing properties and/or in situ maturation. 
Tissue-resident NK cells express a different pattern of chemokine 
and adhesion receptors and also differ from their blood-circu-
lating counterpart (18, 19). PB CD56highCD16± NK cells express 
CD62L, CCR7, CXCR4, and CXCR3 that allow their preferential 
recruitment to secondary lymphoid organs, tumor, and inflamed 
tissues (8, 20, 21). Conversely, resident CD56high NK  cells lack 
CD62L but express other adhesion molecules, including the  α 
integrin subunit CD49a and CD103 (22). The CD56lowCD16high 
NK  cell subset expresses low level of CD62L and lacks CCR7, 
but it is characterized by CXCR4, CX3CR1, CXCR2, and CXCR3 
chemokine receptors responsible for their migration into the 
inflamed sites.

Natural killer cells play a major role in tumor immunosurveil-
lance. They can control tumor initiation but are often inefficacious 
in advanced disease. More recently, strong NK cell infiltration in 
established cancers also suggested a role in disease progression 
(23, 24). Tumor-infiltrating NK cells (TINKs) share phenotypic 
and functional properties with decidual NK  cells (dNKs), well 
known for their regulatory, pro-angiogenic, and low cytotoxic 
activities (23, 25, 26).

In tumor microenvironment, several cellular and soluble fac-
tors affect NK cell phenotype and function and promote tumor 
cell evasion from NK cell-mediated recognition and killing (27).

Because the capability of distinct NK  cell subsets to exert 
specific functions, it is extremely important to understand which 
subpopulations mediate the antitumor response and which envi-
ronmental factors modulate their activity. Here, we review the 

role of distinct NK cell subsets in human solid and hematological 
cancers and the impact of tumor microenvironment on their 
phenotypic and functional features.

nK CeLL SUBSeTS in SOLiD TUMORS

Neoplastic transformation was shown to significantly alter 
NK cell subset localization (Table 1), though the exact role of the 
TINKs subsets remains poorly characterized (28, 29).

The study of TINKs in solid tumors is rather complex as 
phenotypic alterations can occur following isolation and a com-
parison with the healthy tissue counterpart is difficult to perform.

Like tissue-resident NK cells that are generally CD56highCD16low 
and more specialized for cytokine production, a prevalence of 
CD56high NK  cells can infiltrate solid malignancies, although 
they can exhibit features and/or functions other than those 
of their circulating and/or healthy counterpart tissue. Thus, a 
significantly higher frequency of CD56highperforinlow NK  cells 
was observed in breast and lung cancers, with respect to normal 
tissues. CD56high NK  cells were poorly cytotoxic, but cytokine 
producers, and were mainly localized within the stromal com-
partment. CD56highperforinlow accumulation was not attributed to 
major tumor microenvironment-driven NK cell developmental 
alterations, but rather to a peculiar chemokine milieu. Indeed, 
downregulation of CXCL2 that specifically attracts CD56low 
NK cells and upregulation of CXCL9 and CXCL10 that specifi-
cally support CD56high NK cells homing were observed (20, 45).

In breast cancer patients, five different circulating NK sub-
sets were also identified (46): CD56lowCD16+, CD56lowCD16−, 
CD56highCD16−, CD56highCD16+, and CD56−CD16+. A higher 
percentage of CD56lowCD16− and CD56highCD16− subsets were 
observed both in PB and in advanced invasive mammary tumors. 
Furthermore, by phenotypic and functional analysis, both subpop-
ulations emerged as more immature (CD117highCD27highCD57low) 
and less functional (low levels of activating receptors, perforin, 
and granzyme B and degranulation capability). Collectively, these 
observations suggest that breast tumor microenvironment blocks 
or reverses NK cell maturation, favoring the emergence of non-
cytotoxic NK cells.

Changes in the expression patterns of activating and inhibi-
tory receptors have been also described in tumor-associated 
CD56high NK cells and have been implicated in their functional 
deficits. CD56high NK cells, displaying an immature and activated 
phenotype associated with low or null degranulation potential, 
were found in prostate tumor and area selected out of the tumor 
site (30). However, in prostate cancer, lower expression of some 
activating receptors (NKp46, NKp30, NKG2D, DNAM-1, CD16) 
and higher expression of the inhibitory receptor ILT2 were 
observed, with more pronounced effects in NK cells infiltrating 
metastatic than localized tumors; these latter data indicate that 
tumor microenvironment can impair NK cytotoxic functions by 
altering the balance between NK activating and inhibitory recep-
tors. The analysis of NK cell subsets in the lymph nodes of cancer 
patients revealed comparable numbers of CD56high NK  cells in 
the regional metastatic lymph nodes from stage III melanoma 
patients (M-LN) and mediastinal lymph nodes from healthy 
donors (HD). However, 40–60% of CD56high NK cells in M-LN also 
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TABLe 1 | Phenotype of nK cell subsets in tumors.

natural killer (nK) cell subset Tumor Phenotype Function Reference

Cytokine 
production

Cytotoxicity

Solid tumors CD56highperforinlow Lung and breast cancer NKG2A+CD27+KIR+ CD62L 
downregulation

ND ND (20)

CD56highCD16low Breast, melanoma, and colon 
cancer

CD9+, CXCR3+ VEGF ND (25)

CD56highCD16− Non-small cell lung cancer KIR+CD69+HLA-DR+ NKp44 upregulation High production 
of VEGF, PLGF, 
IL-8

No cytotoxicity (26)

CD56high Prostate NKp46, NKG2D, NKp30, DNAM1, CD16 
downregulation ILT2 upregulation

ND No cytotoxicity (30)

CD56hightCD16+ Metastatic lymph nodes 
adjacent to metastatic 
melanoma

NKp46+, NKG2D+, NKp30+, CD158 (a, b 
and e)+

ND Low cytotoxicity (31)

CD56low Metastatic lymph nodes from 
melanoma patients

KIR+CD57+CD69+CCR7+ ND High cytotoxicity (32, 33)

CD56low Non-small cell lung cancer NKp46+, NKp80, CD16, NKG2D, and 
DNAM-1 downregulation

No IFN-γ 
production

No cytotoxicity (34)

CD56hight Intestinal stromal cancer CD16−KIR−NKp30c+ Reduced 
production of 
TNF-α IFN-γ 
production

Reduced 
cytotoxicity

(35)

Hematologic 
tumors

CD56NCRdull AML CD16+KIR+ ND No cytotoxicity (36)

CD56NCRhigh AML ND ND No cytotoxicity (36)

CD56NKp46low AML/B-ALL NKG2A upregulation No IFN-γ 
production

No cytotoxicity (37)

CD56lowCD16low B-ALL/T-ALL ND No IFN-γ 
production

No cytotoxicity (38)

CD56+ Myelodysplastic syndromes 
(MDS)

NKG2D (PB/BM) DNAM1 (BM) 
downregulation

ND No cytotoxicity (39)

CD56low Multiple myeloma (MM) DNAM1, CD16, 2B4 downregulation ND No cytotoxicity (40, 41)

CD56 MM CD161 downregulation and CD158a 
upregulation

ND No cytotoxicity (40)

CD56low AML KIR+CD57+ ND ND (42)

CD56low AML CD16/CD57high ND ND (43)

CD56low MDS KIR−NKG2A− ND ND (44)

up/downregulation, reduction are determined with respect to NK cells from healthy individuals; ND, not determined.
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expressed CD16. CD56highCD16+ NK cells displayed an activated 
phenotype, and their ex vivo degranulating capacity inversely cor-
related with the percentage of malignant cells, suggesting a local 
tumor-induced suppression of NK cell activation. The prevalence 
of CD56highCD16+ NK cells in M-LNs was attributed to the matu-
ration and activation of tumor resident CD56highCD16− NK cells 
and/or to the migration of PB CD56+CD62L+ NK cells to M-LNs, 
where CD16 expression could be upregulated (31).

A relevant property of CD56highCD16− NK cells within differ-
ent solid tumors, such as breast, melanoma, colon cancer (25), 
non-small lung cancer (26) is their pro-angiogenic phenotype 
possibly responsible for their tumor-promoting role. Indeed, 
unlike circulating CD56highCD16− but similar to dNK  cells, 

CD56highCD16− TINK cells express high levels of CD9, CXCR3, 
produce VEGF, and have a lower cytotoxic potential, suggesting 
that similar maturation/polarization mechanisms occur in the 
decidua and tumor microenvironment of PB NK cells (47–49).

Although substantial evidence indicates CD56highCD16low 
NK cells as the major TINK, there are also reports on tumor infil-
tration by CD56low NK cells (32, 33, 46). Enrichment in the tumor 
infiltrated lymph nodes (TILN) and concomitant reduction of 
CD56low NK  cells in PB were observed in melanoma patients. 
These CD56low (CD57+CD69+CCR7+KIR+) NK cells were highly 
cytotoxic against autologous melanoma cells, and, in accordance 
with their homing into TILN, they expressed CCR7. The reduced 
proportion of CD56low NK cells in the PB supports the possibility 
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of a selective recruitment of this subset in TILN. However, in situ 
maturation of CD56high NK into more cytotoxic CD56low NK cells 
was also suggested because the different chemokine milieu domi-
nated by CXCL8 and CCL2, which may recruit both CD56high and 
CD56dim CXCR2+/CCR2+ PB NK cells into the TILN (32).

The emerging concept of tissue-specific functions of NK cells 
together with the selective enrichment of specific subsets in 
neoplastic tissues indicate that the outcome of antitumor NK cell 
effector functions is not always predictable and largely depends 
on the particular tumor microenvironment.

nK CeLL SUBSeTS in HeMATOLOGiCAL 
MALiGnAnCieS

A large body of evidence indicates that NK cells play a preferential 
role in the control of the onset and progression of hematological 
tumors. Moreover, unlike solid cancers where monitoring of 
PB NK  cells could not provide correct information on their 
tumor-infiltrating counterpart, evaluation of circulating NK cell 
status can be highly relevant in the context of hematological 
malignancies.

Abnormal NK cell cytolytic function was observed in acute and 
chronic leukemia (AML-ALL and CLL-CML), myelodysplastic 
syndromes (MDS), and multiple myeloma (MM). Yet, most of 
the studies are focused on PB, but not BM, and poorly address 
NK cell phenotypic and functional heterogeneity.

The main receptors involved in NK cell recognition and killing 
of leukemic blasts are NCRs, NKG2D, and DNAM1. According 
to NCR surface density, unlike NK cells from HD that are mainly 
NCRhigh (50), a NCRlowCD16+KIR+ NK cell subset that failed to 
recognize and kill autologous and allogeneic blasts was described 
in AML patients (36). A smaller cohort of AML patients was also 
characterized by the presence of the NCRhigh NK cell subset that 
showed impaired cytotoxic activity, probably due to NCR ligand 
down-modulation on leukemic cells. In addition, significant 
reduction of NKp46 together with increased NKG2A expres-
sion was associated with functionally impaired PB NK  cells 
from AML patients with respect to HD (37). Similar to AML, 
the frequency of PB NCR+ and in particular NKp46+ NK cells 
from B-ALL patients was lower. Moreover, they also displayed 
increased NKG2A expression. These phenotypic abnormalities 
were associated with impaired NK cell killer ability and IFN-γ 
production in response to autologous blasts (51). As regards to 
other activating NK receptors, a lower frequency of NKG2D+ 
and DNAM-1+ NK  cells was observed in the context of MDS, 
AML, and MM (39, 52); moreover, NK cells from MM patients 
also displayed reduced levels of CD244, CD16, and CD161 (40, 
41, 53, 54).

A different scenario was observed with CLL and CML CD56low 
NK  cells which exhibited the same profile of activating and 
inhibitory receptors of HD but reduced NK cytotoxic ability (55).

Recently, we reported an increased frequency of a newly 
identified NK  cell subset characterized by low levels of CD56 
and CD16 (CD56lowCD16low) and NKG2A+ in both BM and PB 
of pediatric B-ALL and T-ALL. In HD, this subset was endowed 
with both higher cytotoxic activity and IFN-γ producing ability, 
but it resulted functionally impaired in leukemic patients (38). 

Similarly, a higher frequency of non-cytotoxic CD56lowCD16low 
NK cells was found in advanced breast cancer (46), suggesting 
both a preferential homing and functional alterations of this 
subset in tumor-microenvironment.

Overall, these findings suggest that several mechanisms, 
including downregulation of activating receptors and/or upregu-
lation of inhibitory receptors on NK cells or modulation of their 
ligands on cancer cells are responsible for tumor escape from 
NK cell recognition in hematological malignancies.

In the context of hematological cancers where tumor cells are 
present in the BM that represents the main site of NK cell differen-
tiation, an important question to address is whether tumor growth 
also affects NK cell development. Most of the studies, however, 
addressed this issue examining PB and not BM NK cells. In this 
regard, Chretien et al. (42) compared the presence of five different 
stages of NK cell development (CD56high, CD56low/KIR−/CD57−, 
CD56low/KIR+/CD57−, CD56low/KIR−/CD57+, and CD56low/KIR+/
CD57+) in the PB of AML patients and found that one-third of 
the patients exhibited a significant increase in the proportion of 
the more mature CD56low/KIR+/CD57+ NK cells at the expenses 
of more immature CD56high NK cell subset. In addition, a recent 
study on NK cells from the BM of AML patients showed a reduced 
frequency of the more mature CD56lowCD16/57high NK cell subset 
that did not correlate with a good prognosis (43). Collectively, 
these findings, although suggestive of a possible influence of AML 
cells on NK cell development, are still incomplete, as BM and PB 
NK cell subsets from the same patient have not been examined, 
and the possibility that the observed phenotype is due to a prefer-
ential migration of more mature CD56low/KIR+/CD57+ NK cells 
from BM to PB is still open (56).

Moreover, it is increasingly understood the impact of hema-
tological tumors on BM stromal cells, which are crucial for an 
optimal NK  cell differentiation. In this regard, evidences on 
altered chemokine and cytokine production by BM stromal cells 
were provided (44), suggesting that effects on NK cell differentia-
tion can be due to the lack of a proper stromal support for NK cell 
progenitors and/or an altered NK cell subset trafficking.

nK CeLL SUBSeTS AnD TUMOR 
MiCROenviROnMenT

Several studies indicate that tumor-induced impairment of 
NK  cell functions correlates with alterations of NK  cell subset 
distribution. On the other hand, different immunosuppressive 
mechanisms can be also responsible for functional NK  cell 
impairment in solid and hematologic malignancies.

Tumor-related soluble factors may be responsible for 
phenotypic and functional alterations of NK  cells, moreover 
different tumor-resident immune cells, such as M2-polarized 
macrophages, MDSC, DC, and Treg, may affect NK cell activity, 
by releasing soluble factors (e.g., IL-10, IDO, PGE2) or by direct 
contact-dependent mechanisms (57–59) (Figure  1). Although 
higher amount of TGF-β1, PGE2, IL-10, and IDO were detected 
in supernatants of solid and hematological tumors, the impact of 
these soluble factors on NK cell subset distribution was suggested 
only based on in vitro observations (30, 51). Differently, Mamessier 
et al. performed in vivo correlation studies demonstrating that in 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 1 | Shaping natural killer (nK) cell subsets in tumor microenvironment. The main cellular and soluble factors affecting NK cell subset distribution in 
tumor microenvironment are shown. Melanoma and AML are reported as examples of solid and hematological tumor, respectively. For melanoma, tumor and 
metastatic lymph node (M-LN) infiltrating NK cell subsets are represented. For AML, bone marrow and peripheral blood NK cell subpopulations are indicated.
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breast cancer patients decreased expression of activating NK cell 
receptors (NKp30, NKp46, NKG2D, DNAM-1) or cytotoxic 
molecules (GZMB) and increased levels of the inhibitory receptor 
NKG2A on NK cells were associated with high amount of TGF-
β1 and PGE2 in tumor supernatants. In particular, TGF-β1 and 
PGE2 were shown to negatively correlate with molecules related 
to NK cell cytoxicity and positively correlate with NKG2A recep-
tor expression (60), thus suggesting that these molecules play a 
role in these regulatory mechanisms.

Among these factors, particular attention has been given 
to TGF-β1, which has been shown to exert several effects on 
NK cells, including inhibition of proliferation and in vitro NK cell 
development and differentiation. In this regard, this cytokine 
was found to reduce the number of NK  cells developing from 
human CD34+ progenitor cells and to promote the conversion 
of PB CD56highCD16+ NK cells into a dNK-like CD56highCD16− 
phenotype (61, 62). Thus, also at tumor site, TGF-β1 may take 
into account of the pro-angiogenic dNK-like phenotype of 
tumor-infiltrating NK  cells. A number of studies suggest that 
tumor-derived TGF-β1 also impacts NK development in the 
context of hematological malignancies. In particular, TGF-β1 
overexpression in the BM tumor-microenvironment (MDS, CML, 
and MM) may be responsible for the suppressive effect of cancer 
cells on BM stromal cells, thus compromising their supportive 
role on NK  cell maturation (44, 63, 64). Finally, this cytokine 

may also interfere with intra-tumoral NK  cell infiltration via 
modulation of their chemokine receptors (65). In this regard, a 
peculiar chemokine milieu has been proposed to be important for 
the recruitment of specific NK cell subpopulations in a number 
of solid tumors; moreover, altered chemokine expression patterns 
may also affect NK cell trafficking in hematological malignancies 
(32, 44, 45). However, higher concentration of chemokines does 
not always correlate with the presence of these lymphocytes in 
tumor microenvironment, thus suggesting that other and more 
complex mechanisms can affect their recruitment (66).

TUMOR eSCAPe FROM nK CeLL-
MeDiATeD ReCOGniTiOn AnD KiLLinG

Elusion of NK cell recognition is a major mechanism of tumor 
immune evasion. NK  cell-activating ligands are expressed on 
malignant cells, but they can be also released in a soluble form 
through metalloproteinase-mediated cleavage, exosome secre-
tion, or alternative splicing. Indeed, soluble forms of these ligands 
are present in the serum or peritoneal fluids of various cancer 
patients, and their levels positively correlate with tumor stage, 
metastasis, and poor prognosis (67–69). Reduction of activating 
ligand expression on cancer cells leads to a less efficient recogni-
tion and killing by cytotoxic lymphocytes. Concomitantly, soluble 
ligands can engage their receptors and cause their internalization 
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in NK cells; accordingly, a negative correlation between soluble 
ligands and NKG2D expression on NK  cells was largely docu-
mented in both solid and hematological tumors (70, 71). However, 
conflicting results have described either inhibition or promotion 
of NK  cell activation following NKG2D endocytosis (72). An 
additional escape strategy used by cancer cells is based on the 
dominance of NK cell inhibitory signals. In several cancer cells, 
expression of MHC class I molecules binding to inhibitory KIR 
receptors (KIR2DL2/3, KIR3DL1, and KIR2DL1) results in switch 
off NK cell effector functions (37, 73–75). Moreover, high levels 
of non-classical antigens HLA-G (ligand of ILT-2 and KIRDL-4) 
and HLA-E (ligand of NKG2A/CD94) were found in tumor and 
serum of cancer patients and were considered independent mark-
ers of poor prognosis in various malignancies (76–79). Finally, 
tumor cell overexpression of other ligands triggering inhibitory 
signals on NK cells, such as PDL-1/2, contributes to inhibit their 
susceptibility to NK cell-mediated killing (80, 81).

COnCLUSiOn

Accumulating evidence indicates that, far from the simple 
and first distinction in two subsets, NK cells are a very highly 
heterogeneous population, and different marker combinations 
can be used to identify distinct subpopulations endowed with 

specific functional properties. Based on these observations, the 
role of different NK cell subsets in pathological contexts, includ-
ing cancer, is increasingly elucidated. Moreover, the emerging 
evidence about different ILC populations further raise the 
necessity of a more detailed molecular phenotypic and func-
tional characterization of innate lymphoid subsets in the cancer 
context. The identification of the role played by the different 
NK cells both in solid and hematological malignancies would 
be valuable for the design of novel NK cell targeted therapeutic 
interventions.
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