
Published online 20 November 2017 Nucleic Acids Research, 2017, Vol. 45, No. 22 12877–12887
doi: 10.1093/nar/gkx1145

Expanding the repertoire of DNA shape features for
genome-scale studies of transcription factor binding
Jinsen Li1, Jared M. Sagendorf1, Tsu-Pei Chiu1, Marco Pasi2, Alberto Perez3 and
Remo Rohs1,*

1Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics &
Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA, 2Centre for
Biomolecular Sciences and School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK and 3Laufer
Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA

Received March 21, 2017; Revised October 2, 2017; Editorial Decision October 27, 2017; Accepted October 30, 2017

ABSTRACT

Uncovering the mechanisms that affect the binding
specificity of transcription factors (TFs) is critical for
understanding the principles of gene regulation. Al-
though sequence-based models have been used suc-
cessfully to predict TF binding specificities, we found
that including DNA shape information in these mod-
els improved their accuracy and interpretability. Pre-
viously, we developed a method for modeling DNA
binding specificities based on DNA shape features
extracted from Monte Carlo (MC) simulations. Pre-
diction accuracies of our models, however, have not
yet been compared to accuracies of models incorpo-
rating DNA shape information extracted from X-ray
crystallography (XRC) data or Molecular Dynamics
(MD) simulations. Here, we integrated DNA shape
information extracted from MC or MD simulations
and XRC data into predictive models of TF binding
and compared their performance. Models that incor-
porated structural information consistently showed
improved performance over sequence-based mod-
els regardless of data source. Furthermore, we de-
rived and validated nine additional DNA shape fea-
tures beyond our original set of four features. The
expanded repertoire of 13 distinct DNA shape fea-
tures, including six intra-base pair and six inter-base
pair parameters and minor groove width, is available
in our R/Bioconductor package DNAshapeR and en-
ables a comprehensive structural description of the
double helix on a genome-wide scale.

INTRODUCTION

The binding of transcription factors (TFs) to DNA is a
fundamental and crucial step for gene regulation. However,

many mechanisms involving TF binding are still unknown
(1,2). Basic questions remain as to how a TF selectively rec-
ognizes and binds to specific DNA sequences. Experimen-
tal protocols have been established to measure TF–DNA
binding specificities quantitatively and to understand the
underlying mechanisms. For example, protein-binding mi-
croarrays (PBMs) (3) and systematic evolution of ligands
by exponential enrichment combined with massively par-
allel sequencing (SELEX-seq) (4) or high-throughput SE-
LEX (HT-SELEX) (5) are widely used methods to probe in
vitro TF–DNA binding quantitatively (6).

To analyze and interpret the large amounts of data that
are obtained from high-throughput (HT) binding assays, re-
searchers have proposed various models for TF–DNA bind-
ing specificities, the most widely used of which is the po-
sition weight matrix (PWM) (7). PWMs use position fre-
quency matrices, created by counting the probability that a
nucleotide will occur at each individual position of the bind-
ing site, while ignoring dependencies between nucleotide
positions (7). This approach has been successfully used to
approximate TF–DNA binding events and has been ex-
panded to include interdependencies between adjacent nu-
cleotides in predicting TF–DNA binding (8–10). Despite
its success, researchers have pointed out limitations of the
PWM model (11), leading to the development of alterna-
tive approaches (12).

One alternative representation of interdependencies be-
tween nucleotide positions considers that TFs not only
recognize DNA sequences base-by-base through hydrogen
bonds or other amino acid contacts but also favor cer-
tain DNA conformations (6). Many studies have verified
the recognition of three-dimensional DNA structure for di-
verse TF families (13–26). DNA conformation can be rep-
resented by DNA shape features (27), which assign nu-
merical values to translations and rotations between and
within base pairs (bp) (28) or measure groove width be-
tween opposite phosphodiester backbones (29). These pa-
rameters can be calculated by different software tools, such
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as CURVES or 3DNA (30,31), and incorporated into quan-
titative models (13). Information on DNA shape can be ex-
tracted from either experimental studies or molecular sim-
ulations (32). For experimentally solved structures, X-ray
crystallography (XRC) data provide much larger sequence
coverage than nuclear magnetic resonance (NMR) spec-
troscopy data. Molecular simulations, such as Monte Carlo
(MC) or Molecular Dynamics (MD) simulations (33–35),
likewise provide a wide sequence coverage. However, a HT
method is needed to obtain shape information for large
numbers of sequences of arbitrary length or entire genomes.

In previous work, we used a sliding-window approach to-
gether with a query table for all unique pentamers generated
from MC simulations to produce a predictive HT method
of DNA shape (27). Using this method, we predicted four
DNA shape features: minor groove width (MGW), pro-
peller twist (ProT), helix twist (HelT) and Roll. Experimen-
tal structures have indicated that these four DNA shape fea-
tures are among the most important structural characteris-
tics for evaluating protein–DNA readout modes (10,29,36–
39). However, given the intricacies of DNA structure, we
hypothesized that these four DNA shape features might
not suffice in describing the entire set of DNA recognition
mechanisms. Therefore, we derived and validated nine ad-
ditional DNA shape parameters, expanding our available
repertoire to a total set of 13 features: six inter-bp parame-
ters, six intra-bp parameters and MGW (Figure 1). We eval-
uated whether including 13 shape features in our quanti-
tative models would enhance the accuracy of TF binding
predictions beyond prior models based on just four shape
features (13).

To evaluate the contributions of these additional shape
features, we needed to compare model performances using
MC-derived shape features to models based on features de-
rived from other methods. With the recent publication of
1-�s MD simulations of all unique tetramers (40), we were
able to extract the same DNA shape information from MD
simulations and to compare models using these MD data to
models including equivalent data extracted from MC simu-
lations. Considering that MC and MD simulations are both
computational prediction methods, we added an experi-
mental reference and extracted DNA shape features from
XRC data available in the Protein Data Bank (PDB) (41).
Although the Nucleic Acid Database (42) contains the same
structures for nucleic acids, we reported the PDB identifiers
for consistency with our previous work (27). To summarize,
DNA shape features used in this study were derived from
MC or MD simulations and XRC experiments.

Because we derived DNA shape features from various
sources, we showed the value of this additional information
in studying several biological questions, which are routinely
addressed based on DNA sequence methods (43). Previ-
ously, we found that using shape information from MC sim-
ulations improved prediction accuracy and reduced compu-
tational complexity compared to k-mer models (13,19,44).
We sought to verify the robustness of models using addi-
tional shape features and to compare the performances of
models based on MC-derived shape features to models us-
ing MD and XRC-derived shape features. Therefore, we
evaluated and compared performances of regression mod-
els for TF binding specificity predictions incorporating 13

DNA shape feature categories in analogy to previous mod-
els using just four shape categories (13,16).

MATERIALS AND METHODS

Dataset selection and preprocessing

We used three different datasets, which were designed for
detecting TF–DNA binding specificities and were derived
from different experimental platforms: genomic-context
PBM (gcPBM) (10), HT-SELEX (5) and SELEX-seq (4).
The gcPBM data used here contained data for the hu-
man basic helix-loop-helix (bHLH) TF dimers Mad1/Max
(‘Mad’), Max/Max (‘Max’) and c-Myc/Max (‘Myc’) (avail-
able in the Gene Expression Omnibus [GEO] under acces-
sion number GSE59845) (13). The SELEX-seq data con-
tained 21 different datasets for Drosophila Hox TFs in com-
plex with their cofactor Extradenticle (Exd) (available under
GEO accession number GSE65073) (4). The HT-SELEX
data included 240 datasets for 215 TFs from 27 protein fam-
ilies (available in the European Nucleotide Archive [ENA]
under study identifier PRJEB14744) (19).

We preprocessed raw data from gcPBM and SELEX-
seq experiments using methods from (13), and HT-SELEX
data using methods from (19), which essentially involved
PWM-based sequence alignment and trimming. After pre-
processing, we collected more than 10 000 sequences per TF
for gcPBM data, and thousands of sequences per TF for
SELEX-seq and HT-SELEX data. Each sequence was as-
signed a relative binding affinity score, which was measured
in the respective experiment. Log-affinity scores were used
in this study.

DNA shape prediction and query table generation

We sought to use DNA shape information derived from
three different data sources (MC and MD simulations and
XRC experiments) in regression algorithms for predicting
TF–DNA binding specificities. Different HT predictions of
DNA shape features were obtained by generating query ta-
bles from different data sources. Our previous work used
a pentamer query table generated from MC data (27); how-
ever, the available MD data did not cover all 512 unique pen-
tamers. To ensure complete sequence coverage and to en-
able comparisons between data sources, we generated three
tetramer query tables from (i) the 1-�s MD data (40), (ii) an
XRC dataset used for validation in our previous work (27)
(Table S2) and (iii) MC data (27). The new MC tetramer
query table was generated based on the same MC simu-
lation data as used in our previously generated pentamer
query table (see Supplementary Materials and Methods and
(27) for details on the MC simulation protocol), by mining
data for all tetramers instead of pentamers. For MD data,
simulations were available for 39 oligomers with sequences
designed so that all 136 unique tetramers were covered with
an average occurrence of 3.9 (see Supplementary Materi-
als and Methods and (40) for details on the MD simula-
tion protocol). The XRC data provided an average occur-
rence of each tetramer of 44.6, and the MC data provided
an average coverage of 249.8 for each unique tetramer. Al-
though the PDB contains additional DNA structures, we
used the original XRC dataset to be consistent with our
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Figure 1. Introduction of an expanded repertoire of 13 DNA shape features. (A) We used three methods, including MC and MD simulations and XRC,
to derive DNA shape features. (B) Schematic representation of a DNA fragment (PDB ID: 1BNA taken from the Protein Data Bank) with definition of
MGW, inter-bp and intra-bp parameters. (C) Schematic representation of all inter-bp DNA shape features used in this research. Each long brick represents
a bp. Translations and rotations of bp are shown in top and bottom row, respectively. (D) Schematic representation of all intra-bp DNA shape features
used in this research. Each short brick represents a base. Translations and rotations of bases are shown in top and bottom row, respectively.

original DNAshape method (27). XRC data were filtered
for unusual deformations, and chemically modified struc-
tures were removed as previously described (27). The differ-
ent coverage of tetramers in the MD, XRC and MC datasets
indicates why only our MC-based DNAshape method pro-
vided sufficient coverage for all 512 unique pentamers (27).

Each query table provided 13 DNA shape features, in-
cluding six inter-bp or bp-step parameters (HelT, Rise, Roll,
Shift, Slide and Tilt), six intra-bp or bp parameters (Buckle,
Opening, ProT, Shear, Stagger and Stretch), and MGW. We
implemented a sliding window algorithm (27) that uses a
sliding pentamer window to acquire numerical shape val-
ues from the MC-derived pentamer query table (available
for download at http://rohslab.usc.edu/DNAshape+/) and
to combine the values into a feature vector. For example,
considering a sequence of length n, when the sliding win-
dow begins at position i, we use the query table and find the
shape feature values for position i+2 (for bp parameters)
and positions i+1 and i+2 (for bp-step parameters) using
the first pentamer. Then, we move the sliding window to
position i+1 and use the next pentamer until we reach the
end of the query sequence. We determine bp-step parame-

ters from overlapping pentamers using the arithmetic aver-
age of values derived from two adjacent pentamers. The al-
gorithm works similarly on tetramer query tables based on
a tetramer query window, with the exception that a tetramer
is assigned two central bp parameters and one central bp-
step parameter.

Introduction of additional DNA shape features

We validated the nine additional DNA shape features that
were introduced in this study by comparing the HT predic-
tions with equivalent features derived from XRC, follow-
ing a protocol described for the DNAshape method (27).
We calculated Spearman’s rank correlation coefficients for
the comparison with experimental data (Supplementary Ta-
ble S1). Whereas the MC and MD simulations were per-
formed for unbound DNA fragments, the XRC dataset in-
cluded DNA conformations from protein–DNA complexes
due to the scarcity of experimental structures for free DNA
molecules (32). We removed structures with deformations
due to crystal packing effects and other deformations, as
previously described (27). We chose to use Spearman’s rank

http://rohslab.usc.edu/DNAshape+/
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correlation as a criterion because it captures the pattern
between minima and maxima in shape features and is less
sensitive to fluctuations in actual values of shape parame-
ters, which can be affected by crystal packing artifacts or
protein-induced deformations (27).

The general concept of DNA shape includes confor-
mational flexibility. Certain DNA sequences are obviously
more flexible than others, which can influence TF binding.
To capture this effect, we used the standard deviation (SD)
of each DNA shape feature as an approximation of DNA
flexibility. Instead of calculating SD values along a simula-
tion trajectory for the single occurrence of a pentamer, we
pooled all of the pentamers of the same identity together to
generate SD values. This approach has the limitation that
not all pentamers occurred with the same frequency in our
dataset. Nevertheless, the approach provided a single SD
value for each shape feature in a given sequence environ-
ment, independent of different occurrences of a pentamer
or tetramer in our dataset. For each bp-step parameter, one
SD value was derived to prevent averaging between two SD
values.

Implementing statistical regression models

Feature vectors for a given sequence were generated in the
following manner. Each type of nucleotide was assigned one
of four binary variable vectors (mononucleotide or 1mer
model): A was encoded as ‘1 0 0 0’, C as ‘0 1 0 0’, G as
‘0 0 1 0’, and T as ‘0 0 0 1’ (Figure 2). Following the same
scheme, dinucleotides were encoded by one of 16 binary vec-
tors (dinucleotide or 2mer model): AA was encoded as ‘1’
followed by 15 ‘0’ values and so on. In general, a k-mer
model requires O(4k) binary features to encode the sequence
(see Supplementary Materials and Methods).

DNA shape features were predicted with our DNAshape
method (27), normalized and concatenated with the en-
coded sequence feature into a feature vector (see Figure 2
and Supplementary Materials and Methods). For each TF
dataset, which contains a list of aligned sequences and their
corresponding binding affinity scores, each sequence was
used to create a representative feature vector. Based on the
resulting feature matrix and corresponding binding affin-
ity scores, we applied a multiple linear regression (MLR)
model with L2 regularization to prevent overfitting (45).
MLR models with L2 regularization have the following loss
function for minimizations using a closed-form solution:

� =
n∑

i=1

(
yi − xᵀ

i ω
)2 + λ ‖ ω ‖2

2

where, yi represents the i -th observed binding affinity score,
xi represents the i -th feature vector, ω represents feature
weights and λ is the L2 regularization parameter. To mini-
mize �, a closed-form solution can be derived as:

ω̂ = (XᵀX + λI )−1 Xᵀ y

where, I is an identity matrix that has the size of the num-
ber of features in the feature vector. The L2 regulariza-
tion parameter λ in loss function � penalizes large ω val-
ues to prevent overfitting. To apply this regression model,
each dataset was separated into 10-fold training and testing

data. Models were trained on 90% of the data and tested
on the remaining 10%. This procedure was repeated ten
times until each tenth of the data was assigned to the train-
ing data. To select the best regularization parameter λ, an-
other 10-fold cross validation was performed on each fold
of the training data. After optimizing λ, we applied the
model to all training data and calculated feature weights.
With the regularization parameter and weights, we applied
the model to the test data and retrieved predicted binding
affinity scores. To improve robustness of the models, rather
than randomly dividing data into 10-fold, we divided data
into 10-fold with similar binding affinity score distributions
by selecting one of the 10 entries into a fold based on the
sorted binding affinity-score list. Each model was trained
separately for each individual TF dataset because the de-
rived binding affinities (representing the response variable)
could be incomparable for different experiments or each in-
dividual TF.

Prediction accuracy and performance assessment

Accuracies of the predicted binding affinity scores were de-
termined by using the coefficient of determination (R2):

R2 = 1 −
∑

i (yi − ŷi)
2

∑
i (yi − ȳ)2

where, yi , ŷi and ȳ represent the observed, predicted and av-
eraged observed binding affinity scores, respectively. When
comparing performances between different sources of DNA
shape data, we directly compared R2 results to see if there
was a significant difference in model performance. In nearly
every dataset, the sample size was much larger than the
length of our feature vector; therefore, an adjusted R2 was
not introduced. R2 is an indicator of performance for each
TF dataset. We calculated the weighted-average R2, which
considers the number of available sequences to derive an
overall performance for certain datasets or TF families. We
assumed that datasets with greater numbers of sequences
could be used to predict binding affinity scores more accu-
rately than datasets with fewer sequences, assuming that the
binding affinity scores were measured with similar system-
atic errors.

In addition to R2, we used mean squared error (MSE) to
achieve rigorous model assessment. In regression models,
MSE is computed based on the number of statistical degrees
of freedom (sample size minus the number of features) and,
therefore, will penalize long feature vectors (see Supplemen-
tary Materials and Methods for equation). For example, if
model B has a higher R2 but does not have a lower MSE
than model A, then one cannot claim that model B performs
better than model A.

RESULTS

Performance comparisons of TF binding models derived using
structural data from different sources

MGW, ProT, HelT and Roll were used in our previ-
ous studies (13,27) and served as a reference for com-
parison of the three new query tables, now tetramer-
based and derived from different data sources. R2 values
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Figure 2. Work flow to encode DNA sequence and shape, which were used to train L2-regularized MLR models that predicted TF binding specificities.
DNA sequences were encoded into sequence and shape features. Any combination of sequence and 13 shape features could be chosen. DNA sequence and
corresponding relative binding affinities were acquired from experimental data. Encoded DNA sequences (final feature matrix) and corresponding binding
affinity scores were used in training an MLR model. To select L2-regularization parameters, 10-fold cross-validation was used. All datasets were divided
into 10-fold training and test datasets.

for predicted binding scores based on the three tetramer
tables (derived from MC, MD or XRC data, denoted
1mer+4shapeMC4, 1mer+4shapeMD4 and 1mer+4shapeXRC4
models, respectively) and the MC-derived pentamer table
(1mer+4DNAshape model) compared to the sequence-only
1mer model were plotted for each TF (Figure 3). R2 val-
ues for the four models that included shape features were
significantly greater than values for the 1mer model. Inclu-
sion of shape information substantially improved R2 values
compared to the 1mer model for the gcPBM data (bHLH
family), SELEX-seq data (homeodomain family), and HT-
SELEX data (multiple TF families).

For each bp, we needed four binary variables to encode
the 1mer sequence and four numerical values to encode
shape features. A typical TF–DNA binding dataset con-
tains DNA sequences of 12 bp in length. Thus, we per-
formed MLR with 96 features for each dataset. To ensure
satisfactory prediction accuracy, large amounts of data were
required. The three datasets we used all had more than 1000
entries available for training; thus, additional filtering was
not performed. In practice, if a dataset had an R2 value be-
low 0, it was removed. Fortunately, the three datasets that
we used (gcPBM, SELEX-seq and HT-SELEX) all were of
high quality.

We compared performances of models combining the
1mer sequence with the four shape features from differ-
ent data sources (Figure 4A and Supplementary Figure
S1). Small differences in R2 values were observed between

DNAshape (MC- and pentamer-based), MC, MD and
XRC (all tetramer-based). However, when we removed the
1mer sequence features, which are crucial for prediction due
to hydrogen bonds and direct contacts between amino acids
and the bases, larger differences in the prediction accura-
cies of models from different sources started to emerge. An
explicit comparison of R2 values (Supplementary Figure
S2) indicated that XRC data provided lower-quality struc-
tural information than the two computational approaches
(MC and MD simulations). This finding became even more
apparent when we considered the weighted average over
R2 values for each dataset based on their sequence quan-
tities. This approach allowed us to compare the prediction
accuracy across the three datasets (Figure 4B) or across all
different TF families (Supplementary Figure S3). Results
of plotting the MSE values of one model against those of
another model (Supplementary Figure S4) confirmed these
conclusions.

Whereas shape features greatly benefitted models based
on gcPBM datasets, even in the absence of sequence fea-
tures, this was not the case for SELEX-seq and HT-SELEX
datasets. For these two datasets, using only shape features
was not comparable to using only the 1mer sequence fea-
tures. However, the 1mer sequence+shape models continu-
ously outperformed the 1mer sequence-only models for all
three datasets, in agreement with previous studies using MC
data (13,19).



12882 Nucleic Acids Research, 2017, Vol. 45, No. 22

Figure 3. Direct comparison of R2 values between 1mer+4shape versus 1mer models. As an indicator of the accuracy of predicted TF binding specificity
using the trained MLR model, R2 was computed on the test dataset. Shape features were predicted based on tetramer query tables derived from (A)
MC data (1mer+4shapeMC4 model), (B) MD data (1mer+4shapeMD4 model) and (C) XRC data (1mer+4shapeXRC4 model) and (D) a pentamer query
table derived from MC data (1mer+4DNAshape model). 1mer indicates that DNA sequences were encoded as mononucleotide occurrences. 1mer+4shape
indicates that DNA sequences were encoded as 1mer features augmented by four DNA shape features (MGW, ProT, HelT and Roll).

Model performance improves as the number of DNA shape
features increases

We explored whether the additional nine DNA shape fea-
tures (Buckle, Opening, Rise, Shear, Shift, Slide, Stagger,
Stretch and Tilt) improved existing binding specificity mod-
els. These DNA structural features were previously defined
(30,46) but not available in HT predictions (27,47). After
validating these features using Spearman’s rank correlation
coefficients (Supplementary Table S1), we added each of
the 13 features to models individually, using the sequence-
only model as a baseline. Figure 5A presents the per-
formance differences (in �R2) between the 1mer+1shape,
1mer+2shape and sequence-only 1mer models. By sorting
the shape features based on their average performance with
four different data sources (MC, MD, XRC tetramer-based
and MC pentamer-based), we revealed the order of impor-
tance for each feature when added to a 1mer model (Fig-
ure 5A). Regardless of which feature we added, the perfor-
mance of any 1mer+1shape model was improved compared
to the 1mer model. The next-most-informative feature
would be the one whose inclusion in the best 1mer+1shape
model provided the greatest gain in performance over the
1mer+1shape model. The resulting model after adding the
second shape feature became the 1mer+2shape model (Fig-

ure 5A). Although feature importance among structural pa-
rameters varied depending on the experimental dataset that
was used, the effect of adding another shape feature into the
sequence-only models was consistently beneficial.

When we continued to add shape features to the best
1mer+2shape model, the average performance increased
further (shown versus number of shape features in the
model in Figure 5B). Here, we used DNAshape as our stan-
dard data source to choose the next-most-informative fea-
ture in each round. Although model performances varied
among different experimental datasets, adding increasingly
more shape features to the 1mer model led to a general up-
ward trend in performance. The MSE results, representing
model performance (Supplementary Figure S5), supported
this finding.

Our results indicate that models trained on gcPBM data
outperformed models trained on SELEX-seq and HT-
SELEX data (Figure 5B; Supplementary Figures S5 and
S6). This finding is not surprising given the higher quality
of gcPBM data due to inclusion of 15 bp flanking a binding
site 5′ and 3′ of its core (10). To demonstrate the importance
of including information on longer binding sites or flanking
regions, we tested our models on additional data, a widely
used universal PBM (uPBM) dataset, generated by the fifth
dialogue for reverse engineering assessments and methods
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Figure 4. (A) Direct comparison of R2 values between 1mer+4shape models. Points near the diagonal suggest similar performance of compared models.
(B) Summary of weighted-average performance for different models. Shape features used here were MGW, ProT, HelT and Roll. Error bars were calculated
based on standard errors of the mean. Performances were divided into three groups based on different experimental methods (see Supplementary Figure
S3 for groups based on TF families). Identical color was used for models using the same source of shape features.

(DREAM5) (43). This dataset only contained information
on 8–10 variable bp centered at the core of the binding site
(see Supplementary Materials and Methods; Supplemen-
tary Figure S6). Therefore, the data were of much lower
quality than the SELEX-seq or HT-SELEX-derived exper-
imental data.

It was important to determine whether our inclusion of
nine additional shape features in the models directly in-
fluenced the ability to classify different TF families. We
selected the top-affinity binding sites in HT-SELEX data
among multiple TF families and encoded them using our
concatenated feature vector. We applied principal compo-
nent analysis (PCA), rather than an MLR model, on these
vectors to evaluate whether the additional shape features
could help in separating different TF families. The results
revealed that introducing nine additional shape features was
beneficial for classifying TF families (Supplementary Fig-
ure S7).

Performance comparison of shape-augmented models versus
k-mer-based models

Encoding a sequence of length N into k-mer features re-
quires N × 4k features. The number of required features will
dramatically increase as k increases, especially if k is >3. We
compared performances of our 1mer+13shape models with
those of 2mer (dinucleotide) models. We also compared per-
formances of the 1mer+13shape models complemented by
SDs for every shape feature with performances of the 3mer

(trinucleotide) models (Figure 6). Including SDs might be
a way to represent DNA conformational flexibility, which
seems to be an important property of DNA binding sites.

The number of features used in 1mer+13shape+ SD mod-
els (30 features per nucleotide position) was still far be-
low the number of features per nucleotide used in 3mer
models (64 features per nucleotide position) (Figure 6). Re-
duction of the computational cost compared to k-mer se-
quence models is a major advantage of augmenting the
1mer model with shape features (13). We analyzed whether,
at a similar computational cost, the 1mer+Nshape models
can outperform k-mer models. Our study revealed that the
1mer+13shape model (17 features per nucleotide position)
outperformed 2mer and 3mer models for gcPBM datasets
(Figure 6). When considering computational cost (feature
quantity), sequence+shape models performed consistently
better (Supplementary Figure S8). However, 1mer+13shape
models did not outperform 3mer models for the SELEX-
seq and HT-SELEX datasets, due to the lack of DNA shape
information at the 5′ and 3′ terminals of each sequence. The
effect of adding information from a single 3mer at the end
was shown in (19) to boost the performance of 1mer+shape
models. Therefore, if we could find a feasible method to pre-
dict shape features at the terminal ends of DNA sequences,
the performance of 1mer+shape models would be higher.

The performance also increased when we included SDs
in our models, suggesting that SDs can potentially be used
to model DNA flexibility (Figure 6). However, we did not
compute the SD values from the trajectory of a simulation
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Figure 5. (A) Box and dot plots showing performance gain after adding one or two shape features into the 1mer model. Red dots represent the performance
of adding one shape feature (1mer+1shape model). Box plots illustrate the performance of adding two shape features (1mer+2shape model), including the
feature indicated on the x-axis. Black dots are outliers of the box plots. Shape features were sorted based on their average performance of four data sources.
(B) Plots generated after repeatedly adding shape features into the previous model. In each round, the most-informative feature was added based on
performance of using the DNAshape query table. Model performance was evaluated by using a weighted mean R2 among all datasets in each experimental
category. Error bars indicate maximum and minimum performance when N shape features were added. DNAshape is pentamer-based; MD, MC and XRC
data are tetramer-based due to limitations in sequence coverage for the MD and XRC methods.

(see ‘Methods and Materials’ section). Therefore, further
improvements in deriving SDs or including DNA flexibil-
ity are needed. In general, our findings indicate that infor-
mation can be learned from varying conformational flexi-
bilities of different DNA segments, and that flexibility is a
very important feature in protein–DNA binding. The PCA
results further support this conclusion (Supplementary Fig-
ure S9).

DNAshapeR bioconductor package for additional shape fea-
tures

To make the additional DNA shape information broadly
available, we extended our DNAshapeR package (47) built
in R/Bioconductor. The software package is now not only
able to predict the previously provided four shape features
(MGW, Roll, ProT and HelT), but can also generate DNA
shape predictions for the additional nine DNA shape fea-
tures derived from an MC-derived pentamer query table.
To use the additional shape features, the user must in-
put additional parameters into the R function. The pack-
age and its expanded manual are available at Biocon-
ductor (http://www.bioconductor.org/packages/devel/bioc/
html/DNAshapeR.html) and GitHub (http://tsupeichiu.

github.io/DNAshapeR/). The software can predict, plot,
and encode values of 13 DNA shape features for any num-
ber of DNA sequences or entire genomes.

DISCUSSION

In this study, we applied shape-augmented machine-
learning models to predict TF binding specificities and com-
pared the effects of DNA shape features from different
data sources (MC and MD simulations and XRC exper-
imental data). We used three representative experimental
datasets, acquired by gcPBM, SELEX-seq and HT-SELEX
HT binding assays. The datasets contained tens or hun-
dreds of TFs and offered variable data qualities. All datasets
had comparable prediction accuracies, as indicated by pre-
vious analyses (4,13,19,45). Our shape-augmented regres-
sion models outperformed models without shape informa-
tion. Regardless of the source, structural information im-
proved the accuracy of predictions of TF binding specifici-
ties. When we combined sequence with four shape features,
acquired from DNAshape (pentamer), MC (tetramer), MD
(tetramer) and XRC (tetramer), all provided significant
improvements compared to 1mer sequence-only models.
Given the consistency of our results, we conclude that, at

http://www.bioconductor.org/packages/devel/bioc/html/DNAshapeR.html
http://tsupeichiu.github.io/DNAshapeR/
http://tsupeichiu.github.io/DNAshapeR/
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Figure 6. Summary of weighted average performances (R2) between dif-
ferent models and the feature numbers used in the model. SD was the stan-
dard deviation of corresponding shape feature values. All shape features
in this figure were generated from the MC query table. The four shape fea-
tures were MGW, ProT, HelT and Roll. The 13 shape features were MGW,
six inter-bp and six intra-bp parameters. Adding more shape features in-
creased the feature number (computational cost). See Supplementary Fig-
ure S8 for a direct comparison between feature quantity and model perfor-
mance.

least in predicting TF binding specificities, adding DNA
shape information from any of the MD, MC or XRC data
sources will produce improved quantitative models.

We tested the prediction performances of nine additional
DNA inter- and intra-bp shape parameters. These shape
features, predicted based on MC simulation, can be vali-
dated on a large number of XRC structures. Adding more
DNA shape features to the feature matrix produced perfor-
mance gains, although saturation was reached for a larger
set of shape features. Performance gains were also visible
when more DNA shape features derived from MD simula-
tions or XRC data were added. Generally speaking, adding
four shape features to the sequence-only models is the key
step in improving model performance. If datasets have a
large number of sequences, adding more shape features to
the model is always favorable; otherwise, one should opt to
use as small of a set of shape features as possible. If compu-
tational cost is a consideration, sequence+shape models are

always preferable over k-mer models. Including additional
DNA shape features might also enhance shape-augmented
thermodynamic modeling approaches (48) and methods for
in vivo TF binding site prediction (14,18).

We also evaluated the prediction performance after
adding SD values for each DNA shape feature. SD values
were calculated for each pentamer and each DNA shape
category based on the multiple occurrences of that pen-
tamer in our MC-derived dataset. Although our SD values
were not derived from a simulation trajectory for a single
pentamer occurrence, our results showed that using SD val-
ues, which can be considered as a surrogate of DNA flexibil-
ity, is a promising approach in predicting TF–DNA bind-
ing. However, one should exercise caution when using SD
values because they are currently impossible to validate with
XRC data. Further studies are required to identify the role
of conformational flexibility in TF binding specificity. Af-
ter submission of this manuscript, an article was published
that reported the derivation of additional features describ-
ing DNA structure and flexibility from MD simulations
using a different protocol (49). Likely due to that proto-
col’s limitations (see Supplementary Methods and Materi-
als), models using these alternate MD-derived features (49)
were outperformed by the models based on any of the three
datasets used in this study (MC, MD or XRC data) (Sup-
plementary Figures S11 and 12).

A limitation of our expanded repertoire of DNA shape
features is that we did not include phosphodiester back-
bone features, which are an important subset of DNA shape
features. Backbone features are difficult to validate through
experimental structures because variations are not well cap-
tured at limited XRC resolution or NMR accuracy. Further
validation is required to unlock the use of backbone fea-
tures. Another limitation is that we calculated each DNA
shape feature based on ensemble averages, which may not
capture the actual distribution. For certain shape features
(e.g. backbone dihedrals and HelT), the distribution might
be bimodal (50) and computing the mean might not be the
best way to encode DNA shape information.

CONCLUSION

Our work demonstrated that DNA shape features are im-
portant in TF binding, regardless of the source used to ac-
quire the structural information (MC, MD or XRC data).
To the best of our knowledge, our study is the first to de-
rive DNA structural features on a HT basis from multiple
different data sources and to test these features in statistical
machine-learning applications. Even when derived from dif-
ferent data sources, structural information consistently im-
proved prediction of TF binding specificity. Furthermore,
we provided evidence that sequence+shape models, espe-
cially models using the expanded repertoire of 13 DNA
shape features, offer advantages over k-mer models in terms
of performance, computational cost and interpretability.
For the benefit of the community, the expanded repertoire
of 13 DNA shape features has been made available for use
in our R package, DNAshapeR, at http://bioconductor.org/
packages/release/bioc/html/DNAshapeR.html.

http://bioconductor.org/packages/release/bioc/html/DNAshapeR.html
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