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a b s t r a c t 

SARS-CoV-2 Omicron strain emergence raised concerns that its enhanced infectivity is partly due to al- 

tered spread/contamination modalities. We therefore sampled high-contact surfaces and air in close prox- 

imity to patients who were verified as infected with the Omicron strain, using identical protocols applied 

to sample patients positive to the original or Alpha strains. Cumulatively, for all 3 strains, viral RNA was 

detected in 90 of 168 surfaces and 6 of 49 air samples (mean cycle threshold [Ct] = 35.2 ±2.5). No infective 

virus was identified. No significant differences in prevalence were found between strains. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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SARS-CoV-2 was shown to be transmitted mainly by respira- 

ory droplets and direct contact with contagious individuals. Previ- 

usly, we characterized this transmissibility through contaminated 

nanimate surfaces, which is indirect contact ( Ben-Shmuel et al., 

020 ). Recently, emergence of the Omicron (B.1.1.529) variant 

aused a global surge in new cases, rapidly spreading while seem- 

ngly causing an altered, less severe disease ( Araf et al., 2022 ; 

annan et al., 2021 ). The infection rate raised concerns regard- 

ng the variant’s mode of spread in the populace. Thus, debate 

as arisen whether Omicron’s increased infectivity is due to al- 

ered contamination/persistence on surfaces and/or the gain of air- 

orne transmissibility ( Riediker et al., 2022 ; Wong et al., 2022 ). We

herefore executed a contamination sampling campaign in proxim- 

ty to patients positive for the original, Alpha (B.1.1.7), or Omicron 

ARS-CoV-2 strains. 
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Omicron-infected patients (n = 16) were sampled during January 

022 in a hospital isolation ward (n = 12, mild-to-severe condition) 

nd in a quarantine hotel (n = 4, mild condition). Original strain–

r Alpha variant–infected patients (n = 15 and n = 18, respectively) 

ere sampled during February 2021 in a hospital ward (mild-to- 

evere condition). Inclusion criteria were newly hospitalized pa- 

ients (within 24-48 hours of RT-PCR) and high upper respiratory 

iral loads (by reverse transcriptase–PCR [RT-PCR], 12-36 hours be- 

ore sampling). Patients were not masked and were in bed during 

he entire sampling process. As shown ( Figure 1 ), all 3 groups were

omparable, with statistically similar mean Ct values of 23.1 (13.1- 

3.3), 23.3 (12.1-32.5), and 21.1 (17.4-26.8) for patients infected 

ith the original, Alpha, or Omicron strains, respectively. Surface 

amples were taken from high-contact objects in close proximity 

o each patient (bedrails, bedside tables, and patients’ monitors). 

ach surface was swabbed with 3 sterile 6” applicators, sampling 

n area of 20 × 20 cm, pooled into a 15 ml tube containing 2 

l viral transfer medium (Minimal Essential Media [MEM] supple- 

ented with 2% fetal calf serum [FCS] and 200 Units/ml Penicillin, 

.2% streptomycin, and 25 units/ml Nystatin). Air sampling was 

erformed using an MD8 air sampler (Sartorius, Gottingen, Ger- 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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Figure 1. Patient viral load. Upper respiratory SARS-CoV-2 viral load in patients as 

determined by RT-PCR of nasal and mouth swabs (original strain n = 15, Alpha strain 

n = 18, Omicron strain n = 16). Data symbols present individual patient Ct values from 

12-36 hours before sampling; black bars present patients’ group mean ±SD. Statis- 

tical analysis carried by Prism 6 for Windows (GraphPad Software, San Diego, Cali- 

fornia, USA). Ct, cycle threshold; RT-PCR, reverse transcriptase–PCR. 
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any) equipped with 3.0 μm gelatin membranes, at 50 liter/min 

or 20 minutes (10 0 0 liters per sample), positioned facing the pa- 

ient, 1-1.5 m away. After sampling, each gelatin membrane was 

mmediately dissolved in a 50 ml tube containing 10 ml viral trans- 

er medium. Cold-chain transport of samples was maintained (4- 

 °C), with sample processing performed within 2-3 hours of sam- 

ling. RNA extraction, RT-PCR assays, and virus infectivity cyto- 

athic effect (CPE) assays were performed as previously described 

 Ben-Shmuel et al., 2020 ). 

Viral RNA was detectable on 60% of high-contact surfaces near 

micron-infected patients ( table 1 ). Contamination, inferred by Ct 

alues, was relatively low (Ct = 35.2 ±2.5). For the original and Al- 

ha strains, each group included ventilated patients (original 6/15, 

lpha 6/18); similar levels of contamination were detected, at a 

lightly lower prevalence (46%), not a statistically significant dif- 

erence ( p = 0.29). Patient monitors were sampled to assess medi- 

al staff contamination via gloves. Viral RNA was detected on 68%, 

2%, and 41% of the patients’ monitors for patients infected with 

he original, Alpha, and Omicron strains, respectively (statistically 

nsignificant, p = 0.26). Contamination levels (by Ct) were similar 

or all strains. None of the surfaces sampled contained viable in- 

ectious virus (0/168, table 1 ). Taken together, high-contact surface 

nd monitor contamination rates were virtually identical for all 

trains (55.6%, 49.2%, and 56.7% for the original, Alpha, and Omi- 

ron strains, respectively). Finally, we detected traces of viral RNA 

n 3 of 16 air-sample filters next to Omicron-infected patients, 2 of 

8 filters next to Alpha-infected patients, and 1 of 15 filters next to 

riginal strain–infected patients. These differences were also statis- 

ically insignificant ( p = 0.59). All air samples were found to be free

rom infective virus (0/49, table 1 ). 

This study aimed to test whether the Omicron variant is bet- 

er at contaminating surfaces, surviving on real-world surfaces, 

r being an airborne infective pathogen. Although surface con- 

amination was substantial for all strains (90/168 RT-PCR positive 

amples, 53%), viral viability in the clinical setting was negligi- 

le, with no samples containing cultivable virus. The rates and Ct 

alues observed for contaminated samples were similar between 

ariants. Compared with this relatively high rate, air sample con- 

amination was both significantly less frequent and much lower: 

2% contamination, mean Ct value of 35.6 (32.1-37.1). Differences 

etween strains were statistically insignificant. Viable SARS-CoV- 

 was not isolated from any air sample. Our results show that in 

erms of contamination, viability, and stability on surfaces and in 
212 
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W  
ir samples, the Omicron variant is remarkably similar to previ- 

us COVID-19 strains (original and Alpha strains). This correlates 

ith previous studies conducted by us ( Ben-Shmuel et al., 2020 ) 

nd others ( Lane et al., 2021 ; Ong et al., 2021 ; Thakar et al., 2021 ;

inslow et al., 2021 ) in healthcare settings, isolation units, quar- 

ntine hotels, and schools. Moreover, it was recently shown that 

ARS-CoV-2 significantly loses viability, with near complete via- 

ility loss occurring within 2-5 minutes, in controlled laboratory 

erosolized dispersion at normal relative humidity ( Oswin et al., 

022 ). 

This preliminary work suggests that Omicron’s increased trans- 

issibility does not result from acquiring airborne infectivity, 

igher environmental contamination, or better resilience on sur- 

aces. Alternatively, plausible explanations may include the mu- 

ated spike protein’s higher affinity toward the angiotensin- 

onverting enzyme 2 (ACE2) receptor and lower immune recogni- 

ion. In addition, enhanced viral loads in clinically milder patients 

acilitate spread by having more infective, less symptomatic indi- 

iduals in the community for longer durations before diagnosis and 

solation. 
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