organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Redetermination of 1-cyclohexyl-3-(2furoyl)thiourea

J. Duque,^a O. Estévez,^a* V. Jancik^b and H. Yee-Madeira^c

^aInstituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, Cuba, ^bInstituto de Química, UNAM, Mexico, and ^cEscuela Superior de Física y Matemática, IPN, Mexico Correspondence e-mail: oestevezh@yahoo.com

Received 24 March 2010; accepted 13 April 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.072; data-to-parameter ratio = 13.9.

The title compound, C₁₂H₁₆N₂O₂S, was synthesized from furoyl isothiocyanate and cyclohexylamine in dry acetone, and the crystal structure redetermined. The thiourea group is in the thioamide form. The structure [Otazo-Sánchez et al. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218] has been redetermined in order to establish the intra- and intermolecular interactions. The trans-cis geometry of the thiourea group is stabilized by intramolecular hydrogen bonding between the carbonyl and *cis*-thioamide groups, resulting in a pseudo-S(6) planar ring which makes a dihedral angle of $3.24(6)^{\circ}$ with the 2-furoyl group and a torsion angle of $-84.3 (2)^{\circ}$ with the cyclohexyl group. There is also an intramolecular hydrogen bond between the furan O atom and the other thioamide H atom. In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds, forming chains along [010].

Related literature

For general background to the applications of aroylthioureas in coordination chemistry and molecular electronics, see: Aly *et al.* (2007); Koch (2001); Duque *et al.* (2009); Estévez-Hernández *et al.* (2006). For related structures, see: Estévez-Hernández *et al.* (2008). For the synthesis, see: Otazo-Sánchez *et al.* (2001).

Experimental

Crystal data $C_{12}H_{16}N_2O_2S$ $M_r = 252.33$

Orthorhombic, *Pbca* a = 7.2667 (5) Å b = 10.2058 (7) Å c = 34.239 (3) Å V = 2539.3 (3) Å³ Z = 8

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008) $T_{\rm min} = 0.914, T_{\rm max} = 0.946$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.033 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.072 & \text{independent and constrained} \\ S &= 1.20 & \text{refinement} \\ 2232 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.25 \text{ e } \text{ Å}^{-3} \\ 160 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.22 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1$ $N1 - H1 \cdots O2^{i}$	0.83(2) 0.83(2)	2.329(19) 2.32(2)	2.7342 (17)	110.8 (16) 153.0 (18)
$N2-H2\cdots O2$	0.83(2)	1.983 (19)	2.6574 (18)	138.0 (18)

Mo $K\alpha$ radiation

 $0.37 \times 0.34 \times 0.23 \text{ mm}$

30412 measured reflections

2232 independent reflections

2175 reflections with $I > 2\sigma(I)$

 $\mu = 0.25 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.019$

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

OE thanks CONACyT of México for research grant No. 61541. JD and HY-M thank CONACyT of México for research grants 82575 and J00.04.45.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2204).

References

- Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.
- Duque, J., Estévez-Hernández, O., Reguera, E., Ellena, J. & Corrêa, R. S. (2009). J. Coord. Chem. 62, 2804–2813.
- Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157.
- Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). *Spectrochim. Acta (A)*, **64**, 961–971.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. supplementary materials

Acta Cryst. (2010). E66, o1106 [doi:10.1107/S1600536810013693]

Redetermination of 1-cyclohexyl-3-(2-furoyl)thiourea

J. Duque, O. Estévez, V. Jancik and H. Yee-Madeira

Comment

Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of a little better quality (present refinement: R: 0.033 and wR: 0.072; previous refinement: R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the unit cell. The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6-S1 and C5-O1 bonds show typical double-bond character. However, the C-N bond lengths, C5-N1, C6-N1, C6-N2 are shorter than the normal C-N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1-C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6-N2-C7-C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2-H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1…O1 is observed. In the crystal structure symmetry related molecules are linked by N1—H1…O2 interactions to form one-dimensional chains along the *b* axis (Fig. 2 and Table 1).

Experimental

The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez *et al.* (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with cyclohexylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 70-71 °C). Elemental analysis for $C_{12}H_{16}N_2O_2S$ found: C 57.28, H 6.18, N 11.08, S 12.36 %; calculated: C 57.14, H 6.35, N 11.11, S 12.70 %.

Refinement

All H atoms were refined with $U_{iso}(H)=1.2U_{eq}(C/N)$.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50 % probability level. The intramolecular N—H \cdots O hydrogen bonds are shown as dashed lines.

Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-cyclohexyl-3-(2-furoyl)thiourea

Crystal data
$C_{12}H_{16}N_2O_2S$
$M_r = 252.33$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
a = 7.2667 (5) Å
<i>b</i> = 10.2058 (7) Å
<i>c</i> = 34.239 (3) Å
$V = 2539.3 (3) \text{ Å}^3$
Z = 8

Data collection

Bruker APEXII CCD diffractometer	2232 independent reflections
Radiation source: fine-focus sealed tube	2175 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.019$
Detector resolution: 8.333 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ϕ and ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)	$k = -12 \rightarrow 12$
$T_{\min} = 0.914, \ T_{\max} = 0.946$	$l = -40 \rightarrow 40$
30412 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.072$ S = 1.202232 reflections 160 parameters 0 restraints

F(000) = 1072 $D_{\rm x} = 1.32 \ {\rm Mg \ m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 9926 reflections $\theta = 2.9 - 25.1^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.37 \times 0.34 \times 0.23 \text{ mm}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0145P)^2 + 2.5358P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.02582 (6)	0.83305 (4)	0.380695 (12)	0.01791 (12)
01	0.23646 (16)	0.91176 (11)	0.51723 (3)	0.0176 (3)
O2	0.20639 (16)	1.18582 (10)	0.45356 (3)	0.0175 (3)
N1	0.15353 (19)	0.96757 (14)	0.44114 (4)	0.0150 (3)
N2	0.0950 (2)	1.08928 (14)	0.38546 (4)	0.0166 (3)
C1	0.2661 (2)	1.03689 (15)	0.50384 (5)	0.0145 (3)
C2	0.3595 (2)	1.10760 (16)	0.53071 (5)	0.0179 (4)
H2A	0.3978	1.1963	0.5284	0.022*
C3	0.3890 (2)	1.02359 (17)	0.56302 (5)	0.0188 (4)
H3A	0.4499	1.0451	0.5867	0.023*
C4	0.3138 (2)	0.90723 (17)	0.55358 (5)	0.0194 (4)
H4A	0.3145	0.8321	0.57	0.023*
C5	0.2064 (2)	1.07079 (15)	0.46440 (5)	0.0142 (3)
C6	0.0933 (2)	0.97236 (16)	0.40230 (5)	0.0149 (3)
C7	0.0241 (2)	1.11541 (16)	0.34625 (5)	0.0158 (3)
H7A	-0.0859	1.0584	0.3418	0.019*
C8	0.1656 (2)	1.08560 (17)	0.31451 (5)	0.0195 (4)
H8A	0.2762	1.1408	0.3184	0.023*
H8B	0.2035	0.9926	0.3162	0.023*
C9	0.0824 (3)	1.11309 (17)	0.27440 (5)	0.0213 (4)
H9A	-0.023	1.0535	0.2699	0.026*
H9B	0.1756	1.0956	0.254	0.026*
C10	0.0172 (2)	1.25554 (18)	0.27119 (5)	0.0223 (4)
H10A	0.1247	1.3149	0.2726	0.027*
H10B	-0.0434	1.269	0.2456	0.027*
C11	-0.1176 (2)	1.28941 (17)	0.30388 (5)	0.0218 (4)
H11A	-0.2326	1.2389	0.3002	0.026*
H11B	-0.1486	1.3838	0.3025	0.026*
C12	-0.0375 (2)	1.25877 (16)	0.34414 (5)	0.0175 (4)
H12A	-0.1316	1.2756	0.3644	0.021*
H12B	0.0689	1.3168	0.3493	0.021*
H1	0.167 (3)	0.894 (2)	0.4510 (5)	0.021*
H2	0.139 (3)	1.1503 (19)	0.3985 (6)	0.021*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

U^{l}	$1 U^{22}$	U^{33}	U^{12}	U^{13}	U^{23}
-					

supplementary materials

S1	0.0206 (2)	0.0144 (2)	0.0188 (2)	-0.00266 (17)	-0.00123 (16)	-0.00125 (16)
O1	0.0224 (6)	0.0128 (6)	0.0175 (5)	-0.0014 (5)	-0.0014 (5)	0.0024 (5)
O2	0.0222 (6)	0.0114 (6)	0.0190 (6)	0.0007 (5)	-0.0007 (5)	0.0007 (5)
N1	0.0179 (7)	0.0112 (7)	0.0159 (7)	0.0005 (6)	-0.0013 (6)	0.0024 (6)
N2	0.0196 (7)	0.0143 (7)	0.0158 (7)	-0.0012 (6)	-0.0026 (6)	-0.0005 (6)
C1	0.0139 (8)	0.0112 (8)	0.0185 (8)	0.0022 (6)	0.0037 (7)	0.0011 (6)
C2	0.0188 (8)	0.0137 (8)	0.0213 (8)	0.0013 (7)	0.0014 (7)	-0.0031 (7)
C3	0.0172 (8)	0.0234 (9)	0.0159 (8)	0.0036 (7)	-0.0010 (7)	-0.0028 (7)
C4	0.0219 (9)	0.0221 (9)	0.0141 (8)	0.0032 (7)	-0.0005 (7)	0.0036 (7)
C5	0.0101 (8)	0.0145 (8)	0.0179 (8)	0.0013 (6)	0.0026 (6)	-0.0013 (6)
C6	0.0105 (8)	0.0167 (8)	0.0174 (8)	0.0009 (6)	0.0005 (6)	0.0001 (6)
C7	0.0157 (8)	0.0159 (8)	0.0159 (8)	-0.0002 (7)	-0.0018 (7)	-0.0002 (6)
C8	0.0195 (8)	0.0181 (8)	0.0211 (8)	0.0036 (7)	0.0016 (7)	0.0005 (7)
C9	0.0236 (9)	0.0216 (9)	0.0187 (8)	0.0011 (7)	0.0032 (7)	-0.0021 (7)
C10	0.0257 (9)	0.0244 (9)	0.0169 (8)	0.0026 (8)	-0.0001 (7)	0.0038 (7)
C11	0.0251 (9)	0.0207 (8)	0.0196 (8)	0.0057 (7)	-0.0019 (7)	0.0019 (7)
C12	0.0191 (8)	0.0170 (8)	0.0165 (8)	0.0029 (7)	-0.0002 (7)	-0.0006 (6)

Geometric parameters (Å, °)

S1—C6	1.6760 (16)	С7—С8	1.527 (2)
O1—C4	1.3665 (19)	C7—C12	1.532 (2)
O1—C1	1.3739 (19)	С7—Н7А	1
O2—C5	1.2313 (19)	C8—C9	1.527 (2)
N1—C5	1.376 (2)	C8—H8A	0.99
N1—C6	1.401 (2)	C8—H8B	0.99
N1—H1	0.83 (2)	C9—C10	1.533 (2)
N2—C6	1.325 (2)	С9—Н9А	0.99
N2—C7	1.462 (2)	С9—Н9В	0.99
N2—H2	0.83 (2)	C10-C11	1.527 (2)
C1—C2	1.352 (2)	C10—H10A	0.99
C1—C5	1.460 (2)	C10—H10B	0.99
C2—C3	1.416 (2)	C11—C12	1.529 (2)
С2—Н2А	0.95	C11—H11A	0.99
C3—C4	1.346 (2)	C11—H11B	0.99
С3—НЗА	0.95	C12—H12A	0.99
C4—H4A	0.95	C12—H12B	0.99
C4—O1—C1	105.71 (13)	C9—C8—C7	109.70 (14)
C5—N1—C6	127.62 (14)	С9—С8—Н8А	109.7
C5—N1—H1	115.0 (13)	С7—С8—Н8А	109.7
C6—N1—H1	117.2 (13)	С9—С8—Н8В	109.7
C6—N2—C7	124.08 (14)	С7—С8—Н8В	109.7
C6—N2—H2	116.5 (13)	H8A—C8—H8B	108.2
C7—N2—H2	119.4 (13)	C8—C9—C10	111.18 (14)
C2C1O1	110.36 (14)	С8—С9—Н9А	109.4
C2—C1—C5	130.70 (15)	С10—С9—Н9А	109.4
O1—C1—C5	118.84 (13)	С8—С9—Н9В	109.4
C1—C2—C3	106.52 (15)	С10—С9—Н9В	109.4
C1—C2—H2A	126.7	Н9А—С9—Н9В	108

C3—C2—H2A	126.7	C11—C10—C9	111.13 (14)
C4—C3—C2	106.57 (15)	C11-C10-H10A	109.4
С4—С3—НЗА	126.7	C9—C10—H10A	109.4
С2—С3—НЗА	126.7	C11-C10-H10B	109.4
C3—C4—O1	110.83 (15)	C9—C10—H10B	109.4
C3—C4—H4A	124.6	H10A—C10—H10B	108
O1—C4—H4A	124.6	C10-C11-C12	111.76 (14)
O2—C5—N1	123.74 (15)	C10-C11-H11A	109.3
O2—C5—C1	120.34 (14)	C12-C11-H11A	109.3
N1—C5—C1	115.92 (14)	C10-C11-H11B	109.3
N2	116.20 (14)	C12-C11-H11B	109.3
N2—C6—S1	125.06 (12)	H11A—C11—H11B	107.9
N1—C6—S1	118.74 (12)	C11—C12—C7	110.44 (13)
N2—C7—C8	112.33 (13)	C11—C12—H12A	109.6
N2—C7—C12	108.69 (13)	C7—C12—H12A	109.6
C8—C7—C12	110.71 (13)	C11—C12—H12B	109.6
N2—C7—H7A	108.3	C7—C12—H12B	109.6
С8—С7—Н7А	108.3	H12A—C12—H12B	108.1
С12—С7—Н7А	108.3		
C4—O1—C1—C2	0.37 (17)	C7—N2—C6—S1	5.0 (2)
C4—O1—C1—C5	177.02 (14)	C5—N1—C6—N2	3.2 (2)
O1—C1—C2—C3	-0.65 (18)	C5—N1—C6—S1	-176.93 (13)
C5—C1—C2—C3	-176.78 (16)	C6—N2—C7—C8	-84.29 (19)
C1—C2—C3—C4	0.68 (19)	C6—N2—C7—C12	152.86 (15)
C2—C3—C4—O1	-0.47 (19)	N2—C7—C8—C9	179.24 (14)
C1—O1—C4—C3	0.08 (18)	C12—C7—C8—C9	-59.05 (18)
C6—N1—C5—O2	0.4 (3)	C7—C8—C9—C10	57.79 (19)
C6—N1—C5—C1	-179.07 (15)	C8—C9—C10—C11	-55.4 (2)
C2—C1—C5—O2	-14.7 (3)	C9—C10—C11—C12	53.9 (2)
O1—C1—C5—O2	169.45 (14)	C10-C11-C12-C7	-55.05 (19)
C2-C1-C5-N1	164.83 (17)	N2-C7-C12-C11	-178.47 (13)
O1-C1-C5-N1	-11.0 (2)	C8—C7—C12—C11	57.71 (18)
C7—N2—C6—N1	-175.11 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1	0.83 (2)	2.329 (19)	2.7342 (17)	110.8 (16)
N1—H1····O2 ⁱ	0.83 (2)	2.32 (2)	3.0799 (18)	153.0 (18)
N2—H2…O2	0.83 (2)	1.983 (19)	2.6574 (18)	138.0 (18)
Symmetry codes: (i) $-x+1/2$, $y-1/2$, z.				

