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When counting-like abilities were first described in the honeybee in the

mid-1990s, many scholars were sceptical, but such capacities have since

been confirmed in a number of paradigms and also in other insect species.

Counter to the intuitive notion that counting is a cognitively advanced

ability, neural network analyses indicate that it can be mediated by very

small neural circuits, and we should therefore perhaps not be surprised that

insects and other small-brained animals such as some small fish exhibit such

abilities. One outstanding question is how bees actually acquire numerical

information. For perception of small numerosities, working-memory capacity

may limit the number of items that can be enumerated, but within these limits,

numerosity can be evaluated accurately and (at least in primates) in parallel.

However, presentation of visual stimuli in parallel does not automatically

ensure parallel processing. Recent work on the question of whether bees can

see ‘at a glance’ indicates that bees must acquire spatial detail by sequential

scanning rather than parallel processing. We explore how this might be

tested for a numerosity task in bees and other animals.

This article is part of a discussion meeting issue ‘The origins of numerical

abilities’.
1. Introduction
‘Two tigers were seen going into the cave. Only one came out. Is the cave safe?’

This stark example [1] illustrates the survival value of a non-verbal, non-symbolic

sense of number. Predator vigilance, foraging and navigation are obvious

contexts in which ability to assess quantity would seem adaptive. The more com-

plex the interaction with the environment, the more likely it is that an organism

will benefit from estimating and keeping track of quantitative variables, including

time and magnitude (countable and non-countable). The basic operations of

cognition track both objects and events in order to make appropriate decisions.

Arguably, however, there has been a tradition to view cognitive processes as dis-

tinct from ‘simple’ associative learning. Undeniably, humans engage in higher

cognitive processes during mathematical reasoning or when thinking about tem-

poral relations and causes. Yet as long ago as 1946, arguing from the results of a

series of influential experiments, Michotte proposed that causality is a basic attri-

bute of visual perception [2]. More recently, the same has been argued for

perception of numerosity [3]. Nevertheless, there remains a tendency to fetishize

numerical cognition, because of its association with the most advanced human

intellectual achievements. Consequently, demonstrating any form of numerical

competence in non-human animals requires tortuous controls, to rule out dis-

crimination on the basis of some continuous magnitude rather than numerosity

per se. These controls are indeed required, but carry the implicit assumption

that quantity discrimination is inherently more complex for countable rather

than non-countable quantities, perhaps reflecting a higher cortical function.
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Figure 1. Landmark counting by honeybees in an open field. Bees were orig-
inally trained to fly from a hive (out of view to the left) to a feeder located at
a distance of 262.5 m, between the third and fourth of a series of yellow
tetrahedral tents, spaced 75 m apart. In subsequent tests, spacing between
the tents was systematically varied and two feeders were offered; one at or
close to the distance from the hive learned during training, and a second
spaced between the second and third tents, and consequently, at an altered
flight distance from the hive [15]. The question was, would the bees be more
likely to find the feeder at the trained distance, or would they find it by the
number of landmarks passed during training flights? See text for details.
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Nevertheless, numerosity discrimination has been demon-

strated in vertebrates that lack the mammalian neocortex (see

Agrillo & Bisazza [4]). In fact, it seems highly unlikely that

the architectural plan of the vertebrate brain is necessary for

basic numerical cognition; cuttlefish, for example, have

recently been claimed to discriminate prey items on the basis

of numerosity [5]

Contrary to the notion that numerical cognition is a com-

plex, higher cortical function, theoretical studies indicate that

numerical discrimination requires no more than a classifier

and a threshold mechanism [6], which can be implemented

by known neural circuits ([7]; see also Rose [8]). The extent to

which such mechanisms can explain numerical cognition

remains to be determined, but the point is that we should not

necessarily be surprised that cognitive animals can keep track

of entities in their environment, including, up to a point,

number of entities. The question of how they do this is of central

neurobiological interest, which involves more than demonstrat-

ing proto-human counting abilities in animals. Here, we review

the literature on counting-like abilities in insects. We argue that

there might be relatively little mileage in discovering more

animal species with numerosity capacities, since the ability in

itself might be relatively trivial. A promising avenue of future

research might be to explore how animals such as insects

solve numerosity tasks, which requires a detailed inspection

of their choice behaviour rather than just tallying correct

versus incorrect choices in discrimination tests. Such an explora-

tion might reveal that insects (and perhaps other animals) count

by fundamentally different strategies, underpinned by different

mechanisms, compared to humans. Specifically, the need to

acquire visual-spatial information by sequential scanning,

rather than parallel processing of entire visual scenes, might

require insects to inspect items one after another, and limit

their ability to subitize (seeing numbers at a glance).

2. Numerical cognition in invertebrates
Compared to comparative studies in vertebrates, rather less is

known about numerical cognition in invertebrates. However,

it is clear that both countable and non-countable quantitative

information may be used in guiding behaviour. Ants, for

example, measure distance by integrating step count [9,10]

but can also learn to use size of visual stimuli as direction

cues [11]. Bees can perform visual discrimination on the basis

of both size [12] and numerical quantity [13].

An early exploration of numerosity in bees was performed

by Leppik [14]. This is a useful case study in the adaptive utility

of a number sense, as well as the pitfalls that need to be avoided

when studying whether subjects respond to number rather than

other cues that would allow the same outcome. Leppik noted

that radially symmetric flowers often have relatively low num-

bers of petals (e.g. 3,5,6 or 7) and suggested that bees might

remember the species-specific number of petals to distinguish

rewarding from unrewarding species. To support his idea, he

removed defined numbers of petals from some flower species

and monitored bee visitation rates before and after the manipu-

lation. He found that bee visits were substantially reduced

when petal numbers were lowered, and concluded that bees

must have been sensitive to petal number. This is possible,

but without control tests, it is equally plausible that bees

might instead have responded to reduced contour length,

area subtended, or they might have been deterred by odour

cues emanating from damaged flowers.
Chittka & Geiger [15] provided the first evidence that

numerical cues may be used in honeybee navigation. Bees

were trained to forage from a feeder in an open field located

at a fixed distance from the hive (262.5 m). A series of yellow,

tetrahedral tents of 3.5 m height was set up, to act as land-

marks along the flight path (figure 1). The feeder was

located midway between the third and the fourth landmarks.

Following training, bees were tested in a control experiment,

where a second feeder was placed closer to the hive, between

the second and third tents. In this situation all but one of the

bees flew the original distance to the trained feeder. Next, the

relationship between flight distance and number of land-

marks passed was systematically probed by varying the

number of landmarks and the distance between them. For

example, in one test the spacing between tents was decreased

so that the trained feeder was now located between the fourth

and the fifth tents. A second feeder was located between the

third and the fourth tents, at a shorter distance from the hive.

Would the bees choose to fly the original distance, past four

landmarks instead of three, or would they choose the feeder

located at a shorter distance but past the previously experi-

enced number of landmarks? Most of the bees (76%) landed

at the feeder located closest to the trained feeder, but a quarter

landed at the test feeder between the third and fourth tents. In

further tests where the number of landmarks were increased or

decreased, the bees’ group behaviour suggested a compromise

between an estimate of the learned distance and landmark cues

in test feeder choice. However, in all cases, a significant min-

ority (8–26%) of bees based their landing decisions on the

number of landmarks (i.e. choosing a feeder located between

the third and fourth tents regardless of distance). Since no

transfer to other types of countable objects was explored,

Chittka & Geiger argued that a ‘proto-counting’ strategy was

the likeliest explanation for the behaviour of this group of bees.

At the time of the discovery in the mid-1990s, this result

seemed rather startling. Although the associative learning

abilities of bees were not in doubt, counting was viewed as

a ‘higher’ cognitive function, beyond simple association

([16], but see [17,18]). However, the Chittka & Geiger result
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Figure 2. Landmark counting in a laboratory flight tunnel. (a) Individual
bees were trained to receive a reward after they had flown past a specified
number of landmarks. During training, the landmarks were strips of evenly
spaced yellow paper (upper). Spacing interval was randomly varied every
5 min, to ensure the bees could not learn the reward location by measuring
flight distance. Different experimental groups were tested on the same land-
marks as in training; in tunnels where the stripes were replaced by yellow
disks, presenting a smaller cumulative yellow surface; or in tunnels where
landmarks were arranged as baffles, so that only one could be seen at a
time. (b) Results of an experiment where bees were trained on landmark
3, then tested with landmarks spaced regularly every 40 cm (upper panel)
or irregularly spaced (lower panel). Modified from Dacke & Srinivasan [21],
with permission.
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has since been replicated by multiple teams, including a field

study, where harmonic radar was used to track the choices of

individual bees [19]; again, the majority of bees based

decisions on distance flown, but the search behaviour of a

clear minority was centred on the landmark number that

had previously cued feeder location. This suggests that the

honeybee’s odometer (distance estimator) dominates naviga-

tion learning, which is perhaps not surprising, since it is

distance that is communicated to nest-mate foragers via the

waggle dance [20]. However, analysis of the behaviour of

individual bees indicates that sequential, countable cues are

also learned. This point has been confirmed and extended

in a controlled laboratory setting [21], which allowed cue

manipulation to demonstrate unambiguously that the bees

were learning numerosity per se. The investigators were also

able to determine the upper limit for bees’ numerical rep-

resentation in this task, which appears to be a maximum of

four landmarks. Importantly, it was also shown that the

bees could abstract numerosity from the particular perceptual

details of the stimuli, as if learning a rule ‘search after three’

irrespective of the particular cue used (figure 2). This ability

to abstract numerosity in transfer tests is regarded as a key

component of numerical cognition [22].

The ability of bees to generalize visual stimuli purely on

the basis of number was probed further in a carefully con-

trolled study by Gross et al. [23]. Bees were trained on a

delayed-match-to-sample task where the matching required

learning the number of elements in the visual stimuli. Initially

bees were trained on a sample of either two or three dots and

required to choose the matching sample from the appropriate

arm of a y-maze (figure 3). This task was readily learned.

Extensive control experiments varied the orientation, colour

and shape of the individual elements of the stimuli to mini-

mize the possibility that the bees could solve the task on

the basis of anything other than abstracted numerical quan-

tity. Importantly, the bees were able to generalize the

match-to-sample rule to novel stimulus items, but the limit

for this was between three and four.

In an interesting exploration of counting in an ecological

context, the behaviour of bumblebees foraging from flowers

with five nectaries was analysed [24]. Optimal behaviour

here would be to avoid revisiting depleted nectaries, which

implies keeping a tally of number visited, and not visiting

more than five. In the field, the probability of departing

from a flower increased sharply with number of nectaries

probed up to the number of five, and this number of nectary

probes was by far the most common. A sixth nectary probe

(i.e. a revisit) was very rare. The authors were able to exclude

alternative explanations, for example that bumblebees used

scent marks left by their tarsal glands to avoid nectaries

already visited. Solitary bees (Eucera sp.) also mastered this

task, but with less precision and in a manner such that the

authors could not rule out alternative explanations, such as

using scent marks or simply abandoning flowers when bees

encountered empty nectaries [25].

In a controlled laboratory experiment, it proved rather diffi-

cult to train bumblebees to artificial flowers that would reward

only two probes; over 1000 trials were required before the bees

learned to depart after two to three probes [24]. The authors

note that the nectaries are only visible to the bees one at a

time, and largely indistinguishable based on visual features.

Consequently, a form of motor sequence learning may have

been required to keep tally of number of probes.
Recent evidence suggests that orb-web spiders maintain a

tally of prey items in ‘larders’, which they accumulate on

their webs [26]. Removal of the prey larder elicits searching

behaviour, the duration of which is proportional to larder

size, suggesting spiders remember the size of the larder

they have accumulated. Rodrı́guez et al. [26] attempted to

assess the relative roles of prey count as against total quan-

tity. Search time increased both with prey mass and

number (up to four prey items), but the rise was steeper for

increasing prey count compared to equivalent increases in
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Figure 3. Summary of bees’ choice behaviour in the experiments of Gross
et al. [23]. Following training on either two or three stimuli, bees were
tested in discrimination or transfer tests with a sample of numerosity
either two or (illustrated here) three (in the actual experiments the correct
arm of the Y-maze was randomized). (a) Exact pattern match. (b) Pattern
matching by numerosity only. Size, configuration, colour were varied in exten-
sive series of transfer tests to rule out non-numerical cues. (c) Bees were able
to match to sample when distractor contained novel numerosity ( four), but
performance was not significantly above chance when the sample contained
the novel numerosity (d ). Bees were also unable to discriminate between
stimuli containing four and six items (not shown).
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mass with individual prey items, suggesting the spiders kept

track of prey numerosity.
3. Systems for number representation
Human numerosity discrimination may involve counting, esti-

mation or subitizing [27]. Counting, in the strictest sense of the

word, requires a symbolic number system (numerals), devel-

oped in some human cultures [28]. In animals, counting-like

abilities are said to exist where a response to the number of

stimuli in a set can be abstracted to qualitatively different
sets of stimuli [29,30]. Subitizing is the ability to perceive the

number of items in a small set, which is accurate up to about

four items (and in humans is accomplished ‘at a glance’). Esti-

mation is the ability to judge approximately the numerosity of

larger sets without counting. In comparative studies too a dis-

tinction is commonly made between numerosities consisting of

four items or fewer (the subitizing range), and larger numbers

[22,31]. The large number system (estimation) is analogue and

approximate and the error around the test number scales with

its magnitude, according to Weber’s law. This entails that the

accuracy with which two numerosities can be discriminated

is limited by the ratio of their size difference rather than the

absolute size difference. The small number system, by contrast,

is exact, ratio independent and has an abrupt limit of three or

four items [31]. It is possible that these two number systems are

a basic feature of vertebrate cognitive architecture since it has

been demonstrated in both guppies and college students [32].

It may be significant that an upper limit of around four

items has also emerged from the recent studies on bees

reviewed above [21,23]. The existence of a ratio-dependent

system for approximate comparison of larger numerosities

has not been found in invertebrates (at least for visually

based decisions). However, male mealworms were shown to

keep track of number of females in olfactory bouquets from

up to four females; there was a ratio-dependence greater than

1 : 2 in this range; males could discriminate one from three or

four, but not one from two, or two from four [33]. It should

also be noted that non-countable quantity estimation has
been shown to be subject to Weber’s law in invertebrates.

The visual odometer of the honeybee, for example, estimates

distance by integration of retinal flow of visual texture [34],

and in experiments where bees are trained to fly a set distance,

the error is proportional to the trained distance [35].

The symbolic number system made possible by human

language eases the constraint imposed by Weber’s law. Given

number symbols (words), arbitrarily large numbers can be dis-

criminated with equal accuracy. For example, discriminating

109 from 110 would be impractical (though not formally

impossible) for an analogue approximate number system

that was not also mapped to a symbolic number system. Never-

theless, human reaction times in discriminating numerals such

as 109 from 110 would be expected to be longer than discrimi-

nating 110 from 190; such a ratio-dependent effect is a signature

of an analogue system [36]. However, with an analogue

magnitude system mapped to a symbolic number system, arbi-

trarily large numbers can be discriminated with the same

accuracy (albeit with a speed–accuracy trade-off) as small

ones, and indeed without the need for an increased working-

memory capacity. All that is needed is to keep track of the

last number counted, and a spatial counting strategy to avoid

counting items twice (e.g. left to right plus top to bottom in a

vertical 2D display). Without word labels, counting to higher

numbers is inherently much more challenging. It has in fact

been suggested that the development of uniquely human cog-

nition involved an evolutionary trade-off between working

memory and symbolic representation capacities [37].
4. What accounts for the upper limit of around
four countable items in many species?

If it is indeed the case that a small number system is based on

object individuation—the representation of distinct objects—
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then arguably it may be a fundamental attribute of cognition

and perception [31] and subject to the capacity limit of work-

ing memory, classically assumed to be in the range 4–7 [38],

but more recently argued to be centred around four items

[39]. What accounts for this limit?

One possibility is that the limit is inherent to the dynamics

of neural circuitry [40]. An influential, if unproven, hypothesis

is that objects are represented by neural assemblies, which bind

local sensory features into coherent percepts [41–43]. For

example, edges at disparate spatial locations could be part of

one large or two smaller objects. The same applies to other

visual attributes: a yellow star, blue triangle and green circle

are three items, which have to be individuated incorporating

differences in colour, shape, size, etc. Spike synchrony has

been proposed as a mechanism to do this. To bind ‘green’

with ‘triangle’ requires the spiking signals for green (but

not those for blue) to be synchronized with those for the tri-

angle. A large body of work suggests that this synchrony is

achieved by means of neuronal oscillations with a frequency

of about 40 Hz; neurons belonging to the same assembly

would oscillate in phase and thus have a strong tendency for

synchronous spiking. In our simplistic example, neurons sig-

nalling blue would not fire in phase with those signalling

triangle and would thus be considered to belong to a different

assembly. Note that the individual sensory signals are inde-

pendent of these phase relationships. The spike count over an

integration window can be similar, with or without synchroni-

zation to other neurons. Synchrony mediated by oscillation

functions as a carrier signal to assign neurons to assemblies,

rather than as a code for any particular perceptual attribute.

Numerosity, according to this scheme, is not coded by any par-

ticular feature that defines a neural assembly (such as phase

with respect to oscillation cycle); rather, numerosity is inherent

in the number of assemblies that are active.

A clear implication of this is that there will be a trade-off

between the number of neuronal assemblies to be maintained

simultaneously, and the stability of each representation. This

will be based on the fundamental temporal dynamics of the

neuronal membrane. A larger number of simultaneously

active assemblies means smaller phase differences between

each assembly. The accuracy with which neuronal spiking can

be timed to phase will therefore impose a maximum on the

number of assemblies that can simultaneously be maintained

before the assignment of a particular spike to a particular

assembly becomes ambiguous (and therefore, it may no

longer be possible to distinguish blue triangle and green circle

form green triangle and blue circle). Simulation studies sug-

gest this limit is in the range of 4–7 [40]. In principle, any

coding scheme based on dynamical neural assemblies will be

constrained by the temporal resolution of individual neurons.

The precise role of synchronous oscillations in defining

functional neural assemblies is a matter of continuing debate,

although a functional role is reasonably well established in

the olfactory system of both mammals and insects. Oscillations

in the 10–30 Hz range have been recorded from locusts [44],

honeybees [45] and Drosophila [46] and have been shown

to be necessary for fine odour discrimination in locusts

and honeybees.

The known temporal dynamics of insect and mammalian

brains operate over similar time scales, in contrast to the

known dissimilarities in brain architecture, and orders-of-

magnitude differences in neuronal number. This implies that

the difference between the large brains of primates and the
small brains of bees might be in representational richness,

not in the number of separate representations that can be

simultaneously maintained. Brain size will have an impact

on the size of neuronal assemblies (more neurons available

for each assembly) and therefore the amount of information

that can be processed in parallel, but not on the number of

neuronal assemblies that can simultaneously be maintained

(which would be constrained by similar temporal dynamics

in large and small brains). Bigger brains allow more parallel

processing [47,48].

5. Numerical cognition in small brains
Is it surprising that numerical cognition in animals is indepen-

dent of the crowning glory of mammalian neocortex? Probably

not [49,50]. An influential model [6] suggested a rather simple

mechanism for extraction of numerosity from magnitude.

Indeed, this model consisted of three modules containing a

total of 530 independently firing units (neural clusters in

their case, but for functional purposes they might be regarded

as individual neurons) and with this limited tool kit, the net-

work could extract approximate numerosity from parallel

visual displays (up to five items in this case, although in prin-

ciple this is not limited, but depends on the size of the input

array). The variance in the numerosity estimate in this model

increased in proportion to the numerosity itself (Weber’s

law); in keeping with this the model could reliably discriminate

two from three, but was only slightly above chance for three

from four [6], a performance similar to human infants [51].

Nevertheless, this suggests that even if an insect evolved a

dedicated small number discrimination module de novo, with-

out capitalizing on abilities emerging from existing circuits

[52], the added 500 neurons would hardly be detectable in

terms of gross neuroanatomy even in a brain as small as Droso-
phila’s. More recently, a deep learning algorithm, containing

just two hidden layers with 35 neurons, was able to model suc-

cessfully key results from human and non-human animal

studies [53]. This mirrors other studies in computational neuro-

science which show that the single task that requires a big

brain, in terms of the computational capacities required,

remains to be discovered [49]. Clearly, large brains are not a

prerequisite for numerical cognition.

A fundamental misunderstanding in cognitive neuro-

science may be that in order to discriminate by a certain

visual attribute, one needs to have a specialized neuron type

for it (the neuron doctrine). However, so long as a certain

visual feature (be it number, area, edge orientation, symmetry,

texture, etc.) reliably activates an identifiable ensemble code of

multiple neurons, that feature can be encoded—and thus,

learned about. It may indeed be the case that neurons can be

shown to respond to approximate numerosity [54], among

other things, but this does not mean that numerical cognition,

in the first instance depends on specification of numerosity-

detecting neurons. Consider, for example, that the optic lobes

of insects (lamina, medulla, lobula (and lobula plate, in some

insects)) contain perhaps 200 neuronal classes, and together

comprise approximately half of the brain [55,56]. Although

many optic lobe neurons have historically been described as

e.g. ‘colour coding’ [57,58], ‘orientation detecting’ [59],

‘motion coding’, most have in fact extremely complex response

properties, responding to a wide variety of stimuli, depending

on eye region, spectral content and behavioural context, and

may at best be described as responding predominantly to a
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Figure 4. Bees cannot perceive complex visual stimuli ‘at a glance’. Bees
were trained in a flight arena with six feeding platforms (blue horizontal
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between 500 and 1000 ms) for 100, 50 or 25 ms. (a) Detection of oriented
bar; (b) discrimination of 458 from 2458 bars; (c) coarse colour discrimi-
nation yellow-blue; (d ) fine colour discrimination yellow-orange; (e)
discrimination of spider shape from circle (only two of six stimuli shown
for simplicity). All of the bees were successful in acquiring the simple detec-
tion task, regardless of presentation duration. For fine colour discrimination,
stimulus durations of at least 50 – 100 ms were required (d ), while only a
single bee learned the shape discrimination at 100 ms, even though all
bees learned the task under continuous presentation (e). Modified from
Nityananda et al. [47], with permission.
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certain stimulus attribute. Recently, it was shown that a neural

network with as few as eight of the simplest feature detector

neurons was able to discriminate a large variety of seemingly

complex visual patterns that had previously been used in

honeybee learning experiments [60]. In reality a subset of

some 200 000 Kenyon cells of the mushroom bodies will be

sampling the output of perhaps 200 classes of optic lobe

neuron [61]. So long as any stimulus property (e.g. number)

is represented by a recognizable ensemble code at the interface

between these projection neurons and the mushroom body

intrinsic Kenyon cells, that stimulus property is codable and

memorizable. In this sense, number might simply be an emer-

gent property of an ensemble of neurons with even a modest

diversity of response properties.

6. Subitizing—counting at a glance?
Subitizing is the ability to recognize the number of items in a

visual scene without the need for sequential counting. This abil-

ity is limited to around four items. Unlike the approximate

(analogue magnitude) number system for assessing large

numerosities, where discrimination accuracy depends on the

ratio of two-numerical magnitudes [22], subitizing is thought

to be exact, and is thus not expected to show a ratio-

dependence. In addition, it involves rapid, parallel assessment

of object items. Field observations and spontaneous choice

experiments have often suggested an upper limit of around

four items in a variety of species, while with laboratory training

larger numbers can be discriminated, suggesting an analogue

magnitude system. This in itself, of course, does not prove

that distinct number systems are used in the two types of

tasks [62]). For example, although untrained cuttlefish can dis-

criminate one prey item from two and, in steps of one, up to

four from five, the decision time increases monotonically as

the ratio difference decreases, which is not what would be

expected if a subitizing mechanism was responsible for the dis-

crimination of small numerosities [5]. Such increases in

response time with number of items to be processed indicate

serial, rather than parallel, evaluation of the visual scene [63,64].

In insects, at least, limits on the parallel processing of the

visual scene may be expected on the basis of fundamental

constraints imposed by compound eye design. The eye of a

bumblebee, for example, consists of 3000–4000 ommatidia

[65] and visual acuity is limited to around one degree of

visual angle [66], which seems to compare very poorly with

the 2 million cones and 0.5 arc min resolution of the primate

visual system. However, in terms of temporal resolving

power, the primate cone is outperformed by the photo-

receptors of many species of fast-flying insects. The fastest

known physiological response of any ocular photoreceptor

was recorded from the blowfly: at 348C the impulse response

begins at around 3 ms, peaks at 6 and is complete by 10 ms

[67]. This is reflected in flicker fusion frequencies, which

reach a maximum of 70–80 Hz under optimal conditions

with human observers, but are around 200 Hz in bees [68]

and possibly even higher in some flies.

Bumblebee photoreceptor processing speed also easily

outperforms that of primates [69]. But high-performance

photoreceptors do not come cheap: the short membrane time

constants required for temporal precision are attained by

substantial increases in membrane conductance. This incurs

a substantial metabolic cost, largely due to the energy expendi-

ture required to maintain concentration gradients in the face of
large conductance increases; crepuscular or less rapidly

moving species forego this expenditure [70–72]. What justifies

this expenditure in the case of worker bees? A major effect of

increased temporal resolution is to reduce motion blur. If a

serial strategy, possibly depending on active vision, is used

by bees, then fast photoreceptors would increase the infor-

mation extracted from fast, brief scanning movements. It also

implies that bees would be unable to extract complex visual

information from a static sensory snapshot. In support of this

hypothesis, it was recently shown that bees fail all but the sim-

plest visual discrimination tasks when stimulus presentation

duration is limited ([47]; figure 4). This is similar to the situation

in tethered bees, which can learn visual discriminations of

simple, large colour or stimuli [73,74], but have not yet been

shown capable of complex visual discrimination, which is

just what we would expect if active visual scanning is required

in the latter case

The subitizing mechanism is often taken to be ‘seeing at a

glance’ and indeed, in experiments on humans and non-

human primates visual presentations are often very brief to

ensure this. However, parallel as opposed to sequential presen-

tation of visual stimuli does not necessarily lead to parallel as

opposed to sequential processing by the nervous system. In

the experiments on number-based visual generalization in

honeybees [23] timing data for the bees’ choices are not pro-

vided, although the authors do note that in transfer tests the

bees appeared to spend additional time scanning the stimuli

where the target and distractor numerical quantities were pre-

sented via elements with novel perceptual qualities. In fact this

scanning behaviour itself, we suggest, may hold the key to
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Figure 5. Flight path of a bee trained, with differential conditioning, to
select stimuli with two items and avoid those with four. The first 10s of
the bee’s scanning behaviour are shown; the path is colour-coded to show
the progression from early (violet) to late (red). The bee sequentially exam-
ines two patterns containing four items, but rejects each of them after
scanning three items in each. She then chooses a pattern containing the cor-
rect number of two purple crosses (even though she has not been rewarded
on any other dots than yellow ones before) and finally selects another pattern
with the correct number of two (yellow) dots. Dots are separated by time
intervals of 33 ms. See also electronic supplementary material, video S1.
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understanding how bees come to make the numerical discrimi-

nations they do. One possibility is that coding via motor

sequences [75] may be involved. Additionally, bees could

exploit the high temporal resolution of their vision in order

to extract additional spatial information in an active vision

strategy, if the motor commands of scanning movements

could be correlated with precisely timed visual information.

The latter proposal would be more difficult, but not impossible,

to test; either way we suggest that focusing on the temporal

dynamics of bees’ visuomotor search behaviour will help

reveal the underlying basis of their numerical discrimination.

In one preliminary experiment, using differential condition-

ing, a bumblebee was rewarded on various patterns containing

two elements, and trained to avoid patterns that contained four

(figure 5; electronic supplementary material, video S1). Perhaps

unsurprisingly, the bee learnt the task independently of the

colour or shape of the elements, or the area subtended by

them. The flight path of the bee holds interesting clues to the

decision-making and counting process. The bee inspected and

scanned both ‘twos’ and ‘fours’, indicating that it could not

make a decision from a distance. The flight path shows

the bee inspecting items within a pattern one by one, similar

to the kind of ‘motor tagging’ observed in some primates [76].

The bee avoids scanning the same stimulus element multiple

times, indicating working memory control of the scanning

behaviour. However, after scanning, the bee not only landed

more frequently on ‘two’ than ‘four’, but also rejected more

‘fours’ after inspection, showing that an evaluation of all

types of decisions (correct acceptance of training stimulus,

correct rejection of unrewarded stimulus and the correspond-

ing two types of errors) is tantamount [77–79]. In addition,

the sequential nature of the inspection of the elements in a

pattern yields certain predictions that can be tested further.

For example, how does a bee trained to ‘two’ avoid accepting

a ‘four’—even though the ‘four’ contains the required two

elements? Must the bee then ascertain that a given pattern
contains ‘more than two’ to reject it with certainty (for

example, it appears in electronic supplementary material,

video S1 that the bee rejects a ‘four’ after having inspected

three items in the pattern)? What kind of flight manoeuvers

and working memory strategies ensure that bees avoid counting

an element twice?

7. Conclusion
Although traditionally regarded as a higher cognitive function,

the ability to enumerate small sets of items is widespread in

‘lower vertebrates’ as well as mammals. Not even the basic

architectural plan of the vertebrate brain seems to be required.

Bees and most probably some other insects show a basic

numerical competence, which may be limited to around four

items. This is similar to the limit of the small number system

of human adults and infants [31], non-human primates [78]

and many other vertebrate species ([80]; see also Agrillo &

Bisazza [4]). No evidence has yet been found for the existence

of a separate number system for approximate processing of

large numerosities in insects.

Basic numerical cognition, then, seems not to require (e.g.)

a dedicated cortical module, but may instead be an inherent

aspect of the process of organizing sensory input into objects

of perception and maintaining object representations in work-

ing memory as required [31,40]. In support of this, theoretical

and simulation studies show that relatively simple network

models can mimic many experimental results on numerosity

discrimination [6,53]. Basic numerical cognition does not

seem to require a large brain [49]. Indeed, while small com-

pared to vertebrate brains, insect brains appear to offer more

than enough complexity. How the complex processing in the

insect optic lobe is integrated with structures of the central

brain to permit number-based visual discrimination remains

largely unknown, but the diverse array of neuronal types

and central projections (e.g. [61]) would seem to conceal

more than enough complexity to implement simple classifier

[60,81] and enumeration algorithms.

Although the small number system is often associated

with parallel processing and perceiving the number of

items in a small set ‘at a glance’ (subitizing), the brief stimu-

lus exposures necessary to confirm this have only been used

in primate experiments. Although parallel processing in

working memory may be required, this does not necessarily

mean that parallel processing at the visual input stage is also

required. It may be informative to control presentation dur-

ations in experiments with lower vertebrates where stimuli

are presented in parallel in numerosity discrimination tasks.

Certainly, bees are unable to process visual scenes (other

than the most basic visual attributes) when stimulus presen-

tation duration is restricted [47]. Numerosity and other visual

discriminations in bees instead seem to depend on serial

processing [64], involving active scanning supported by a

fast visual system [69]. The upper limit of small number

perception more probably reflects the capacity limit of work-

ing memory, which may be similar across species in terms of

number of representation that can be maintained, although

large-brained species such as humans can represent more fea-

tures of a given object [82]. Detailed analysis of the

visuomotor behaviour underlying bees’ choices in discrimi-

nation experiments is likely to elucidate the strategies (and

also limitations) by which they make the perceptual choices

they do.
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