
nanomaterials

Review

Surface-Enhanced Raman Sensing of Semi-Volatile Organic
Compounds by Plasmonic Nanostructures

Nguyễn Hoàng Ly 1 , Sang Jun Son 1,*, Soonmin Jang 2 , Cheolmin Lee 3 , Jung Il Lee 4,* and Sang-Woo Joo 5,*

����������
�������

Citation: Ly, N.H.; Son, S.J.; Jang, S.;

Lee, C.; Lee, J.I.; Joo, S.-W.

Surface-Enhanced Raman Sensing of

Semi-Volatile Organic Compounds by

Plasmonic Nanostructures.

Nanomaterials 2021, 11, 2619. https://

doi.org/10.3390/nano11102619

Academic Editor: Sammy

W. Verbruggen

Received: 7 September 2021

Accepted: 29 September 2021

Published: 5 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Gachon University, Seongnam 13120, Korea; nguyenhoangly2007@gmail.com
2 Department of Chemistry, Sejong University, Seoul 05006, Korea; sjang@sejong.edu
3 Department of Chemical & Biological Engineering, Seokyeong University, Seoul 02713, Korea;

cheolmin@skuniv.ac.kr
4 Korea Testing & Research Institute, Gwacheon 13810, Korea
5 Department of Chemistry, Soongsil University, Seoul 06978, Korea
* Correspondence: sjson@gachon.ac.kr (S.J.S.); emjilee@ktr.or.kr (J.I.L.); sjoo@ssu.ac.kr (S.-W.J.)

Abstract: Facile detection of indoor semi-volatile organic compounds (SVOCs) is a critical issue to
raise an increasing concern to current researchers, since their emissions have impacted the health
of humans, who spend much of their time indoors after the recent incessant COVID-19 pandemic
outbreaks. Plasmonic nanomaterial platforms can utilize an electromagnetic field to induce significant
Raman signal enhancements of vibrational spectra of pollutant molecules from localized hotspots.
Surface-enhanced Raman scattering (SERS) sensing based on functional plasmonic nanostructures
has currently emerged as a powerful analytical technique, which is widely adopted for the ultra-
sensitive detection of SVOC molecules, including phthalates and polycyclic aromatic hydrocarbons
(PAHs) from household chemicals in indoor environments. This concise topical review gives updated
recent developments and trends in optical sensors of surface plasmon resonance (SPR) and SERS for
effective sensing of SVOCs by functionalization of noble metal nanostructures. Specific features of
plasmonic nanomaterials utilized in sensors are evaluated comparatively, including their various
sizes and shapes. Novel aptasensors-assisted SERS technology and its potential application are also
introduced for selective sensing. The current challenges and perspectives on SERS-based optical
sensors using plasmonic nanomaterial platforms and aptasensors are discussed for applying indoor
SVOC detection.

Keywords: semi-volatile organic compounds; surface-enhanced Raman scattering; plasmonic reso-
nance; Raman spectroscopy; noble metal nanostructures

1. Introduction

Functional plasmonic nanostructures have gained increasing interest in energy and
environmental fields [1]. SERS has recently been introduced for effective sensing combined
with noble metal systems by introducing hotspots to enhance electromagnetic enhance-
ments [2,3]. Biosensing [4,5] can also be achieved using novel nanostructures [6]. Semi-
volatile organic compounds (SVOCs) have a range of boiling points, from 260 to 400 ◦C
as a sub-group of volatile organic compounds (VOCs) [7]. SVOCs, including plasticiz-
ers, flame retardants, per-fluorinated compounds, antioxidants, per- and polyfluoroalkyl
substances, etc., have been widely used as additives in several commercial products such
as textiles, polymers, cleaning products, electronic devices, plastic items, etc., which are
usually used in houses [8]. SVOCs can slowly and directly be emitted from source materials
to the indoor environment under various phases, such as dust fractions [9], and gas [10,11].
Subsequently, these released SVOCs can critically impact health due to their uptake via var-
ious pathways such as human skin, clothing, and hair [12–14]. Polybrominated diphenyl
ethers [15] have been found to enhance emissions from indoor sources by contacting dust
directly, causing potential health risks, whereas the transport of phthalates in indoor air
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and dust has been reported to correlate to allergic diseases [16–18]. Furthermore, the au-
thors have conducted the studies on correlated issues such as either direct or air-mediated
SVOC transfer from indoor sources to dust [9], SVOCs in dust and air [10,19], the time
constant for SVOC’s dermal absorption from indoor gas [11], distribution of SVOCs in a
residential environment [20], SVOC’s dermal uptake directly from the air [21] or between
clothing and skin [22], controlling emissions of organophosphate flame retardants in indoor
environments [23], and health ranking of indoor SVOCs [24].

Recently, many authors managed to assemble uniform two-dimensional and three-
dimensional functional plasmon nanostructures for gas sensing applications [25–27]. The
plasmonic resonance-based optical sensor is a technique that enhances the signal of analyte
molecules absorbed on plasmonic material surface, relying on enhancing electromagnetic
and chemical phenomena [28]. Surface plasmon-based sensors have been widely adopted
in various fields, such as biology [29], biosensing [30], and environment [31]. Various kinds
of optical sensors based on plasmonic resonance of nanostructures, including SPR, SERS,
and metal-enhanced fluorescence, have been reported over the past decade [32]. SERS
has been developed not only as a fingerprint spectral technology [33] but also as a strong
analytical method that exhibits numerous detections of hazardous compounds, such as
2-naphthalene thiol [34], H2S [35], ricin B chain in human blood [36], VOCs [37], poly-
chlorinated biphenyl (PCB) [38], biomolecules [39], hexachlorocyclohexane pesticides [40],
organic pollutants [41], and microplastics [42]. Since SERS-based sensor methods have been
exhibited as an efficient analytical tool for identifying target molecules, nanostructured
material substrate usages have attracted the considerable attention from many researchers.

Nanostructured materials of noble metals have been crucial in successfully develop-
ing the SERS-based sensing method due to their plasmonic property [25,32]. The shapes
and sizes of nanostructured materials are also critical in SPR phenomena [43]. Some
researchers have investigated the synthesis of different sized nanospheres of noble ma-
terials and various shapes of non-spherical particles. For example, various nanostruc-
tured materials have been discovered, including AuNPs [44], Ag nanocubes [45], Au
nanostars [46], and Ag nanoplates [47]. Both metal and non-metallic nanostructures and
nanohybrids such as graphene oxide (GO)-anisotropic noble metal hybrid [38] and Ag
nanoplate-deposited SiO2/Si wafer [48] have been developed to enhance the signal of
SERS. Nanostructured pyramid of Ag–Fe-embedded GO template [49], core–shell of Au
nanorods@Ag nanocubes [50], nanotextured silicon decorated with Ag–Au alloy nanopar-
ticles [51], porous zeolite imidazole framework-wrapped urchin-like Au–Ag nanocrys-
tals [40], Au-coated Si nanocone array [52], etc., were introduced as functional plasmonic
nanostructures.

There have been reports on the hazardous effects of VOCs [53,54] and SVOCs [12,55,56]
found in consumer products, indoor environments, and dust. Indoor surface physics [57]
and chemistry [58] have been considered to investigate the chemical reactions on indoor
surfaces as a significant key in monitoring air quality in houses, where humans spend much
of their time. Although several conventional technologies of gas (or liquid) chromatography
and mass spectrometry for detecting SVOCs and organic pollutants have been reported
with a very low detection limit [59,60], developing a noble method of plasmonic resonance-
based optical sensors of indoor SVOCs remains important. To the best of our knowledge,
no reports on SERS-based sensors for indoor SVOCs exist. Hybrid nanostructures utilizing
plasmonic phenomena are also included for functional nanomaterials. This topical review
will discuss the recent development and trends in the design of unique nanostructured
materials, aiming at efficient detection of indoor SVOCs (Figure 1). The main content used
for optical detection of indoor SVOCs using plasmonic resonance-based optical sensors
can be distributed into three different parts: (1) SERS detection based on nanostructures of
pure noble metal materials, (2) hybrid platforms-assisted SERS sensors, and (3) aptasensor-
introduced optical detection.
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Figure 1. Applications of plasmonic resonance-based SERS sensors for on-site detection of indoor SVOCs. Adapted
from [9,18,22,32].

2. Pure Noble Metal Nanostructured Material-Based SERS Sensor

The most significant factor of the successful SERS sensor is the type of plasmonic
nanostructured materials that have been distributed in SERS-active platforms. Among
many materials, noble metals, such as Au and Ag, have emerged as potential materials
that have contributed to the fabrication of several novel SERS-active platforms [25,32].
Furthermore, the sensitivity of the SERS method depends on the size and geometrical
nanostructures of noble metals due to the plasmonic resonance phenomena occurring on
their surface. Therefore, a series of designed strategies for pure noble metal nanostructured
materials have been discovered that aim at maximizing enhancement factors, not only
enhancement of electromagnetic fields but also amplification of SERS signals. For example,
many studies have been recently investigated, including silver nanoparticle (AgNP)-based
SERS trace detection of 16 typical polycyclic aromatic hydrocarbons [61], AuNP-based [62]
and AgNP-assisted [63,64] SERS rapid determination of bisphenol A (BPA), AuNP arrays-
introduced SERS sensitive detection of butyl benzyl phthalate (BBP) [65,66], and silver
nanorod-based SERS detection of benzo(a)pyrene (BaP) [67].

As shown in Figure 2, a series of studies on silver nanorod-based, AgNP-based, and
AuNP-based SERS methods have been published on trace detection of various indoor
SVOCs as well as BaP, BBP, and polycyclic aromatic hydrocarbons. Figure 2A introduces
an efficient SERS detection of BBP using ~18 nm spherical AuNPs; first, BBPs have been
isolated by extracting with organic solvent as cyclohexane (CYH). Subsequently, an amount
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of ethanol has been added to this mixture, inducing the self-assembly of AuNPs at the
interface between CYH and water. Within 10–20 s, aggregated AuNP arrays have been
formed with many hotspots. After being transferred onto the surface of clean silicon
wafers, self-assembled AuNP arrays containing BBPs have been checked by means of SERS.
Figure 2B shows a schematic diagram of an efficient colorimetric and SERS sensing of BBP
d using β-cyclodextrin (β-CD)-stabilized AuNPs. β-CD molecules have played significant
roles of Raman probes to capture BBP. Due to the AuNP-correlated hotspots, BBP could be
quantified either with the naked eye or by means of SERS. Figure 2C demonstrates a silver
nanorod-based SERS method for a trace detection of BaP in real samples as well as river
water and soil. Due to the unique structures of SERS substrates with highly dense hotspots,
the detection limit of BaP has been estimated to be as low as 1 ppm and 10 ppm in river
water and soil, respectively. Figure 2D illustrates a schematic diagram for AgNP-assisted
SERS detection of 16 typical PAHs in water. Based on plasmonic AgNPs and the liquid
extraction step, the SERS method has been successfully applied to a trace detection of PAHs
in real water environments containing contaminants. Herein, PAHs have been isolated from
water by extraction with a nonpolar organic solvent. Subsequently, three steps including
separation, transfer, and volatilization have been performed. Finally, acetonitrile has been
used to elute the extracted PAHs to obtain solution for measured SERS spectra.

An efficient SERS substrate has been developed by the vertical array of Ag nanoplates
on the substrate’s surface [47]. Since Ag nanoplates have been well-aligned on surface
platforms, inducing not only achieving gaps between near Ag nanoplates but also obtaining
many sufficient hotspots on the whole substrate. This Ag nanoplate-assembled substrate
exhibits strong effective plasmon resonance phenomena, which have been applied for
SERS sensitive detection of 3,3′,4,4′-tetrachlorobiphenyl (PCB-77). Furthermore, in mixed
solutions, this SERS substrate has successfully distinguished the characterization of Raman
peaks of different PCBs. Thus, Ag nanoplate-assembled substrate based on the vertically
well-aligned Ag nanoplate has been a potential SERS substrate for robust, direct, and trace
detection of PCBs (Figure 3).

Moreover, either benzothiazole (BZT) or its derivatives have been used as a popular
ingredient in household products due to their pharmaceutical activities and biological
features. Therefore, evaluating harmful health effects of their emissions inducing expo-
sure from sources to indoor air is important. Authors have studied the evaporation of
BZT from glass surfaces by combining AuNP-based SERS sensor and gas-phase infrared
spectrum [44]. BZT exposure early warning is among the major concerns of environmental
researchers. This investigation has been reported on optical sensors applications for moni-
toring BZT directly from glass surfaces. Following the fabrication of a BZT thin film on the
surface, the SERS sensors method has been performed by loading AuNPs on glass surfaces.
Time-dependent SERS spectral intensities of BZT have decreased, indicating substantial
evaporation of BZT from the glass surface to indoor air. Simultaneously, BZT concentration
in indoor air has been estimated via infrared spectra.
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Figure 2. (A) Schematic illustration of the self-assembly of AuNPs arrays-introduced SERS detection of BBP after a process of
molecule extraction from liquor by CYH. Adapted from [65]. (B) Diagram of BBP detection using β-cyclodextrin-stabilized
AuNPs by means of either SERS spectra or colorimetric sensing. Adapted from [66]. (C) Demonstration of the silver nanorod
(AgNR) substrate-based SERS detection for BaP. Inserted SEM images show (C–a) top-view and (C–b) cross-sectional view
of AgNR substrate. Adapted from [67]. (D) Diagram of trace detection of polycyclic aromatic hydrocarbons (PAHs) using
AgNP-assisted SERS technology. Adapted from [61].
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Figure 3. (A–a) Schematic diagram of sensitive SERS detection of 3,3′,4,4′-tetrachlorobiphenyl (PCB-77) based on the
fabrication of vertically-aligned silver nanoplates assembled on indium tin oxide (ITO) substrates. SEM images of the Ag
nanoplate-based SERS substrate at different scales including (A–b) 2 µm and (A–c) 500 nm. (A–d) SEM image shows a
magnified view of the black color rectangular region marked in (A–c). (A–e) Side-view SEM image of the Ag nanoplate-
based SERS platform. (B–a) Raman spectra of (1) pure PCB-77 powder, SERS spectra of PCB-77 with different concentrations
of (2) 10−4 M, (3) 3 × 10−6 M, and (4) 3 × 10−7 M, respectively, using Ag nanoplate-assembled substrates. All Raman
spectra were acquired with an acquisition time of 60 s. (B–b) Using Ag nanoplate-based SERS platform, a linear curve
has been obtained for the logarithmic values for the intensities at 1599 cm−1 correlated with the concentrations of PCB-77.
Adapted from [47].

3. Hybrid Nanostructured SERS Sensors

Hybrid nanostructured materials have also been widely introduced to fabricate var-
ious SERS substrates that are applied in many fields such as biological sensing and en-
vironmental monitoring. Hybrid nanomaterials have more advantages of providing the
multiple physicochemical properties than pure noble metals. Several studies have been
reported for fabricating various novel hybrid nanomaterials exhibiting not only uniform
geometries but also unique plasmonic properties, which aimed at developing reproducible
SERS platforms. Extensive efforts have been put on the novel and robust SERS-active
platforms such as SiO2@Ag-based composite nanospheres [68], plasmonic core–shell Au
nanospheres@Ag nanocubes for phthalate plasticizer detection [69], Au@AgNP-assisted
highly sensitive detection of BPA [70], up-conversion nanoparticle-decorated AuNPs for
the determination of dibutyl phthalate [71], graphene monolayer-coated AgNP-based SERS
sensitive detection of BPA [72], and bimetallic plasmonic Au@Ag nanocuboid-introduced
SERS detection of phthalate plasticizers [73].

As shown in Figure 4, several studies on hybrid nanomaterial-based SERS methods
have been reported on a trace detection of various indoor SVOCs such as PAEs and BPA.
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Based on the self-oxidative-polymerization of dopamine, the bio-inspired nanostructures of
molecularly imprinted polymers (MIP) have been successfully designed as a template for
in situ fabrication of AuNPs [74]. The AuNP-coated MIP template has a three-dimensional
(3D) nanoplatform, which has been used for selective and sensitive detection of phthalate
plasticizers through SERS spectroscopy. These SERS plasmonic nanostructures have been
well controlled to produce many “hotspots” on the surface of nanocomposites. Figure 4B
illustrates a SERS detection of PAEs in liquid samples based on a plasmonic core–shell
nanocuboid of bimetallic Au@Ag. Herein, Au@Ag nanocuboids have been successfully
fabricated by a Au nanorod core and a Ag cuboid shell leading to the induction of more
effective plasmonic resonance than pristine Au nanorods. Due to a unique structure of
Au@Ag nanocomposites that induce strong signals, this SERS sensor indicated that detec-
tion limits of BBP and DEHP were estimated to be as low as 10−9 M. As shown in Figure 4C,
a sensitive detection of BPA has been investigated by a solid-phase microextraction (SPME)
with a combination of the SERS method. AgNPs were in situ synthesized on the surface
of Si fiber leading to form AgNP-coated Si fiber. Subsequently, this structure has been
modified with a monolayer of graphene resulting in the generation of a novel nanocom-
posite including Si fiber, AgNPs, and graphene. This unique structure exhibits not only as
a SERS platform but also as an SPME fiber to detect BPA. Due to the effective cooperation
of SPME and SERS, this technique shows an excellent capability of BPA detection with
a detection limit as low as 1 µg/L. Figure 4D demonstrates a phthalic acid ester (PAE)
detection by means of SERS and up-conversion fluorescence. Using AuNPs to decorate
up-conversion nanoparticles (UCNPs), a new bimodal platform has been successfully de-
veloped in this report. In this nanocomposite, UCNPs have been employed as a fluorescent
signal molecule, whereas AuNPs have been used as SERS templates with an aptamer
served as a targeted detection of PAEs. This nanocomposites-assisted detection of PAEs
has demonstrated the detection limits of 0.0087 and 0.0108 ng/mL for fluorescence sensors
and SERS methods, respectively.

An efficient SERS-active substrate has been prepared by the well-designed synthesis of
a core–shell zeolite imidazole framework (ZIF-8)-wrapped Au–Ag alloyed nanocrystals in
an urchin shape [40]. This novel nanostructure exhibits high-density tips with a thickness
of about 100 nm, which has been well-fabricated by adding the pre-formed plasmonic
nanoparticles as Au–Ag alloyed nanocrystals into the ZIF-8 precursor. The thickness
of the ZIF-8 shell layer has been well-controlled with a size of 20 nm by the hexadecyl
trimethyl ammonium bromide (CTAB) concentration. This core–shell configuration of
ZIF-8-wrapped urchin-inspired Au–Ag alloyed nanocrystals can be applied as a highly
efficient SERS platform for trace detection of hexachlorocyclohexane (HCH) molecules.
This work also shows the potential application in detecting small molecules of VOC groups
using SERS platforms (Figure 5). Furthermore, an ultra-sensitive and reproducible SERS
platform has been synthesized by the assembly of GO layers and anisotropic nanostruc-
tured noble metal hybrid materials, such as Au nanostars (AuNSts) and flower-inspired
AgNPs [38]. These well-controlled AgNFs-GO-AuNSts nanostructures have possessed
ultra-sensitive detection of PCBs at a level as low as 3.4×10−6 M due to the coupling
effect of multi-dimensional plasmon. This substrate can be used not only to identify Ra-
man peaks of different PCBs in their mixture but also to detect various pollutants in the
environment (Figure 6).
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Figure 4. (A) Schematic illustration of SERS substrate for selective detection of PAEs using AuNP-
coated PDA-MIP template. Adapted from [74]. (B) Diagram of SERS sensitive detection of PAEs
using bimetallic plasmonic Au@Ag nanocuboids. Adapted from [73]. (C) Demonstration of SERS-
active solid phase microextraction fiber detection of BPA. Adapted from [72]. (D) Diagram of
SERS and fluorescence detection of PAEs using aptamer-assisted AuNP hybrid nanostructures.
Adapted from [71].
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from [40]. 

Figure 5. Schematic illustration of SERS detection of hexachlorocyclohexane pesticides based on
urchin-like Au-AgNPs. (A–a) Scanning electron microscope (SEM) image shows the structures of
urchin-like Au-AgNPs. (A–b) SEM image and (A–c) transmission electron microscope (TEM) image
of the nanomaterial products obtained after adding the ZIF-8-wrapped urchin-like Au-AgNPs into
the precursor solution and heating them at 40 ◦C for 3 h. (A–d) X-ray diffraction patterns including
(I) nanomaterial products and (II) pure ZIF-8 achieved by heating the precursor solution at 40 ◦C
for 3 h, respectively. (B–a) SERS spectra of γ-HCH on the ZIF-8 wrapped urchin-like Au-AgNPs
(black), and bare urchin-like Au-AgNPs (grey) after soaking in γ-HCH solutions with different
concentrations such as (I) 1 × 10−4 M, (II) 1 × 10−6 M, (III) 1 × 10−8 M, and (IV) 5 × 10−9 M,
respectively, for both samples. The shadowed regions indicated that the characteristic peak of γ-HCH
at 345 cm−1. (B–b) Linear curves of logarithmic plots of γ-HCH concentrations correlated to the
Raman peak intensities at ca. 345 cm−1 for the ZIF-8 wrapped (I), and (II) bare urchin-like Au-AgNPs.
Adapted from [40].

Despite extensive efforts to improve plasmonic resonance-based optical sensors, it is
continuously needed to conduct additional research to properly design several novel plas-
monic nanostructured materials for various platforms using optical sensors, which aims at
more sensitive and selective detection of indoor SVOCs. Understanding both plasmonic
behaviors and interfaces, the authors have discovered that these new nanomaterial-based
aptasensors have demonstrated their potential ability for multi-detection techniques over-
lapping areas of SERS, fluorescence, colorimetric, and SPR. Extensive efforts have been
made toward the potential aptasensor-assisted plasmonic resonance-based efficient sensors
for great advantages in sensor applications. The enhanced signals were attributed to plas-
mon resonance inducing high sensitivity. In the following part, this review tries to highlight
several significant contributions from aptasensor-assisted and plasmonic resonance-based
materials according to selected interesting examples.
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Figure 6. (A–a) Schematic demonstration of the fabrication process for a novel hybrid nanomaterial as
well as Au nanostars–GO–flower-inspired Ag nanoparticles (AuNSts-GO-AgNFs) for ultra-sensitive
SERS detection of PCBs. SEM images of (A–b) AgNFs, (A–c) AgNFs-GO, and (A–d) AgNFs-GO-
AuNSts. (B–a) Normal Raman spectrum and SERS spectra of PCB-77 on this substrate with different
concentrations. (B–b) Compared SERS spectroscopy of PCB-77, PCB-3, and PCB-3/PCB-77 mixture.
Adapted from [38].

4. Aptasensor-Introduced Optical Sensors

Recently, aptasensors with short single-stranded oligonucleotides of either ribonucleic
acid (RNA) or deoxyribonucleic acid (DNA) have attracted the attention from many re-
searchers to demonstrate their selectivity and sensitivity features. Because of high affinities,
aptasensor-assisted plasmonic resonance optical sensors have been widely adopted as a
powerful analytical tool in many fields of applications, such as clinical diagnostics [75],
food [76], and environmental pesticide detection [77,78]. The plasmon resonance effects de-
pend not only on the nanostructured materials but also on the configuration of aptasensors.
The aptasensor-active optical sensors based on plasmonic resonance have introduced a
carbon quantum dot-labeled aptamer-based fluorescent method for dibutyl phthalate [79],
an optical fiber-based aptasensor-assisted plasmonic biosensor for BPA [80], asymmetric
plasmonic aptasensor-based BPA [81], BPA detection using an AuNP-based colorimetric ap-
tasensor [82], quantum dot aptasensor for di-2-ethylhexyl phthalate (DEHP) [83], localized
SPR-assisted electrochemical impedance spectroscopy for DEHP [84], and AuNP-sensitized
ZnO nanopencil-based detection of BPA [85].

As shown in Figure 7, several studies on the nanomaterial-assisted aptasensor-based
optical sensors methods have been investigated for selective detection of various indoor
SVOCs of BPA and DEHP. Herein, the authors have developed several new nanosystems
to be applied for various sensor technologies, including colorimetric, fluorescence, and
SPR. The colorimetric technique has been known as a normal analytic tool that has been
widely adopted for use in detecting analyte molecules via comparing color changes. Fluo-
rescence [86] and SPR [87] technologies have emerged as sensitive and selective analysis
that are applied in many fields, such as biomedicine [88], bioimaging [89], and environ-
mental detections [90]. Figure 7A shows an aptasensor-based AuNP-assisted colorimetric
detection of BPA. Herein, the aptasensor has been well-designed to consist of AuNPs and a
specific 24-bp aptamer of BPA. Aptamer-conjugated AuNP complex has been formed via
an electrostatic interaction. This complex will induce an SPR shift in the presence of BPA.
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Pristine AuNPs exhibit a red color. Because of the presence of BPA leading to the aggrega-
tion of AuNPs, the color may change to blue, which can be observed with the naked eye.
Based on BPA concentration-correlated blue color changes of aptamer-conjugated AuNP
complex, the colorimetric detection has been successfully performed with a limit as low as
0.004 nM. Despite the presence of various BPA analogs, this method achieved a selective
detection of BPA. Figure 7B illustrates a magnetic bead-based aptasensor-based quantum
dot (QD) and its fluorescence detection of trace DEHP. Herein, in combination with a re-
duced graphene oxide (rGO)-based screening technique, a novel 60-mer aptamer has been
successfully developed using systemic evolution of ligands by exponential enrichment
(SELEX) technology. This aptamer-based sensor shows not only good selectivity of DEHP
in the presence of other phthalate analogs but also excellent sensitivity as low as 5 pg/mL.
As shown in Figure 7B–a, if DEHP is absent, the complex of a specific aptamer-coated
magnetic bead conjugated with QD565 mainly binds to a DNA probe containing QD655
and its fluorescence is normalized QD565. As shown in Figure 7B–b in the presence of
DEHP, DNA probes were found to be dissociated from a specific 60-mer aptamer leading
to a decrease of normalized QD655/QD565 fluorescence ratios. Figure 7C demonstrates
a facile detection of BPA using a combination between a specific aptasensor with SPR
of AuNP-activated ZnO nanopencils. Due to many hot electrons from excited AuNPs,
Au/ZnO nanocomposites exhibited an increment of photoelectrochemical signals higher
than those from initial ZnO nanopencils. Based on a specific aptasensor, this sensor has
good selectivity with excellent sensitivity of a detection limit as low as 0.5 nmol/L for BPA
in real samples, as well as drinking water and milk.

As shown in Figure 8, a simple detection of trace DEHP has been developed using an
aptamer and a Raman reporter of 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) molecule [91].
Since AgNP surfaces have been functionalized with DTNB, NaCl-induced aggregations
of AgNPs with a silica shell can become an efficient SERS system. These AgNPs–SiO2
structures have been functionalized with (3-aminopropyl) trimethoxy silane (APTMS) to
form a primary amine layer on the surface. Subsequently, the surface of AgNPs–SiO2–
NH2 structures has been immobilized with DEHP–COOH molecules by an amide binding
through N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-
hydroxysulfosuccinimide (NHS) as a crosslinking reaction. DEHP aptamers have been
immobilized on the surface of magnetic particles. There is a competitive binding between
DEHP molecules and SERS silica particles with aptamer-coated magnetic particles. DEHP
concentration has been quantitatively determined by comparing the signals of Raman
reporter on SERS silica particles. Since DEHP has been widely used in plastic products,
aptasensor-assisted SERS sensors can achieve highly selective detection of DEHP, despite
interferents with analogous structures, which may provide numerous applications in food
and environmental analysis.
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Figure 7. (A) Schematic illustration of colorimetric BPA detection based on an aptasensor using
AuNPs. (A–a) AuNP solutions. (A–b) NaCl-induced AuNP aggregations. (A–c) aptamer addition
leading to form AuNP-aptamer. (A–d) AuNP-aptamer is still well-dispersed after adding NaCl.
(A–e) BPA presence inducing the binding between aptamer and BPA. Subsequent addition of NaCl
resulting in the aggregation of AuNP-aptamer complexes. (A–f) Presence of BPA analogs leading to
low binding affinity. Despite the addition of NaCl, AuNP-aptamer complexes are still dispersing
well. Adapted from [82]. Schematic illustration of the quantum dot aptasensors (B–a) in the absence
and (B–b) in the presence of DEHP. Adapted from [83]. (C) Diagram of the fabricated photoelectro-
chemical aptasensors using AuNPs and ZnO nanopencils functionalized with BPA aptamers, which
was aimed for BPA detection by means of the SPR technique. Adapted from [85].
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Figure 8. (A–a) Left-hand side showing the surface of magnetic particles was functionalized by
components such as streptavidin, biotin, and DEHP aptamer, whereas right-hand side shows silica-
capped Ag nanoclusters, and the surface of silica shell was functionalized with DTNB and conjugated
with DEHP. (A–b) SERS detection of DEHP sample based on competitive binding reaction between
silica particles and DEHP molecules with magnetic particles. (A–c) TEM images of silica particle-
capped Ag nanocluster with scale bar at 100 and 40 nm, respectively. (B–a) SERS spectra of Raman
reporter correlated with different concentrations of DEHP in 0.1 M phosphate-buffered saline (pH 7.4),
which exhibited a behavior response of the aptasensor. (B–b) DEHP concentration has responded to
SERS intensity of the peak at 1336 cm−1. Error bars represent standard deviation. Adapted from [91].

As summarized in Table 1, in the past decades, numerous novel optical sensors based
on plasmonic resonance have emerged for indoor SVOC detection with improving as-
pects such as economical and reproducible benefits, as well as selectivity and sensitivity.
The following points have been emphasized and evaluated on the current optical sensor
methods. There are some perspectives that will be addressed in the near future such as:
(1) continuing to improve optical sensor methods based on not only pure noble metallic
substances but also hybrid nanostructured materials, (2) developing more aptasensors that
exhibit highly selective specific sensors, (3) several novel nano-systems should be devel-
oped that can demonstrate the capability of multiple detections of analytically equivalent
molecules under complex conditions, and (4) discovering a potential nanosystem used for
simultaneous detection of both SERS and fluorescence.
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Table 1. Performance of plasmonic resonance-based optical sensors for detection of indoor SVOCs.

Plasmonic Structures Optical Sensors SVOCs Limit of Detection Reference

Ag and Au probes SERS 2-naphthalenethiol 0.1 ppb [34]

Ultrathin tin oxide
layer-wrapped AuNPs SERS phenyl phosphonic acid [35]

GO-anisotropic noble metal
hybrid systems SERS PCBs 3.4 × 10−6 M [38]

Urchin-like Au-Ag crystals SERS HCH pesticides >1.5 ppb [40]

AuNPs SERS BZT [44]

Ag nanoplate-assembled film SERS 3,3′,4,4′-tetrachlorobiphenyl 10−6 M [47]

AgNPs SERS 16 typical polycyclic aromatic
hydrocarbons 100–0.1 µg/L [61]

AuNPs SERS BPA 0.1 ng/mL [62]

AgNPs SERS BPA 5 × 10−8 M [63]

AgNPs SERS bisphenol A, B, and S 10−7 M [64]

AuNPs SERS BBP 1.3 mg/kg [65]

AuNPs SERS BBP 0.01 µM [66]

Ag nanorods SERS BaP 1 ppm [67]

Au nanospheres@Ag nanocubes SERS BBP 10−9 M [69]

Au@AgNPs SERS BPA 2.8 pg/mL [70]

AuNP-decorated up-conversion
nanoparticles SERS dibutyl phthalate 0.0108 ng/mL [71]

Graphene monolayer-coated
AgNPs SERS BPA 1 µg/L [72]

Bimetallic plasmonic Au@Ag
nanocuboids SERS phthalate plasticizers 10−9 M [73]

AuNP-coated MIP template SERS phthalate plasticizers 10−10 M [74]

Au nano-antennae fabricated
optical fibers

Coupled localized
SPR BPA 330 ± 70 aM [80]

Asymmetric plasmonic
aptasensors UV-Vis BPA 0.008 ng/mL [81]

AuNPs-based colorimetric
aptasensors Colorimetric BPA 1 pg/mL [82]

AuNPs-sensitized ZnO SPR BPA 0.5 nmol/L [85]

Silica-coated Ag nanoclusters SERS DEHP 8 pM [91]

Gold layer-coated SiO2
nanostructured pillars SERS benzotriazole 17.6 µg/L [92]

AuNPs SERS
pyrene 0.4 nM

[93]anthracene 4.4 nM

Au@Ag@ hexakisphosphate
/1-dodecanethiol SERS diethylhexyl phthalate 10−8 M [94]

Ag/SiO2 SERS
DEHP

100 ppm [95]BBP
dibutyl phthalate

Au nanostructures SERS
BaP 0.026 mg/L

[96]fluoranthene 0.064 mg/L
naphthalene 3.94 mg/L
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Table 1. Cont.

Plasmonic Structures Optical Sensors SVOCs Limit of Detection Reference

Three-dimensional SERS
substrates based on porous
material and pH 13 AuNPs

SERS

phenanthrene 8.3 × 10−10 M

[97]pyrene 2.1 × 10−10 M
BaP 3.8 × 10−10 M

benzo(k)fluoranthene 1.7 × 10−10 M

Thioctic acid-modified Ag
nanoplates on Cu foils fluoranthene 0.1 ng/mL–0.1

mg/mL [98]

Alkanethiol-Ag(Au) Raman polybrominated diphenyl ethers 1.2 × 102 µg/L [99]

Ag colloids SERS
naphthalene 10−12 M [100]

phenanthrene 10−10 M

Bowl-shaped Ag SERS
anthracene 8 nM

[101]pyrene 40 nM

Au-colloid substrates SERS
naphthalene 1.38 µg/L

[102]phenanthrene 0.23 µg/L
pyrene 0.45 µg/L

5. Conclusions

Plasmonic resonance-based optical sensors have emerged as a powerful analytical tool
that assists in optical detection of SVOC emission into environments. The effects of indoor
SVOC exposure on human health through many pathways of dermal, inhalation, and
non-dietary and dietary ingestion have been investigated in previous reports [12,13,55],
and it still requires further studies using functional plasmonic nanomaterials and related
detection methodologies. SVOCs as chemical additives have been widely used in many
household products, inducing SVOC emission from resources to indoor air.

Effective sensing of indoor SVOCs using optical sensor methods require not only facile
detection but also selective and rapid identification to warn of the early risks of the impact
on human health. Both the novel nanoplatforms and aptasensors have been introduced
to efficient optical sensors, including SERS, localized surface plasmon, and colorimetric
sensor methodologies in a real indoor environment. Potential applications of plasmonic
nanoplatforms and novel aptasensors have been discussed for optical detection of indoor
SVOCs from surface-functionalized materials. Extensive studies of indoor SVOC detection
are needed to maintain a clean, safe, and healthy environment. Functional plasmonic
materials should be critical in optical detection of SVOCs in the future.
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List of Abbreviations

APTMS (3-aminopropyl) trimethoxy silane
BaP benzo(a)pyrene
BZT benzothiazole
BPA bisphenol A
BBP butyl benzyl phthalate
β-CD β-cyclodextrin
CYH cyclohexane
DEHP di-2-ethylhexyl phthalate
DNA deoxyribonucleic acid
DTNB 5,5′-dithio-bis(2-nitrobenzoic acid)
EDC N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride
GO graphene oxide
HCH hexachlorocyclohexane
MIP molecularly imprinted polymers
NHS N-hydroxysulfosuccinimide
NP nanoparticle
NSt nanostar
PAE phthalic acid ester
PAH polycyclic aromatic hydrocarbon
PCB polychlorinated biphenyl
QD quantum dot
rGO reduced graphene oxide
RNA ribonucleic acid
SELEX systemic evolution of ligands by exponential enrichment
SEM scanning electron microscope
SERS surface-enhanced Raman scattering
SPME solid-phase microextraction
SPR surface plasmon resonance
SVOC semi-volatile organic compounds
TEM transmission electron microscope
UCNPs up-conversion nanoparticles
ZIF zeolite imidazole framework
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