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Purpose: To develop and validate a radiomics nomogram based on T2-weighted imaging
(T2WI) and apparent diffusion coefficient (ADC) features for the preoperative prediction of
lymph node (LN) metastasis in rectal cancer patients.

Materials and Methods: One hundred and sixty-two patients with rectal cancer
confirmed by pathology were retrospectively analyzed, who underwent T2WI and DWI
sequences. The data sets were divided into training (n = 97) and validation (n = 65)
cohorts. For each case, a total of 2,752 radiomic features were extracted from T2WI, and
ADC images derived from diffusion-weighted imaging. A two-sample t-test was used for
prefiltering. The least absolute shrinkage selection operator method was used for feature
selection. Three radiomics scores (rad-scores) (rad-score 1 for T2WI, rad-score 2 for
ADC, and rad-score 3 for the combination of both) were calculated using the support
vector machine classifier. Multivariable logistic regression analysis was then used to
construct a radiomics nomogram combining rad-score 3 and independent risk factors.
The performances of three rad-scores and the nomogram were evaluated using the area
under the receiver operating characteristic curve (AUC). Decision curve analysis (DCA)
was used to assess the clinical usefulness of the radiomics nomogram.

Results: The AUCs of the rad-score 1 and rad-score 2 were 0.805, 0.749 and 0.828,
0.770 in the training and validation cohorts, respectively. The rad-score 3 achieved an
AUC of 0.879 in the training cohort and an AUC of 0.822 in the validation cohort. The
radiomics nomogram, incorporating the rad-score 3, age, and LN size, showed good
discrimination with the AUC of 0.937 for the training cohort and 0.884 for the validation
cohort. DCA confirmed that the radiomics nomogram had clinical utility.

Conclusions: The radiomics nomogram, incorporating rad-score based on features from
the T2WI and ADC images, and clinical factors, has favorable predictive performance for
preoperative prediction of LN metastasis in patients with rectal cancer.
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INTRODUCTION

More than 700,000 people worldwide were newly diagnosed with
rectal cancer in 2018 (1). Among the metastatic pathways of
rectal cancer, lymph node (LN) metastasis is the most important
and closely correlated with the poor prognosis due to a high rate
of local recurrence (2-4). According to the Union for
International Cancer Control (UICC) TNM staging
classification (8th edition) and the European Society for
Medical Oncology (ESMO) Clinical Practice Guidelines, LN
status in rectal cancer is an important clinical marker in
deciding TNM staging and choosing treatment options within
TNM risk category of primary rectal cancer without distant
metastases (5, 6). Thus, preoperative assessment of LN metastasis
can provide important information to determine the need for
adjuvant therapy and the adequacy of surgical resection (5, 7, 8).
High-resolution magnetic resonance imaging (MRI) has been
widely used for clinical staging and guiding the treatment of
rectal cancer patients (9). However, MRI has limited ability to
predict LN status with morphological criteria (10, 11). This
limitation is aggravated by the lack of consensus on
appropriate criteria to assess LN positivity (12). Therefore,
improvements in techniques for preoperatively identifying LN
metastasis status are key imperatives.

Radiomics based on advanced pattern recognition tools has
been considered useful to extract a large number of quantitative
features from medical images (13-16). It can provide more
metabolic and biological information than conventional
imaging methods (17). Previous studies have shown that
radiomic features derived from MRI or computed tomography
(CT) data have the potential to predict LN metastasis in such
malignancies as breast cancer, cervical cancer, and bladder
cancer (18-20). For the rectal cancer, some previous studies
demonstrated that the histogram features from T2-weighted
imaging (T2WI) and the texture features from apparent
diffusion coefficient (ADC) maps can help predict lymph node
metastasis (21, 22). However, those studies were conducted
with comparable or smaller patient sample sizes, focusing
mostly on a single-slice image with lower-order histogram or
texture features. A recent study in 2021 reported that radiomics
analysis based on the single-slice high-resolution T2WT images
presented potential in predicting lymph node metastasis of
rectal cancer (23). In addition, a study by Liu et al. showed
that a radiomics model derived from volume features of T2WI
and ADC images achieved excellent performance for the
prediction of pathologic complete response in locally advanced
rectal cancer (LARC) (24). To the best of our knowledge, there
are few studies of radiomics analyses based on multiparametric
sequences to identify preoperative LN status in patients with
rectal cancer, especially using the features derived from volume
lesion of T2WTI and ADC images as well as clinical information
(25, 26).

Thus, in the current study, we first sought to construct a
radiomics score (rad-score) based on features from volume
lesion of T2WI and ADC images to distinguish between LN-
positive and -negative rectal cancer patients and analyze the

discriminative abilities of each imaging model. Then we sought
to develop and validate a radiomics nomogram that would
incorporate a rad-score based on the combination of T2WI
and ADC features, and clinical risk factors to facilitate
noninvasive estimation of LN status.

MATERIALS AND METHODS

Patients

The study was approved by the Ethics Review Board of Shengjing
Hospital of China Medical University (2020PS011K), and
written informed consent was obtained from each patient. In
the present study, 236 patients with pathological confirmation of
LN status were preliminarily enrolled between September 2018
and August 2020. Seventy-four patients were excluded for the
following reasons: (1) patients underwent any treatment before
MRI scanning, such as neoadjuvant chemoradiotherapy,
endoscopic biopsy, surgery, and so on; (2) image quality was
poor due to apparent motion artifacts on the DWI and T2WI
sequences. Finally, 162 eligible patients were selected for
subsequent analyses. The patients were randomly divided into
the training (n = 97) and validation (n = 65) cohorts.

Histopathologic Assessment

The histopathological evaluation of regional LN malignancy was
regarded as the gold-standard for LN metastasis. Pathological
reports of surgically resected specimens were retrospectively
collected from our PACS. The LN was defined as positive
when the number of regional LN metastasis was greater than
or equal to one, while the absence of regional LN metastasis was
recognized as negative.

MRI Data Acquisition

All MRI examinations were performed in the supine position on
a 3.0-Tesla (T) scanner (Ingenia 3.0, Philips Medical System,
Best, The Netherlands) with an eight-channel phased-array
surface coil. There was no bowel preparation or intravenous
antispasmodic agents administered. High-resolution rectal MRI
protocols included transverse DWI and T2WI, and sagittal fat-
suppression T2WI. The acquisition parameters for transverse
T2WTI included: repetition time (TR)/echo time (TE), 2200/65
ms; flip angle, 90° matrix size, 288 x 288; field of view (FOV),
250 x 250 mm?; slices, 20; slice thickness, 5 mm; spacing between
slices, 0.5 mm; and NSA, 2. The parameters for DWT included:
TR/TE, 6000/76 ms; flip angle, 90°; matrix size, 288 x 288; FOV,
450 x 450 mm?; slices, 48; slice thickness, 5 mm; spacing between
slices, 1 mm; and b values, 0 and 1,000 s/mm>.

DWI and T2WI images were exported from the Picture
Archiving and Communication System at our institution. ADC
maps were generated using MATLAB 2018a (Mathworks,
Natick, MA, United States) according to loaded DWI images
using the following formula: ADC = (InSIy-InSI)/(b-by),
where SI, and SI represent signal intensity at b values of 0 and
1,000 s/mm?, respectively.

Frontiers in Oncology | www.frontiersin.org

May 2021 | Volume 11 | Article 671354


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Li and Yin

Radiomics for Lymph Node Metastasis

Tumor Segmentation and Feature
Extraction

Three-dimensional volume of interest (VOI), including the
whole tumor and excluding obvious necrosis, hemorrhage, gas,
and lumen content areas, was independently segmented on
T2WI and DWI data by a radiologist (Reader 1 with 10 years
of experience in rectal cancer imaging), who was blinded to the
clinical and pathological outcomes. All VOIs were delineated
with an open-source software, ITK-SNAP version 3.8.0 from
UPenn (http://www.itksnap.org) (27). For T2WI data, the
contour of the tumor was manually drawn on each transverse
slice. Then, the corresponding VOI was automatically generated
by the ITK-SNAP software. For ADC maps, the contour of the
tumor was manually delineated along the border of the high
signal region on each transverse DWI slice (b-value of 1,000
s/mm?) first with reference to T2WI, and then automatically
turned into the VOI which was copied to the corresponding
ADC maps finally (24). An overview of the radiomics analysis
workflow is shown in Figure 1.

PyRadiomics, an open-source python package for enabling
the standardization of image processes and extracting a large
panel of radiomic features from medical images, was used to
extract radiomic features from T2WI and ADC data within
manually segmented VOIs (28). To avoid data heterogeneity
bias of the images, all MRI data were subjected to imaging
normalization (the intensity of the image was scaled to 0-100)
and resampled to the same resolution (3 mm x 3 mm X 3 mm)
before feature extraction (29). In addition, the segmented images
were also resampled (3 mm x 3 mm X 3 mm) to maintain VOI
accuracy. For each sequence, first-order statistics, texture, and
seven built-in filter features (square, square root, logarithm,
exponential, gradient, Laplacian of Gaussian [LOG], wavelet)
were calculated, which resulted in a total of 1,376 radiomic
features, as shown in Supplementary Table S1.

We randomly chose 30 cases of MRI images (T2WI and
ADC); VOI segmentation was performed by two radiologists

(Reader 1, and Reader 2 with 8 years of experience in rectal
cancer imaging). Feature extraction was performed on the two
sets of VOIs generated by the two radiologists to obtain two
groups of the radiomic features. Intraclass correlation coefficients
(ICCs) were determined using the two sets of radiomic features
to evaluate the reproducibility and stability of each feature. We
interpreted a coefficient of 0.81 to 1.00 as an almost perfect
agreement, 0.61 to 0.80 as a substantial agreement, 0.41 to 0.60 as
a moderate agreement, 0.21 to 0.40 as a fair agreement, and 0 to
0.20 as a poor or no agreement (30). Features with ICC value >
0.8 were collected for subsequent analysis, which were
individually subtracted by the mean value of each feature and
divided by the respective standard deviation values (Z-score
normalization), thus, removing the limitations imposed by the
units of each feature (31).

Feature Selection and Rad-Score
Calculation

To reduce the feature dimension and remove irrelevant features,
two steps were applied for feature selection. First, some features
based on univariate statistical tests (two-sample t-test) between
LN-positive and -negative groups in the training cohort were
selected (24). Second, the least absolute shrinkage and selection
operator (LASSO) method (31, 32), which is suitable for the
regression of high-dimensional data, was performed within each
set of ADC and T2WI data, respectively. The support vector
machine (SVM) classifier was used to identify LN metastasis
where the kernel parameter was set to the linear kernel, and other
parameters were set to default (24). Rad-score 1 and rad-score 2
were calculated for each patient using the SVM model with linear
kernel training based on the selected T2WI and ADC features,
respectively. For the combination of two sequences, the selected
T2WI and ADC features were combined and once more fed into
the LASSO method. Accordingly, rad-score 3 was calculated
using the SVM model with linear kernel training based on
selected fusion features. Feature selection and rad-score
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FIGURE 1 | The framework for the radiomics workflow.
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calculation were conducted with R software (version 3.6.2,
https://www.R-project.org).

Radiomics Nomogram Development
Univariate logistic regression analysis was first conducted with
the following clinical information: age, sex, LN size (maximum
LN short diameter), tumor size, tumor location, T stage, and rad-
score 3 to identify potential predictors (21). Then multivariate
logistic regression analysis was used to select the independent
predictors of LN metastasis (21). Based on the multivariable
logistic analysis, the clinical model and radiomics nomogram for
LN metastasis prediction were constructed with the selected
predictors. Calibration curves were used to evaluate the
calibration of the radiomics nomogram. The Hosmer-
Lemeshow test was conducted to assess the goodness-of-fit of
the nomogram. The discrimination performances of the clinical
model, three rad-scores, and the radiomics nomogram for
predicting LN metastasis were evaluated according to the area
under the receiver operator characteristic (ROC) curve (AUC) in
both the training and validation cohorts. Decision curve analysis
(DCA) was performed to determine the clinical usefulness of the
nomogram by quantifying the net benefits at different threshold
probabilities in the validation cohort (33). ROC curves were
drawn using the professional medical statistics software,
MedCalc (version 14.10.20, https://www.medcalc.org/).
Calibration and DCA curves were generated using R software.

Statistical Analysis

Univariate analysis was used to compare the differences in clinical
and pathological characteristics between LN-positive and -negative
groups using the chi-square test for categorical variables, and two-
sample ¢-tests for continuous variables, as appropriate. All statistical
tests were two-tailed and were conducted with a statistical
significance level of 0.05. Statistical analyses were performed and
figure plots were generated with R software and SPSS software
(SPSS Inc., Chicago, IL). The DeLong test was used to statistically
compare the AUCs between the models.

TABLE 1 | Clinical and pathological features of patients.

RESULTS

Clinical and Pathological Characteristics
Patient characteristics were summarized in Table 1. Age, LN size
(maximum LN short diameter), and T stage were significantly
different between the LN-positive and -negative groups. There
were no significant differences in other clinical characteristics
(sex, tumor size, and tumor location) between the LN-positive
and -negative groups. No difference in the LN positive rate was
observed between the two cohorts (44.3% (43/97) vs. 46.2%
(30/65), respectively; P = 0.819).

Of the 2,752 radiomic features extracted from T2WI and
ADC images, 2,076 were demonstrated to have high stability,
with ICCs from 0.8003 to 0.9973.

Feature Extraction, Selection, and Rad-
Score Calculation

To reduce the number of weak features, we first performed
univariate analysis (two-sample t-tests) as a feature filter in the
training cohort. We included more features than those that
showed significant differences between LN-positive and
-negative groups as compensation to avoid eliminating highly
discriminative features in multivariate analyses, rather than
univariate analysis (17). Two-sample t-tests (P < 0.1) allowed
for the selection of 530 features, including 313 T2WTI and 217
ADC features. Next, 313 T2WI and 217 ADC features were
respectively reduced to seven and 11 potential predictors by
applying LASSO logistic regression using 10-fold cross-
validation via the minimum criteria. Finally, the combination
of the seven T2WI and 11 ADC features was reduced to 13
potential predictors by applying LASSO logistic regression using
10-fold cross-validation via the minimum criteria. Three rad-
scores were calculated. The resultant coefficients of features in
each group used in calculating the corresponding rad-score were
shown in Supplementary Table S2. The distributions of the
three rad-scores and LN status in the training and validation
cohorts were shown in Figure 2.

Characteristic Training cohort, n = 97

LN (+), n =43 LN (5, n=54

Age, year 55.6 + 13.3 652+7.4
Sex (%)

Male 25 (58.1%) 39 (72.2%)

Female 18 (41.9%) 15 (27.8%)
LN size (mm) 6.6+28 50+ 2.1
Tumor size (cm) 45+12 4.7 £1.2
Tumor location (cm) 6.1+1.2 6.3+25
T stage (%)

T1-2 7 (16.3%) 20 (37.0%)

T3-4 36 (83.7%) 34 (63.0%)
Rad-score 1 0.60 + 1.24 -0.82 + 1.21
Rad-score 2 0.64 + 1.36 -1.07 £ 1.21
Rad-score 3 0.98 + 1.20 -1.07 £ 1.39

P Validation cohort, n = 65 P
LN (+), n =30 LN (-),n=35
<0.01? 56.8 +11.9 63.8 £ 10.7 0.016
0.146 0.347
20 (66.7%) 27 (77.1%)
10 (33.3%) 8 (22.9%)
<0.017 6.9+25 49+138 <0.017
0.434 46+1.3 49+14 0.385
0.567 6.6 +2.0 7.0+£29 0.454
0.023 <0.01?
4 (13.3%) 16 (45.7%)
26 (86.7%) 19 (54.3%)
<0.01% 0.23 £ 0.87 -0.64 + 1.07 <0.01?
<0.01? 0.29 + 1.34 -0.85 £ 1.22 <0.017
<0.017 0.34 £ 0.99 -0.97 + 1.02 <0.01?

P was derived from the univariable association analyses between each of the clinicopathological variables and LN status. Chi-Square was used to compare the differences in categorical
variables (sex, T stage), while the two-sample t-test was used to compare differences in age, LN size (maximum LN short diameter), tumor size, tumor location, and rad-scores. °P < 0.05 is

considered statistically significant.
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Rad-Score Evaluation

There were significant differences in rad-score 1, rad-score 2, and
rad-score 3 between LN-positive and -negative patients in the
training cohort (P < 0.01); the same result was achieved in the
validation cohort (P < 0.01), as shown in Table 1. The dot
diagram showed that the three rad-scores for LN-positive
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FIGURE 2 | Dot diagram of the three rad-scores in each cohort. Dot diagram of rad-score 1 in the training (A) and validation (D) cohorts. Dot diagram of rad-score
2 in the training (B) and validation (E) cohorts. Dot diagram of rad-score 3 in the training (C) and validation (F) cohorts.

patients were generally higher than those for LN-negative
patients in the training and validation cohorts (Figure 2).

To compare the classification performance, the ROC curves
were plotted for the clinical model, rad-score 1, rad-score 2, and
rad-score 3 in the training and validation cohorts (Figure 3). The
clinical model achieved an AUC of 0.811 in the training cohort
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FIGURE 3 | Comparisons of the ROC curves for the clinical model and three rad-scores in each cohort. (A) The ROC curves for the clinical model and three rad-
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and an AUC of 0.781 in the validation cohort. The AUCs of the
rad-score 1 and rad-score 2 were 0.805, 0.749 and 0.828, 0.770 in
the training and validation cohorts, respectively. The rad-score 3
yielded the highest AUC scores among four models in both
training (0.875) and validation (0.822) cohorts. There was
significant difference in AUC between rad-score 1 and rad-
score 3 in the training cohort, but not among the other
models. No significant difference was found in AUC among
four models in the validation cohort. The detailed results were
shown in Table 2.

Radiomics Nomogram Construction and
Evaluation
The results of univariate and multivariate logistic regression
analysis were provided in Table 3. Univariate analysis showed
that age, LN size, T stage, and rad-score 3 had significant
differences between LN-positive and -negative groups in the
training cohort. In multivariate logistic analysis, the rad-score
3, age, and LN size were identified as independent parameters of
LN metastasis. A radiomics nomogram, incorporating the age,
LN size, and rad-score 3, was developed, as shown in Figure 4.
The ROC curves were plotted for radiomics nomogram from
the training and validation cohorts (Figure 5). The AUC,
classification accuracy, sensitivity, and specificity of radiomics
nomogram were 0.937, 0.876, 0.907, 0.852 and 0.884, 0.831,
0.833, 0.829 in the training and validation cohorts, respectively.
The calibration curves of the nomogram were shown in Figure 6.
The calibration curves and the Hosmer-Lemeshow test showed
good calibration in the training cohort (P = 0.697) and validation
cohort (P = 0.244). The DCA result for the nomogram was
shown in Figure 7. We found that using the multiparametric
MRI model to predict LN metastases had a greater advantage

when directing treatment decisions if the threshold probability
was set between 0 and 0.8, compared with the treat-all-patients
scheme and the treat-none scheme.

DISCUSSION

LN status is the key factor in determining whether to conduct
adjuvant therapy or additional surgical resection (5, 7, 8). The
accurate evaluation of LN metastasis using observable MRI features,
such as size and morphology, remains challenging (34, 35). In this
study, rad-score 3 was constructed that incorporated T2WI and
ADC image features for preoperative prediction of LN metastasis in
patients with rectal cancer and compared with the predictive
performance of rad-score 1 based on T2WI features and rad-
score 2 based on ADC features. The results indicated that rad-
score 3 could yield the highest AUC score. We then developed and
validated a radiomics nomogram incorporating rad-score 3 and
some clinical information (age and LN size). The results showed
that the model presented favorable predictive value for preoperative
individualized prediction of LN metastasis in rectal cancer patients.

There have been some studies reporting the diagnostic value of
radiomics in identifying the LN status of rectal cancer. Huang et al.
(36) developed a radiomics model based on enhanced CT to predict
LN status in colorectal cancer patients, and yielded an AUC score of
0.778 in the validation cohort. However, high-resolution MRI is
regarded as the most common and effective method for the
identification of clinical staging of rectal cancer (9). Several
researches have shown that radiomics based on MRI had better
diagnostic performance in discriminating LN status (21-23, 25, 26).
An investigation by Yang et al. indicated that the histogram features
from T2WI could be used to identify LN metastasis of primary rectal

TABLE 2 | AUC comparison based on DeLong test among four models.

Cohort Model Clinical model Rad-score 1 Rad-score 2 Rad-score 3

Training Clinical model / 0.939 0.805 0.302
Rad-score 1 0.939 / 0.691 0.011
Rad-score 2 0.805 0.691 / 0.250
Rad-score 3 0.302 0.011 0.250 /

Validation Clinical model / 0.728 0.886 0.601
Rad-score 1 0.728 / 0.783 0.105
Rad-score 2 0.886 0.783 / 0.342
Rad-score 3 0.601 0.105 0.342 /

TABLE 3 | Univariate and multivariate logistic regression analysis of the clinical parameters and rad-score 3.

Parameters Univariate analysis P-value Multivariate analysis P-value

OR 95% ClI OR 95% ClI

Age 0.910 0.865-0.957 <0.01* 0.873 0.803-0.950 <0.01*

Sex 1.872 0.801-4.378 0.148

LN size 1.314 1.094-1.580 0.004 1.545 1.138-2.099 <0.01*

Tumor size 0.870 0.615-1.230 0.430

Tumor location 0.946 0.783-1.142 0.563

T stage 3.025 1.135-8.061 0.027 3.915 0.809-18.941 0.090

Rad-score 3 3.582 2.190-5.859 <0.01* 4.503 2.321-8.735 <0.01*

OR, odds ratio; Cl, confidence interval. *P-value < 0.05 is considered statistically significant.
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tumor and obtain the moderate-to-good diagnostic performance
(AUC: 0.648 to 0.750) (21). A recent study demonstrated that
radiomics model based on high-resolution MRI could be helpful in
predicting LN status, which obtained an AUC of 0.8 in the validation
cohort (23). In addition, DWI with ADC is a functional MRI
sequence that can reflect the varying cellularity within a tumor
(22). A study by Liu et al. showed that texture analysis on ADC
maps could provide valuable information to predict LN status in
patients with LARC (22). Recently, Zhou et al. established a radiomics
model based on multiparametric MRI, including TIWI, T2WI, ADC,
and CE-T1WI data, which yielded good diagnostic performance in
predicting LN status for patients with LARC following neoadjuvant
therapy (25). However, most previous radiomics analyses were
generally performed with a single-slice image at the level of the
largest section of the tumor. To improve the performance of
radiomics models, three-dimensional VOI segmentation was
conducted in our study. A prior study demonstrated that three-
dimensional VOIs could contain more important information than
two-dimensional regions of interest (37). Compared with those
studies above, our research included more high-order features for
radiomics analysis, such as square, square root, logarithm,
exponential, gradient, and wavelet features. In addition, a recent
study constructed a radiomics model based on VOIs of T2WI and
DWI (b-value of 1,000 s/mm?), which achieved good diagnostic
performance in the validation cohort (26). However, it was proved
that texture analysis based on ADC maps achieved better
discrimination performance to predict LN status than that based
on DWI (b-value of 1,000 s/mm?) (38). Therefore, in our study,
radiomic features were extracted from VOIs of T2WI and ADC
images and used to establish a multiparametric model. Moreover,
compared with these multiparametric MRI studies above, we also
analyzed the discriminative ability of each imaging modality.
Rad-score 1, on the basis of T2WI, was mainly constructed by
wavelet features (6/7); this demonstrated that wavelet features better
reflected tumor biology and heterogeneity. All wavelet features were
derived from the decompositions and the approximation by wavelet

filter to the original image. Image transformation using a filter can
eliminate noise or sharpen the image and does not change the
semantics of the features (29). Therefore, these wavelet features
represent the intensity distribution or gray level distribution of
tumors in the corresponding wavelet filter image. For example,
wavelet. LHL_firstorder_Maximum and wavelet. HHL_
firstorder_Mean respectively describe the maximum and average
gray level intensity of tumor region, wavelet LHL glem_IDN is a
measure of the local homogeneity of the tumor region and
normalizes the difference between the neighboring intensity values
by dividing over the total number of discrete intensity values,
wavelet LHH_glrlm_RE and wavelet HHH_glrlm_RE represent
the uncertainty/randomness in the distribution of run lengths and
gray levels and a higher value indicates more heterogeneity in the
texture patterns, and wavelet HLL_gldm_LDLGLE measures the
joint distribution of large dependence with lower gray-level values.
The AUC of rad-score 1 for predicting LN metastasis was 0.749 in
the validation cohort. One previous study also reported the
effectiveness of wavelet features on T2WT in predicting LN status
and obtained a similar result (39). Moreover, He et al. showed that
wavelet features of T2WI had good performance in tumor grading
for rectal cancer, which further demonstrated that wavelet features
can reflect tumor biology and heterogeneity (40).

Rad-score 2, based on ADC images, was established by LOG,
wavelet, logarithm, and exponential features. All higher-order
statistics features derived from the image transformation using the
corresponding filter could reflect underlying pathology information
of the tumor. For example, log.sigma.5.0.mm.3D_glem_IMC2
assesses the correlation between the probability distributions of
two voxel spots in the log.sigma.5.0.mm filter image to quantify
the complexity of the tumor texture, log.sigma.5.0.
mm.3D_glrlm LRLGLE measures the joint distribution of long-
run lengths with lower gray-level values in the log.sigma.5.0.mm
filter images, wavelet LHL_glcm_Correlation quantifies the linear
patterns in the wavelet LHL filter image based on the distance
parameter, wavelet. HLH_glszm_LALGLE represents the
proportion in the wavelet. HLH filter image of the joint
distribution of larger size zones with lower gray-level values,
logarithm_firstorder_Median describes the average gray level
intensity within the tumor region in the logarithm filter images,
exponential_glszm_GLNU describes the variability of gray-level
intensity values in the exponential filter image, with a lower value
indicating more homogeneity in intensity values, and so on. A recent
study showed a significant difference between texture features from
ADC maps and LN metastasis status through statistical analyses (22).
In our study, 11 higher-order statistics features from ADC maps
exhibited highly discriminative performance, but six features were
not significantly different between the LN-positive and -negative
groups (using two-sample t-tests). We found that associating a single
radiomic feature with complex tumor biological processes remained
a challenge. Therefore, it was more common to combine the panels
of selected features into a rad-score. Our results showed that the
developed rad-score 2 could achieve good performance and yielded
an AUC of 0.770 in the validation cohort. A recent study on breast
cancer reported the potential values of higher-order statistics features
in predicting sentinel LN metastasis (41).
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Rad-score 3 was calculated by seven T2WI (six wavelet and one
LOG features) and six ADC (two LOG, two wavelet, one logarithm,
and one exponential features) features, and indicated that radiomic
features on T2WI and ADC maps had good performance in
predicting LN status. According to the AUCs, the rad-score 3
obtained the highest score among three rad-scores in predicting the
LN status. Recently, several studies also reported that radiomics
models based on multiparametric MRI data could improve the
predictive performance for tumor characteristics (24, 31, 42, 43).

In multivariate logistic analysis, the rad-score 3, age, and LN size
were identified as independent parameters of LN metastasis. We
found that the LN positive group had a significantly younger age
compared with the LN negative group which was consistent with
that of the study conducted by Li et al. (44). This result showed that
young patients with rectal cancer were more likely to have the risk of
lymph node metastasis, which might be related to the high
metabolism, dietetic irrationality, and lifestyle of young patients.
In addition, as most young people lack the awareness of regular
physical examination, the detection rate of rectal cancer in this
population is low, which leads to the majority of patients in
advanced stage and with a poor prognosis. However, our findings
were in conflict with the study by Yang et al. (23), which concluded
that no difference was observed in age between LN-positive and
-negative rectal patients. This might be due to the different inclusion
criteria of the study population between our studies. LN size
represents the maximum short-axis diameter of regional LN.
Several studies showed that LN size is an important clinical
marker for the identification of LN status (25, 26). A radiomics
nomogram incorporating rad-score 3, the age, and the LN size were
developed. The results indicated that radiomics nomogram had
good discrimination and calibration performance in both training
and validation cohorts. Finally, the DCA showed that the model was
clinically useful in the validation cohort.

A recent study showed that MRI radiomics based on multi-
regions (peritumoral and intratumoral areas) could improve efficacy
in the identification of LN metastasis in patients with rectal cancer
(26). However, peritumoral tissue was not included in our analysis.
That was due to the absence of uniform criteria for the peritumoral
boundary. Another research demonstrated that the deep learning
technology of faster region-based convolutional neural network
could achieve excellent performance in discrimination, calibration,
and clinical utility for preoperative identification of LN status (45).
The performance of deep learning features was not investigated in
our research, as this study focused on the feasibility of the radiomic
features from the VOIs of T2WI and ADC features for LN status
prediction. Therefore, to improve the performance of the prediction
model, further work is expected to develop the model by combining
radiomic and deep learning features based on multiregional MRI for
preoperative prediction of LN status in patients with rectal cancer.

There were several limitations to this study. First, a bias of
selection might exist because the study used a retrospective design.
Second, the patient sample size was small and all cases were derived
from a single institute. Multi-center studies with a larger sample set
are required to further validate our model. Third, the segmentation
of 3-D lesions was performed manually, which was time-consuming
and complicated for the larger sample sizes. Thus, a fully automatic

analysis method for rectal lesions with favorable reliability and
reproducibility should be developed in further studies.

In conclusion, our study demonstrated that the radiomics
nomogram, incorporating rad-score based on features from the
T2WI and ADC images, and clinical factors, has potential for the
preoperative identification of LN status. Although the results were
satisfactory, the model should be validated by further studies with
larger sample sizes from multiple centers to evaluate the performance.
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