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ABSTRACT Genomic selection (GS) has become a tool for selecting candidates in plant and animal
breeding programs. In the case of quantitative traits, it is common to assume that the distribution of the
response variable can be approximated by a normal distribution. However, it is known that the selection
process leads to skewed distributions. There is vast statistical literature on skewed distributions, but the
skew normal distribution is of particular interest in this research. This distribution includes a third parameter
that drives the skewness, so that it generalizes the normal distribution. We propose an extension of the
Bayesian whole-genome regression to skew normal distribution data in the context of GS applications,
where usually the number of predictors vastly exceeds the sample size. However, it can also be applied
when the number of predictors is smaller than the sample size. We used a stochastic representation of a
skew normal random variable, which allows the implementation of standard Markov Chain Monte Carlo
(MCMC) techniques to efficiently fit the proposed model. The predictive ability and goodness of fit of the
proposed model were evaluated using simulated and real data, and the results were compared to those
obtained by the Bayesian Ridge Regression model. Results indicate that the proposed model has a better fit
and is as good as the conventional Bayesian Ridge Regression model for prediction, based on the DIC
criterion and cross-validation, respectively. A computing program coded in the R statistical package and C
programming language to fit the proposed model is available as supplementary material.
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In genetic studies of plants or animals, it is common to find quantitative
traits whose distribution is not normal; this is because the data are
obtained frommultiple sources or contain isolatedobservations (Li et al.
2015). Landfors et al. (2011) noted that it is often necessary to normal-
ize the data to remove variation introduced during the experiment’s
development. However, such standard normalization techniques are
not always able to remove bias because a large number of observations

are positively or negatively affected by some treatment. In addition,
suitable transformation for the data may be difficult to find, and may
bring further complications when estimating and interpreting the re-
sults obtained (Fernandes et al. 2007). To avoid transformations, dif-
ferent methods have been developed that are flexible enough to
represent the data and reduce unrealistic assumptions (Arellano-Valle
et al. 2005). In the genomic selection framework (GS; Meuwissen et al.
2001), dense molecular marker genotypes and phenotypes are used to
predict the genetic values of candidates for selection. The availability of
high density molecular markers of many agricultural species, together
with promising results from simulations (e.g., Meuwissen et al. 2001)
and empirical studies in plants (de los Campos et al. 2009; de los
Campos et al. 2010; Crossa et al. 2010, 2011) and animals (e.g.,
VanRaden 2008; Weigel et al. 2009), are prompting the adoption of
GS in several breeding programs. The parametric model for GS ex-
plains phenotypes (yi; i = 1,. . .,n) as functions of marker genotypes (xij)
using a linear model of the form: yi ¼ b0 þ

Pp
j¼1 xijbj þ ei, where n is

the number of phenotypic records, p is the number of markers,
xij 2 f0; 1; 2g represents the number of copies of a bi-allelic marker
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(e.g., an SNP), andbj is the additive effect of the reference allele at the j
th

marker, j ¼ 1; . . . ; p. In matrix notation, the model is expressed as
y ¼ b01þ Xbþ e, where y ¼ fyig, b ¼ fbjg and e ¼ feig are vec-
tors of phenotypes, marker effects and Gaussian zero mean errors,
respectively, and X ¼ fxijg is a matrix of marker genotypes of dimen-
sions n·p. However, when the data are not normal, the normal re-
gression methods generate inconsistent estimates with the natural
distribution of the data and, therefore, the estimation of the conditional
mean given the covariates is also inconsistent (Bianco et al. 2005).

With dense molecular markers, the number of markers exceeds the
number of records in the reference population (p..n) and, therefore,
penalized regression estimation methods and their Bayesian counter-
parts are commonly used. Penalized estimation methods produce re-
gression parameter estimates that are often equivalent to posterior
modes. The literature on GS offers a long list of Bayesianmodels whose
main difference is the prior distributions assigned to marker effects,
which leads to what is known as the Bayesian Alphabet (Gianola 2013;
de los Campos et al. 2013). The above-mentioned models assume that
the response follows a normal distribution. Several phenotypic traits
have distributions that are skewed, for example, female flowering, male
flowering, the interval between male and female flowering, categorical
measurements of diseases such as ordinal scale, counting data, etc. In
these cases, either a normalizing transformation for the response vari-
able (e.g., using Box-Cox transformation) or a model that deals with
skew responsesmay be used. Varona et al. (2008) proposed using linear
mixed models with asymmetric distributions in the residuals to tackle
the problem in the context of animal breeding when pedigree informa-
tion is available. Nascimento et al. (2017) proposed the Regularized
Quantile Regression as a way to overcome the issue of non-symmetric
distributions when marker information is available.

If a population is selected based on one trait ðYÞ and another trait of
interest ðOÞ results that exceeds (does not exceed) some threshold,
then the conditional distribution of Y j O . o, for a fixed o; leads to
a distribution that is skewed (Arnold and Beaver 2000), such as the
skew-normal (SN) distribution, which is of particular interest in this
research. This distribution is a generalization of the normal distribu-
tion (Azzalini 1985) with a shape parameter added to adopt skewed
forms. It has the advantage of being mathematically tractable and
shares properties with the normal distribution; for example, the den-
sity of the SN is unimodal (Genton 2004). Varona et al. (2008) argues
that the asymmetric distributions observed for the phenotypes are the
result of environmental factors and that data can be modeled using
non-symmetric residual distributions.

Basedon theprevious considerations andmotivatedby the fact that a
great deal of traits in plant breeding have skew normal distributed, such
as flowering time in most crop species, as well categorical traits such as
diseases (ordinal, binomial, or counting data), in this studywe propose a
general Bayesian genomic regression model for skew-normal pheno-
typic traits with skew-normal random errors. The model uses a sto-
chastic representation of the response variable (Arnold and Beaver
2000) in order to ease computations and it also works in the case that
when n.p. It should point out, however, that the aim of the paper is not
to describe and study the causes of the skew distribution but rather we
assume that the skew data are given and thus the objective is to propose
a robust statistical model that deals with the skew-normal distribution
of the phenotypic and residuals.

The structure of this paper is as follows. In section 2, we present the
statistical models and describe the latent variable model used in the
regression. In section 3, we describe a simulation experiment that is
performed to evaluate the predictive power of the proposed model. In

section 4, we present an applicationwith real data; section 5 includes the
discussion and concluding remarks.

MATERIALS AND METHODS

Statistical models
In this section we introduce the statistical models to be used in the
manuscript.Webeginbygiving abrief reviewof the skewnormalmodel.
Then we introduce the concept of data augmentation and we use this
concept in order to generate a skew normal random variable. After that
we introduce the “centered parameterization” in the skew normal
model, regression with skew random errors. Finally, we present the
pior, posterior and full conditional distributions for the regression
model with skew normal residuals.

Skew-normal model: A continuous randomvariableU is said to follow
the skew-normal law with shape parameter l 2 ℝ, denoted by SNDðlÞ
if its density function is:

fU ðujlÞ ¼ 2fðuÞFðluÞ; u 2 ℝ; (1)

where fð�Þ and Fð�Þ denote the density and cumulative distribution
functions of a standard normal random variable, respectively. The
subscript D indicates the use of “direct parametrization” (Azzalini
1985). Note that the skew normal distribution reduces to the normal
case when l ¼ 0.

The mean and variance of U are given by:

EðUÞ ¼
ffiffiffiffi
2
p

r
lffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p :

VarðUÞ ¼ 12
2
p

l2

1þ l2
:

The coefficient of skewness of U is:

g1 ¼
ðEðUÞÞ3�

12ðEðUÞÞ2�3=2:
If Y is a random variable defined by Y ¼ j þ vU , then Y is said to
have a skew-normal distribution with location (j), scale (v), and
shape (l) parameters, and is denoted as SNDðj; v; lÞ. The density
function of Y is given by:

fY ðyjj;v; lÞ ¼ 2
1
v
f

�
y2 j

v

�
F

�
l

�
y2 j

v

��
;

y; j 2 ℝ; v 2 ℝþ:

It can be shown that the coefficient of skewness ofY corresponds to the
skewness coefficient of U .

Hidden truncation: LetV andW be two random variables whose joint
distribution is given as follows:

�
V
W

�
� MN2

��
0
0

�
;

�
1 r
r 1

��
;

where MN2ðm;ΣÞ denotes a bivariate random variable with mean m
and variance-covariance matrix Σ and r 2 ð21; 1Þ; the random vari-
able U is defined as follows:
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U ¼
	
W if V . 0
0 Otherwise

then U � SNðlÞ, with l ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2

p
(Arnold and Beaver 2000;

Hea-Jung 2005; Liseo and Parisi 2013). The above representation
allows writing an augmented likelihood function (Hea-Jung 2005;
Liseo and Parisi 2013), “as if” we had observed the latent variable
Z ¼ V . 0. The conditional distribution of UjZ ¼ z is Nðrz; 12 r2Þ
and Z � TNð0; 1; 0;NÞ, which is a truncated normal random vari-
able with location parameter 0, scale parameter 1, lower truncation
bound 0 and upper truncation bound N. Therefore, the joint distri-
bution of U and Z is fU jZðujz; rÞfZðzÞ ¼ fU ;Z ðu; z




rÞ, that is:
fU ;Zðu; zjrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð12 r2Þp exp

	
2

1
2ð12 r2Þðu2rzÞ2

�

3
1ffiffiffiffiffiffi
2p

p exp

	
2
1
2
z2
�
Ið0;NÞðzÞ; u 2 ℝ: (2)

Note that the density function of U can be obtained by integrating
fU ;Zðu; z




rÞ with respect to z; that is, fUðujrÞ ¼
RN
0 f ðu; z



rÞdz.

Estimating the parameters in the direct parametrization is trouble-
some, so “centered parametrization” is more appropriate for parameter
estimation and interpretation (Azzalini 1985; Pewsey 2000; Azevedo et al.
2011, among others). If U � SNDðlÞ and l ¼ rffiffiffiffiffiffiffiffiffi

12 r2
p , then EðUÞ ¼

EU ¼
ffiffiffi
2
p

q
r and VarðUÞ ¼ 12 2

pr
2 so that SU ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðUÞp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 2

pr
2

q
. Figure 1 shows the density function of U for several values

of the shape parameter l and the corresponding values of r. The random
variable:

Y ¼ mþ se

�
U 2 EU

SU

�
; (3)

is said to be a skew normal random variable with parameters m 2 ℝ,
se . 0 and g1, where g1 is Pearson’s skewness coefficient given by

g1 ¼
ffiffiffi
2
p

q
r3
�

4
p2 1

��
122r2

p

�23 =

2

, and the range of g1 is (-0.99527,

0.99527). In this case, EðYÞ ¼ m, VarðYÞ ¼ s2
e . The usual notation is

Y � SNCðm;s2
e ; g1Þ.

If we consider the following transformations:

Y ¼ mþ se

�
U2 EU

SU

�
T ¼ Z

; (4)

it can be shown, using Jacobians (Casella and Berger, 2002, Chapter 2),
that the joint density of Y and Z is given by:

fY;Z
�
y; zjm;s2

e ; r
 ¼ zffiffiffiffiffiffi

2p
p exp

(
2
z

2

2�
y2m2

se

SU
rz þ se

SU
Eu

�2
)

3
2ffiffiffiffiffiffi
2p

p exp

	
2
1
2
z2
�
Ið0;NÞðzÞ;

(5)

where z ¼ SU
se

ffiffiffiffiffiffiffiffiffi
12 r2

p . Note that the density function of

Y � SNCðm;s2
e ; g1Þ can be obtained by integrating fY ;Zðy; zjm;se; rÞ

with respect to z; that is, fYðyjm;s2
e ; g1Þ ¼

RN
0 fY ;Zðy; zjm;s2

e ; rÞdz,

with g1 ¼
ffiffiffi
2
p

q
r3
�

4
p2 1

��
122r2

p

�23=2

. This representation is very

convenient, because it allows us to write an augmented likelihood function
(Hea-Jung 2005; Liseo and Parisi 2013), “as if” we had observed the latent
value z. The density function of the skew normal random variable under
“centered parametrization” is a complicated function that was given by
Azevedo et al. (2011):

fY
�
yjm;s2

e ; g1
 ¼ 1ffiffiffiffiffiffiffi

s2�
e

p f

 
y2m�ffiffiffiffiffiffiffi

s2�
e

p
!
F

"
l�
 
y2m�ffiffiffiffiffiffiffi

s2�
e

p
!#

;

where m� ¼ m2 sg
1
3
1, s

2�
e ¼ s2

e · ð1þ s2g2=3
1 Þ, l� ¼ sg1=3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þs2g2=3

1 ðr2 2 1Þ
p

with r ¼ ffiffiffiffiffiffiffiffi
2=p

p
, s ¼

�
2

42p

�1=3

.

Regression with skew normal random errors: Azzalini and Capitanio
(1999) and Rusell and González (2002) proposed a simple linear re-
gression model where the error terms are independent and identically
distributed as SNDð0; v; lÞ. The proposed model is:

yi ¼ b0 þ b1xi þ ei;

from the properties of the skew normal distribution, it follows that
yi � SNDðb0 þ b1xi;v; lÞ. The model can be easily extended to in-
clude more covariates; that is:

yi ¼ b0 þ
Xp
j¼1

xijbj þ ei ¼ b0 þ xtibþ ei:

Azzalini and Capitanio (1999) and Rusell and González (2002) used
the maximum likelihood method to estimate the parameters in the
model. These ideas can be extended to the case of errors that are
independent and identically distributed as SNCð0; s2

e ; g1Þ.

Bayesian regression with skew normal random errors (BSN): Let
yi � SNcðb0 þ xtib;s

2
e ; g1Þ; i ¼ 1; . . . ; n: Then, the likelihood func-

tion is given by:

p
�
y


b0;b;s

2
e ; g1

 ¼Yn
i¼1

SNCðyi





b0 þ xtib;s

2
e ; g1Þ:

Let u ¼ ðb0;b
t ;s2

e ; g1Þt and pðujVÞ the prior distribution of u and
V a set of hyper-parameters that index the prior distributions. Then,
by Bayes’ theorem, the joint posterior distribution of pðujyÞ is as
follows:

pðujyÞ} p
�
y


b0;b;s

2
e ; g1


pðu

VÞ

¼ Qn
i¼1

SNCð yi




b0 þ xtib;s

2
e ; g1Þ pðu





VÞ:

Neither the joint posterior distribution nor the full conditional
distributions of the parameters of interest have a closed form;
therefore, the implementation of this model within the Bayesian
framework is computing intensive. We propose using hidden trun-
cation together with two standard MCMC techniques in Bayesian
analysis: (i) Gibbs Sampling (Geman and Geman 1984) and (ii)
Random Walk Metropolis Sampling to alleviate some of the com-
puting burden.

Prior, posterior and full conditional distributions: Consider the joint
distribution of Y and Z given in (5). In the regression context, we set
mi ¼ b0 þ xtib; then the augmented likelihood function is:
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p
�
y; zjb0;b;s

2
e ; r
 ¼ Qn

i¼1
fYi ;Zi

�
yi; zijmi;s

2
e ; r


}
Qn
i¼1

zexp

(
2
1
2
z2
�
yi2mi2

se

SU
rzi þ se

SU
Eu

�2

2
1
2
z2i

)
Ið0;NÞðziÞ:

(6)

In order to fully specify the Bayesianmodel, prior distributions for the
unknown parameters must be defined. Let b




s2
b � MNpð0;s2

bIÞ; for
r; based on the following transformation r ¼ 12 2B, where
B � Betaða0; b0Þ; the prior for r is denoted as pðrja0; b0Þ, and
depending on the hyper-parameters a0 and b0, it can lead to a rich variety
of shapes, just as in the case of the Beta distribution. For the intercept, the
prior distribution is b0




s2
b0

� Nð0;s2
b0
Þ; for the scale parameter, a

scaled inverted chi-squared prior distribution was used, that is,
s2
e



dfe; Se � x22ðdfe; SeÞ; and finally s2
b




dfb; Sb � x22ðdfb; SbÞ (see
Sorensen and Gianola, 2002, p. 85, for details about the parametrization
used in this paper). The joint prior distribution is

p
�
b0;b;s

2
e ;s

2
b; r




V� ¼ pðb0




s2
b0
Þpðb




s2
bÞpðs2

b




dfb; SbÞ
3 pðs2

e




dfe; SeÞpðr


a0; b0Þ: (7)

By combining equations 6 and 7 throught the Bayes’ theorem, the
posterior distribution of pðb0;b;s

2
e ;s

2
b; rjdataÞ is given by:

The full conditional distributions of the parameters are given in
Appendix A, which are the inputs for the Gibbs and the RandomWalk
Metropolis Samplers. In Appendix B, some pragmatical rules to elicitate
values for the hyper-parameters s2

b0
; Se; dfe, Sb; dfb; a0 and b0, are

given. The rules for setting Se; dfe, Sb; dfb are based on those given by
de los Campos et al. (2013) and Pérez and de los Campos (2014). In this
paper, we set the hyper-parameters as follows: s2

b0
¼ 1 · 106,

dfe ¼ dfb ¼ 5, Se ¼ 0:5 ·Vy · ðdfe þ 2Þ, Sb ¼ 0:5 ·Vy ·
ðdfbþ2Þ
MSx ,

where Vy is the sample phenotypic variance and
MSx ¼ 1

n

Pn
i¼1

Pp
j¼1 x

2
ij. We set s2

b0
¼ 1 · 106 in order to reduce

shrinkage and because in practice itmimics a non informative but proper
distribution. To sample from the full conditionals of r and s2

e , we imple-
mented a Random Walk Metropolis Sampler whose parameters are
tuned so that the acceptation rate is about 0.23 (see Appendix A for
details).

The BSN can be re-parametrized by replacing xtib with ti ¼ xtib; if
the prior distribution of marker effects is normal with mean 0 and
variance s2

b, then the prior of t is t � MNnð0;s2
bXX’Þ, which leads

to a G-BLUP model (see de los Campos et al. 2013, for details about
G-BLUP) but with skew normal residuals, that is, yi ¼ b0 þ ti þ ei or,
in matrix notation, y ¼ b01þ t þ e, which is a skew linear mixed
model, a particular case of the model proposed by Arellano-Valle
et al. (2005, 2007), who relaxed all normality assumptions in a standard
mixed model.

p
�
b0;b;s

2
e ;s

2
b; r



data�}

( Qn
i¼1

zexp

(
2
1
2
z2
�
yi2mi2

se

SU
rzi þ se

SU
Eu

�2

2
1
2
z2i

)
Ið0;NÞðziÞ

)

·N
�
b0j0;s2

b0

�
MNp

�
bj0;s2

bI
�
x22

�
s2
e jSe; dfe


x22

�
s2
bjSb; dfb

�

·
�
12r
2

�a021�
1212r

2

�b021

Ið21;1ÞðrÞ:

(8)

Figure 1 Densities of the standard skew normal
distribution for different values of l and the cor-
responding values for r, l ¼ rffiffiffiffiffiffiffiffiffiffi

12 r2
p .
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Bayesian ridge regression With random normal errors (BRR):
Regression with random normal errors is a special case of the proposed
model when r ¼ 0. The model is widely used in the GS selection
literature (e.g., de los Campos et al. 2013). In the GS context, the model
is given by:

yi ¼ b0 þ
Xp
j¼1

bjxij þ ei;

where ei’s are independent and identically distributed as Nð0;s2
e Þ.

The prior distributions for the unknown are:b



s2

b � MNpð0;s2
bIÞ,

b0




s2
b0

� Nð0;s2
b0
Þ for the scale parameter, a scaled inverted chi-

squared distribution, that is, s2
e



dfe; Se � x22ðdfe; SeÞ and finally
s2
b




dfb; Sb � x22ðdfb; SbÞ.
The joint prior distribution is

p
�
b0;b;s

2
e ;s

2
b

�
¼ pðb0




s2
b0
Þpðb




s2
bÞpðs2

b




dfb; SbÞpðs2
e




dfe; SeÞ:
(9)

Thus, the posterior distribution of pðb0;b;s
2
e ;s

2
bjdataÞ is

p
�
b0;b;s

2
e ;s

2
b




data�}	 Qn
i¼1

Nðyi




mi;s

2
eÞ
�

·N
�
b0j0;s2

b0

�
MNp

�
bj0;s2

bI
�
x22

�
s2
e jSe; dfe


x22

�
s2
bjSb; dfb

�
:

The required full conditional distributions of the parameters for
implementing a Gibbs sampler can be found elsewhere (e.g., de los
Campos et al. 2013). We set the hyper-parameters using the same
rules as in the BSN model. The BRR model can be fitted easily using
the BGLR statistical package (Pérez and de los Campos 2014).

Monte Carlo Simulation
In this section, we use simulated data using marker genotypes from a
wheat dataset made publicly available by Crossa et al. (2010). The
dataset includes genotypic information for 599 wheat lines which were
genotyped for 1279 DArT markers coded as 0 and 1. We simulated the
phenotypes using the following additive genetic model:

yi ¼ b0 þ
X1279
j¼1

xijbj þ ei; i ¼ 1; . . . ; n; (9)

where ei � SNCð0; 1:52; g1Þ, with g1 ¼
ffiffiffi
2
p

q
r3
�

4
p2 1

��
122r2

p

�23=2

,

r 2 f0; :5; :75; :90; :95; :99g, which leads to different degrees of skew-
ness. The intercept parameter, b0;was set equal to 3; 10marker effects
were sampled from a normal distribution with mean 0 and variance
0.5/10 (Pérez and de los Campos 2014), and the rest were set equal to
0, that is:

The idea here is to verify, through simulation, whether the proposed
model works satisfactorily. We therefore obtained point estimates for
b0, b, s

2
e and r. We also fitted the Bayesian Ridge Regression model

and compared the estimates of regression coefficients, predictions

and estimates of genetic values of both models. Let b̂ be the vector
of posterior means for regression coefficients. Pearson’s correlation

between the observed (y) and predicted values (b̂01þ Xb̂) is a good-
ness-of-fit measure; Pearson’s correlation between the “true” genetic

values (Xb) and the predicted values (Xb̂) is a measure of how well
the genetic values are estimated; finally, Pearson’s correlation be-

tween the “true” marker effects (b) and the estimated effects (b̂) is
a measure that indicates how good a model is at uncovering marker
effects (de los Campos et al. 2009). We also computed the effective
number of parameters (pD) and deviance information criterion
(DIC) for the two fitted models (see Spiegelhalter et al. 2002, for
more details).

The algorithmused in this simulation experiment is describedbriefly
below.

1. Set b0, b, s
2
e and r.

2. Simulate the phenotypes using equation (9).
3. Fit the regression model with skew normal random errors and

obtain point estimates for b0, b, s
2
e and r, that is, b̂0SN , b̂SN ,

ŝ2
eSN and r̂. The point estimates correspond to the posterior means

of the posterior distribution of the parameters of interest.
4. Fit the Bayesian Ridge Regression model and obtain point esti-

mates for b0, b, s
2
e , that is, b̂0N , b̂N , ŝ

2
eN .

5. Compute the correlation between observed and predicted pheno-
types, “true” and predicted genetic values, and “true” and esti-
mated regression coefficients with both regression models.

6. Compute the effective number of parameters (pD) and deviance
information criterion (DIC) for the two fitted models.

7. Repeat steps 1 to 5 one hundred times and obtain the averages of
correlations, intercept (b0), s

2
e and r.

Application to real data
This dataset is from the Drought Tolerance Maize (DTMA) project of
CIMMYT’s Global Maize Program (http://www.cimmyt.org). The
dataset comes from a large study aimed at detecting chromosomal
regions affecting drought tolerance. The genotypic data consist of in-
formation from 300 tropical inbred lines that were genotyped using
1,152 SNPs (Single Nucleotide Polymorphisms). The analyzed trait is
Gray Leaf Spot (GLS) caused by the fungus Cercospora zeae-maydis,
which was evaluated at three different sites, Kakamega (Kenya), San
Pedro Lagunillas (Mexico) and Santa Catalina (Colombia) (see Sup-
porting information). Crossa et al. (2011) analyzed a subset of these
data; the response variable was transformed using Box-Cox transfor-
mation (Box and Cox 1964). Figure 2 shows density plots for GLS
rating at the three sites. Kernel density was estimated using a Gaussian
kernel, and the bandwidth for the kernel was estimated according to
Venables and Ripley (2002). Figure 2 also shows the sample skewness
index, ĝ1 ¼ m3=s3, where m3 ¼ n21Pn

i¼1 ðyi2�yÞ3, �y is the sample
mean and s is the sample standard deviation (see Joanes and Gill

1998); in the three cases, the distribution is skewed to the right, so most
of the distribution is concentrated around small values of the response
variable.

bj ¼
	

Nð0; 0:5=10Þ if j 2 f63; 190; 317; 444; 571; 698; 825; 952; 1079; 1206g;
0 otherwise
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We propose using the regression model with skew normal ran-
dom errors to predict disease resistance. We fitted two models: (1)
the standard Bayesian Ridge Regression, where the errors
ei � NIIDð0;s2

e Þ; i ¼ 1; . . . ; n, where “NIID” stands for “normally,
independent and identically distributed”; and (2) the proposed model

with skew normal random errors. The Bayesian Ridge Regression was
fitted using the BGLR package (Pérez and de los Campos 2014),
whereas the proposed model was fitted using the algorithm described
in Appendix A. The models were first fitted using the full data, and
subsequently 100 random partitions with 80% of observations in the

Figure 2 Density plot for Gray Leaf Spot (GLS)
rating (disease resistance), at each site: Kakamega
(Kenya), San Pedro Lagunillas (Mexico) and Santa
Catalina (Colombia).

n Table 1 Point estimates, standard deviations for b0, b, s
2
e , correlations between observed and predicted values and MSE of predictions.

Phenotypes were simulated under model (9) with r 2 f0; :5; :75; :90; :95; :99g and then regression models with skew normal (BSN) and
normal errors (BRR) were fitted

Model b̂0 ŝ2
e ŝ2

b û Corðy; ŷÞ MSE

r ¼ 0; r̂ ¼ 0:016 ð0:207Þ
BSN 3.075 (0.854) 2.257 (0.052) 0.003 (0.001) 833.72 0.479 2.441
BRR 3.113 (0.975) 2.207 (0.155) 0.003 (0.001) 627.33 0.531 3.036

r ¼ 0:5; r̂ ¼ 0:075 ð0:270Þ
BSN 3.009 (0.771) 2.218 (0.047) 0.003 (0.001) 803.35 0.648 3.274
BRR 2.991 (0.905) 2.167 (0.133) 0.003 (0.001) 602.89 0.667 2.714

r ¼ 0:75; r̂ ¼ 0:329 ð0:261Þ
BSN 2.972 (0.714) 2.210 (0.048) 0.003 (0.001) 816.71 0.442 2.219
BRR 2.945 (0.828) 2.168 (0.139) 0.003 (0.001) 614.19 0.506 2.154

r ¼ 0:90; r̂ ¼ 0:841 ð0:115Þ
BSN 3.094 (0.821) 2.219 (0.054) 0.003 (0.001) 833.48 0.648 3.112
BRR 3.120 (0.858) 2.175 (0.155) 0.003 (0.001) 621.59 0.676 2.639

r ¼ 0:95 r̂ ¼ 0:943 ð0:023Þ
BSN 3.055 (0.942) 2.270 (0.061) 0.003 (0.001) 872.98 0.662 1.676
BRR 3.067 (0.900) 2.196 (0.169) 0.003 (0.001) 631.79 0.696 1.642

r ¼ 0:99 r̂ ¼ 0:987 ð0:008Þ
BSN 2.830 (1.280) 2.167 (0.056) 0.003 (0.001) 668.16 0.578 2.593
BRR 2.890 (0.878) 2.165 (0.153) 0.004 (0.001) 606.84 0.631 2.893

û ¼ ŝ2
e=ŝ

2
b.
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training set and 20% of observations in the testing set were generated.
The two models were fitted for each of these random partitions; then
the phenotypes of the individuals in the testing set were predicted and
the ability of each model to make predictions was evaluated using
Pearson’s correlation between observed and predicted values. Infer-
ences for each fit were based on 100,000 samples obtained after dis-
carding 50,000 samples that were taken as burn-in. Convergence was
checked by inspecting trace plots of the parameters.

Data and program availability
The data and programs are available as File S1 which corresponds to a
compressed zip folder. The zip folder also contains a description of the
data and commands to read it into the R statistical software.

RESULTS

Monte Carlo Simulation
Table 1 shows point estimates for b0,b, s

2
e and r for the BSN and BRR

models for different values of r. It also shows an estimate of
u ¼ s2

e=s
2
b, a regularization parameter that is widely used in Bayesian

Ridge Regression. Higher values of the parameter are associated with
more shrinkage; note that the estimates of s2

e are very similar in both
models, so small values of s2

b could be associated with more precise
estimates ofb. It is also clear from this table that the point estimates for
b0 and s2

e are very close to the real values used in the simulation. The
correlation between observed and predicted values and the mean
squared error is quite similar for both models and there is no clear
winner. Finally, the algorithm is not able to estimate precisely the
parameter r for distributions that are slightly asymmetric.

Table 2 shows the effective number of parameters pD, the deviance
information criterion (DIC), the correlation between “true” and esti-
mated marker effects and the correlation between “true” and estimated
signals. The table also shows that in general the pD and the DIC (small
is better) favored the BSN model. The correlation between “true” and
estimated marker effects is slightly better for BSN and the difference
between the two models becomes clearer as r increases. The same
pattern is observed for the correlations between true and estimated
genetic signals.

Application to real data

Full data: Table 3 shows estimates of the posterior means of param-
eters s2

e , s
2
b and r, as well as the effective number of parameters ðpDÞ

and the deviance information criterion (DIC). From Table 3 it is clear
that the estimation of marker effects is more precise for the BSNmodel
than for the BRR model; the pD and the DIC also favored the BSN
model. The estimated r parameter also supports the assumption that
the skew normal random error is correct, and that the point estimate is
not around 0, except in the case of San Pedro Lagunillas.

Figure 3 shows scatterplots of the predicted GLS using the BSN and
BRR models. As expected, Pearson’s correlation between both predic-
tions is very high (higher than 0.95). That implies that even when the
data are skewed, if a BRR model is fitted in order to obtain candidates
for selection, we can expect to obtain about the same individuals. Two
models were fitted for each site by BRR and BSN.

Cross-validation: Figure 4 shows scatterplots for Pearson’s corre-
lation between observed and predicted values for individuals in the
testing set obtained after fitting the BSN and BRR models for the
three locations. When the correlations are higher for BSN than for
BRR, this is represented by a filled circle, and by an open circle
otherwise. The figure also shows the number of times Pearson’s
correlation is higher for the BSN than for the BRR model. From
this figure, it is clear that the BSN model predicts slightly better
than the BRR model. Figure 5 shows a scatterplot for the mean
squared errors in the testing set for the three locations. When the
MSE in BSN is smaller than the MSE in BRR, this is represented by
an open circle and by a filled circle otherwise. The number of times

n Table 2 True and estimated posterior mean of r, effective
number of parameters (pD), deviance information criterion (DIC),
correlations between “true” and estimated marker effects and
correlations between “true” and estimated genetic signals;
standard deviations in parentheses. Phenotypes were simulated
under model (9) with r 2 f0; :5; :75; :90; :95; :99g and then
regression models with skew normal (BSN) and normal errors
(BRR) were fitted

Model pD DIC Corðb; b̂Þ CorðXb; Xb̂Þ
r ¼ 0; r̂ ¼ 0:016 ð0:207Þ

BSN 40.794 2206.112 0.192 (0.046) 0.697 (0.116)
BRR 59.573 2212.001 0.193 (0.049) 0.689 (0.115)

r ¼ 0:5; r̂ ¼ 0:075 ð0:270Þ
BSN 80.469 2279.974 0.207 (0.049) 0.718 (0.119)
BRR 91.548 2279.706 0.207 (0.050) 0.714 (0.117)

r ¼ 0:75; r̂ ¼ 0:329 ð0:261Þ
BSN 41.996 2262.930 0.194 (0.051) 0.717 (0.104)
BRR 57.826 2267.114 0195 (0.052) 0.708 (0.104)

r ¼ 0:90; r̂ ¼ 0:841 ð0:115Þ
BSN 76.978 2218.017 0.203 (0.049) 0.718 (0.114)
BRR 96.31 2238.787 0.198 (0.052) 0.706 (0.115)

r ¼ 0:95 r̂ ¼ 0:943 ð0:023Þ
BSN 93.687 2144.77 0.203 (0.046) 0.734 (0.109)
BRR 102.345 2174.32 0.191 (0.047) 0.707 (0.116)

r ¼ 0:99; r̂ ¼ 0:987 ð0:008Þ
BSN 85.465 2151.505 0.216 (0.055) 0.747 (0.098)
BRR 83.422 2276.08 0.196 (0.052) 0.703 (0.109)

n Table 3 Estimates of posterior means of parameters s2
e , s

2
b and r from the full-data analysis of Kakamega, San Pedro Lagunillas and

Santa Catalina for Gray Leaf Spot in 300 tropical inbred maize lines and 1,152 SNPs; standard deviations in parentheses

Site

Parameter

Model ŝ2
e ŝ2

b û pD DIC r̂

Kakamega BSN 0.498 (0.0725) 0.00032 (9e-05) 1726.551 (723.794) 61.257 586.361 0.981 (0.021)
BRR 0.425 (0.073) 0.00053 (0.00014) 901.913 (391.380) 97.367 629.15 —

San Pedro Lagunillas BSN 0.369 (0.079) 0.00093 (0.00019) 425.973 (173.541) 126.833 602.752 0.376 (0.550)
BRR 0.331 (0.069) 0.00104 (0.00019) 339.114 (125.014) 143.06 597.852 —

Santa Catalina BSN 0.518 (0.092) 0.00046 (0.00015) 1331.033 (785.158) 50.072 555.512 0.9226 (0.227)
BRR 0.404 (0.070) 0.00075 (0.00016) 574.862 (199.984) 112.447 595.027 —

û ¼ ŝ2
e=ŝ

2
b:
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that the MSE in BRR is greater than the MSE in BSN is also shown
in the plots. From this figure, it is clear that in general, the MSE for
BRR is greater than the MSE for BSN. Table 4 shows the average

Pearson’s correlation and mean squared error (MSE) between ob-
served and predicted values in the testing set. The averages and the
standard deviations are very similar for both models and the

Figure 3 Scatterplot of predicted Gray Leaf Spot
(GLS) obtained when fitting the BSN model and
the BRR model. In the three cases considered, the
Pearson’s correlation between predictions was
higher than 0.95.

Figure 4 Plots of the predictive correlation for
each of the 100 cross-validations and 3 locations.
When the best model is BSN, this is represented
by a filled circle, and when the best model is BRR,
this is represented by an open circle. The number
of times that Pearson’s correlation in BSN is better
than Pearson’s correlation in BRR is also shown in
the plots.
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differences between the models are non-significant, but the figures
suggest that the BSN model predicts slightly better than the BRR
model.

DISCUSSION AND CONCLUSIONS
We have proposed a Bayesian regression model for skewed responses
with applications when p . .n in the GS context, but it can also be
employed in other cases and, of course, when p , n. In addition, to
generalize linear whole genome regression models for various discrete
distributions (ordinal, binomial, etc.), this study further completes the
Bayesian toolbox for whole genome regression. The proposed model
uses a stochastic representation of a skew normal random variable in
order to facilitate the computations; it also allows using standard
MCMC techniques to fit the proposedmodel. Results of the simulation
and of applications with real data suggest that the proposed model fits
the data better and also predicts slightly better than the standard Ridge
Regression model. The Ridge Regression model is a particular case of
our model when r ¼ 0. On the other hand, our results also suggest that
BRR is a very robustmodel, although in the simulations data we already
knew that it was the wrongmodel to fit; still, the predictive power of the
model was very good. Although the conventional Bayesian whole-ge-
nome regression is robust, it does not correctly deal with skew pheno-
typic data, and this can decrease its genomic-enabled prediction
accuracy and its goodness of fit to the data. Thus, the advantages of
the proposed Bayesian whole-genome regression compensate its com-
plexity and possible increases in computational time as compared to the
conventional Bayesian ridge regression. The model proposed in this
study is conceptually and operationally different, and presumably sim-
pler than the skew-normal linear mixed model of Arellano-Valle et al.
(2005) that uses a multivariate skew-normal distribution in order to
relax normality.

Despite the fact that skewness is a major concern for breeding data
analyses and may often be a result of uneven sampling of “high” and
“low” performing individuals, selection, environmental effects, etc., the
theoretical developments presented in this study are also applicable to
many other areas of research in agronomy and in agriculture in general.
For example, most crop flowering time data are indeed skewed, as well
as categorical data representing different types of diseases as those
presented in this research. So, skewness in phenotypical response can
be the result of an artificial phenomena, the aim of this study was to
propose a statistical model that will be more appropriate to deal with
that problem.

Results of this study can be compared to results of two other studies,
Crossa et al. (2011) and González-Camacho et al. (2012). Crossa et al.

Figure 5 Plots of the mean squared error (MSE) in
the testing set for each of the 100 cross-valida-
tions and 3 locations. When the MSE in BSN is
smaller than the MSE in BRR, this is represented
by an open circle and when the MSE in BRR is
bigger than the MSE in BSN, this is represented
by a filled circle. The number of times that the
MSE in BRR is bigger than the MSE in BSN is also
shown in the plots.

n Table 4 Average of Pearson’s correlation and mean squared
error (MSE) between observed and predicted values in the
testing set. The predictions were obtained after fitting the BSN
and BRR models. The average is across the 100 random
partitions with 80% of observations in the training set and 20%
in the testing set. Standard deviations are given in parentheses

Site

Parameter

Model
Pearson’s
correlation MSE

Kakamega BSN 0.2836 (0.1157) 0.7017 (0.1130)
BRR 0.2609 (0.1163) 0.7187 (0.1212)

San Pedro
Lagunillas

BSN 0.5489 (0.0895) 0.7752 (0.1031)

BRR 0.5450 (0.0887) 0.7804 (0.1064)
Santa Catalina BSN 0.4871 (0.1238) 0.7790 (0.1302)

BRR 0.4804 (0.1220) 0.7685 (0.1338)
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(2011) included one site inMexico (San Pedro Lagunillas) that was also
analyzed by transforming the original GLS ordinal scale using Box-Cox
transformation; the prediction accuracy of differentmodels (e.g., Bayes-
ian Lasso and Reproducing Kernel Hilbert Spaces) ranged from 0.416
to 0.462. Although strict comparison with the results obtained in this
study is not possible because other random cross-validations were gen-
erated, the prediction accuracies of BSN (0.5489) and BRR (0.5450)
models were higher than those previously reported by Crossa et al.
(2011) for the same site.

Stochastic representation can be used to extendReproducingKernel
Hilbert Space (de los Campos et al. 2010) models that in many empir-
ical studies have led to more accurate predictions than Bayesian Ridge
Regression models and Bayesian LASSO, among others (e.g., Pérez-
Rodríguez et al. 2012), so this is a topic for future research. Further
studies to extend the model proposed in this study to include
genotype · environment interaction should not be complicated. The
proposed model can also be extended by assigning different prior dis-
tributions to the marker effects, for example, to induce variable selec-
tion. This could potentially lead to a new Bayesian alphabet with skew
normal random errors.
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APPENDIX A: FULL CONDITIONAL DISTRIBUTIONS

The full conditional distributions of the unknown parameters in the BayesianGenomic RegressionModel with SkewNormal RandomErrors are
given below. The derivation uses results from Bayesian linearmodels (e.g., Sorensen and Gianola, 2002), as well as results from Rusell and González
(2002) and Liseo and Parisi (2013).

The joint posterior distribution is as follows:
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Here we obtain the conditional distribution of each of the elements of the vector b, i.e., pðbj
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S2U þ EU . After simplifying some terms, the right-hand side of the above equation can be written as:
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The above expression is the kernel of a truncated normal distribution with location parameter ry���i and scale parameter 12 r2, lower truncation
bound 0 and upper truncation bound N. In this work, we used the R library truncnorm (Trautmann et al., 2014) to sample from this
distribution.
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4. Residual variance (s2
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Note that pðs2
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elseÞ is a very complex function ofs2
e and its kernel does not correspond to any known univariate density function, so we have to

sample this parameter by Metropolis algorithm or another MCMC technique. Following Hea-Jung (2005), we considered the Random Walk
Metropolis Algorithmwith a de-constraint transformation to samples2
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2
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that the density function of j can be obtained by using the transformation method (Casella and Berger, 2002, Chapter 2), which is given by:
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In the RandomWalkMetropolis Algorithm, we generated j by choosing a proposal transition kernel to add noise to the current state. Assuming
that the actual value of j is jk, and that we wanted to update its value so that in the next iteration we had jkþ1, we followed steps a-c below.

a. Sample j, j ¼ jk þ Z, where Z � Nð0;h2Þ.
b. Sample u, U � Uniformð0; 1Þ.
c. If u, pð jjelseÞ=pð jkjelseÞ; then jkþ1 ¼ j; otherwise jkþ1 ¼ jk.
Once jkþ1 has been obtained, compute s2

e;kþ1 ¼ expðjkþ1Þ. The parameter h2 can be modified so that we have an optimal acceptation rate
(Roberts et al., 1997).
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Note that pðrjelseÞ is a very complex function of r and its kernel does not correspond to any known univariate density function, so we must
obtain samples using theMetropolis algorithm or anotherMCMC technique. Here we propose using Fisher’s (1915) transformation of r defined as
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q ¼ 1
2 log

�
1þr
12 r

�
¼ tanh21ðrÞ, so that q has support in ℝ. Note that the density function of q can be obtained using the transformation method

(Casella and Berger, 2002, Chapter 2), which is given by

pð qjelseÞ} pðrjelseÞ · sech2ðqÞ:

In the RandomWalkMetropolis Algorithm, we generatedq by choosing a proposal transition kernel to add noise to the current state. Assuming
that the actual value of q is qk and that we wanted to update its value so that in the next iteration we had qkþ1, we followed steps d-f below.

d. Sample q, q ¼ qk þ Z, where Z � Nð0; n2Þ.
e. Sample u, U � Uniformð0; 1Þ.
f. If u, pð qjelseÞ=pð qkjelseÞ, then qkþ1 ¼ q; otherwise qkþ1 ¼ qk.
Once qkþ1 has been obtained, compute r ¼ tanhðqkþ1Þ. The parameter n2 can be modified so that we have an optimal acceptation rate

(Roberts et al., 1997).
The samples from the posterior distribution can be obtained using the Gibbs Sampler (Geman and Geman, 1984) and the Random Walk

Metropolis algorithm. In the algorithm, we sampled each of the fully conditional distributions until we obtained a sample of the desired size. We
implemented the algorithm in the R Statistical package (R Core Team, 2016). In order to speed up computations, the routines that sample from
pðbj



elseÞ, j ¼ 1; . . . ; p were implemented in C programming language (Kernighan and Ritchie, 1988), a shared library was generated and then the
compiled routines were used in R. The R script and the C source code are available upon request from the first author.

APPENDIX B: SETTING THE HYPER-PARAMETERS FOR THE PRIOR DISTRIBUTIONS

Thehyper-parameters canbe set using a set of default rules similar to thoseused in theBGLR software (de losCampos et al., 2013; Pérez andde los
Campos 2014). With these rules we assigned proper but weakly informative prior distributions so that we partitioned the total variance of the
phenotypes into two components: (1) the error and (2) the linear predictor, that is:
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ij. So from (B.1) and (B.2), the partition of the phenotypic variance is given by:
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Setting the hyper-parameters for x22ðs2
bjSb; dfbÞ

In the parametrization used in this work, Eðs2
bjSb; dfbÞ ¼ Sb

dfb 2 2 andModeðs2
bjSb; dfbÞ ¼ Sb

dfbþ2.We set dfb=5 so that the prior distribution has a
finite mean. From equation (B.2),

s2
b ¼ Vg

MSx
; (B.4)

thus, if we replace the left-hand side of (B.4) with the mode of s2
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From (B.5) and solving for Sb, we obtain Sb ¼ Vg · ðdfbþ2Þ
MSx . From the definition of heritability, h2 ¼ Vg=Vy , so that Vg ¼ h2Vy ; then:
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Once we set dfb;we can set Sb, and we only need to compute the phenotypic variance ðVyÞ,MSx and set R2 as the proportion of the variance that
is explained a priori by the markers. By default we set R2 ¼ 0:5.

Setting the hyper-parameters for x22ðs2
e jSe; dfeÞ

In the parametrization used in this work, Eðs2
e jSe; dfeÞ ¼ Se

dfe 2 2 and Modeðs2
e jSe; dfeÞ ¼ Se

dfbþ2,
we set dfe ¼ 5 and Se ¼ ð12R2ÞVy · ðdfe þ 2Þ.

Setting the hyper-parameters for Nðb0j0;s2
b0
Þ

We set s2
b0

¼ 1 · 106 so that the prior assigned to the intercept is effectively a flat one.

Setting the hyper-parameters for pðrja0; b0Þ
The density function of the prior assigned to r is:
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Figure B.1 shows the density function of r for different values of the parameters a0; b0. Setting different values for those hyper-parameters could
lead to a rich variety of shapes, just as in the Beta distribution. Note that if we set a0 ¼ b0 ¼ 1, then we obtain a Uniformð21; 1Þ prior that
corresponds to the one used in this work.

Figure B.1 Density function of a Beta type random variable with support in the interval ð21;1Þ for different values of parameters a0;b0.
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