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Objective: To investigate whether pre-treatment CT-derived radiomic features could be

applied for prediction of clinical response to neoadjuvant chemotherapy (NACT) in locally

advanced cervical cancer (LACC).

Patients and Methods: Two hundred and seventy-seven LACC patients treated

with NACT followed by surgery/radiotherapy were included in this multi-institution

retrospective study. One thousand and ninety-four radiomic features were extracted

from venous contrast enhanced and non-enhanced CT imaging for each patient. Five

combined methods of feature selection were used to reduce dimension of features.

Radiomics signature was constructed by Random Forest (RF) method in a primary cohort

of 221 patients. A combined model incorporating radiomics signature with clinical factors

was developed using multivariable logistic regression. Prediction performance was then

tested in a validation cohort of 56 patients.

Results: Radiomics signature containing pre- and post-contrast imaging features

can adequately distinguish chemotherapeutic responders from non-responders in

both primary and validation cohorts [AUCs: 0.773 (95% CI, 0.701–0.845) and 0.816

(95% CI, 0.690-0.942), respectively] and remain relatively stable across centers. The

combined model has a better predictive performance with an AUC of 0.803 (95%

CI, 0.734–0.872) in the primary set and an AUC of 0.821 (95% CI, 0.697–0.946) in

the validation set, compared to radiomics signature alone. Both models showed good

discrimination, calibration.

Conclusion: Newly developed radiomic model provided an easy-to-use predictor

of chemotherapeutic response with improved predictive ability, which might facilitate

optimal treatment strategies tailored for individual LACC patients.

Keywords: locally advanced cervical cancer (LACC), radiomics, neoadjuvant chemotherapy, response

prediction, CT
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INTRODUCTION

Locally advanced cervical cancer (LACC) suffer from high risks
of treatment failure (1). Neoadjuvant chemotherapy (NACT)
followed by radical hysterectomy is increasingly applied as
alternative to standard chemoradiotherapy for LACC in some
countries as NACT could shrink tumor volume and render
unresectable tumors operable (2, 3). Recent evidence further
revealed comparable oncological outcome between NACT-
surgery and chemoradiotherapy for stage IB2-IIB cervical
cancer, indicating optimal treatment decision relied upon
quality of life (4). NACT is beneficial in controlling micro-
metastasis and potentially improves patients’ quality of life by
preserving sexual capacity and ovarian function (5, 6). Moreover,
pathological optimal responders could even exhibit survival
benefit without need for post-operative adjuvant treatments
(7, 8). However, chemotherapeutic non-responders suffer from
disease progression and experience worse prognosis due to
delay in definite therapies (9, 10). Therefore, clinical use of
NACT for LACC should be more precise and individualized.
Only chemotherapeutic responders can be candidates for
preoperative NACT, whereas non-responders should directly
undergo chemoradiotherapy avoiding ineffective therapies.
Therefore, an overwhelming need to discover pretherapy
predictors of NACT response to stratify LACC patients to
appropriate therapies.

Immunohistochemical markers identified by measuring
alterations in protein expression from tumor tissue samples
(pre- and post-chemotherapy) are relatively unreliable due to
lack of validation and conflicting results in various studies (11,
12). Some proposed genomic, proteomic predictive signature
are limited by small sample size and high cost of examination
(13, 14). Several pioneer studies demonstrated quantitative
parameters derived from pre- and post-treatment functional
imaging of LACC patients were powerful markers to non-
invasively predict early therapeutic response to NACT (15,
16). These quantitative parameters allow for characterizing
tumor biological process during NACT. However, post-treatment
nature limits its extensive utility in therapy decision.

Radiomics, an emerging approach for image interpretation,
can non-invasively predict treatment response solely by
radiographic examination (17). Radiomics can profile tumor
heterogeneity of different responders by extracting extensively
quantitative features that reflect underlying pathophysiology
from medical images (18). In fact, radiomics has proved
to perform well in prognosis prediction of cervical cancer
treated with chemoradiotherapy using PET/CT and MRI
images (19). Moreover, pretherapy computed tomography (CT)
radiomics also managed to predict response to neoadjuvant
chemoradiotherapy for locally advanced rectal cancer (20).
Furthermore, Li et al. pilot study successfully applied pre-
treatment CT radiomics in predicting pathological response after
neoadjuvant chemotherapy in locally advanced gastric cancers
(21). In light of this, radiomics is promising for pre-therapy
prediction of response to NACT for LACC.

CT is widely used for pre-treatment staging of cervical cancer
(22, 23). Investigation regarding the feasibility of pretreatment

CT-based radiomics for prediction of NACT response in LACC
has not yet reported. Meantime, limited reproducibility in multi-
center context remain a crucial bottleneck in widespread use of
radiomics in clinic. Thus, the aim of the study is to establish
and validate an effective pretherapy CT-based radiomic model
for predicting response to NACT while testify stability and
reproducibility of radiomic features and models on a multi-
center basis.

MATERIALS AND METHODS

Patients
This retrospective study was approved by institutional review
board of Nanfang Hospital, Southern Medical University with
informed consent obtained from all participants. The study was
conducted according to the Declaration of Helsinki and was
based on data collected in 10 centers from January 2009 to June
2018. In total, 277 consecutive patients with locally advanced
cervical cancer underwent neoadjuvant chemotherapy with pre-
treatment CT data were included (Figure 1). Eligibility criteria
include: (1) Histologically diagnosis of squamous cell carcinoma
of the uterine cervix. (2) Patients with clinical stage IB2–III
cervical cancer (FIGO 2009) (24). (3) Initial treatment with
NACT followed by radical surgery or radiotherapy without any
previous therapy. (4) Pre-treatment pelvic CT images. Exclusion
criteria are as follows: (1) Underwent preoperative neo-
adjuvant concurrent radiotherapy together with chemotherapy.
(2) Patients had other malignancy besides cervical cancer. (3)
Patients lacking all necessary CT sequences, either venous phase
or non-contrast CT images. (4) Patients received only one cycle of
preoperative chemotherapy but had insufficient tumor shrinkage
that recognized as “stable disease” by RECIST1.1 Criteria. The
enrolled 277 patients were randomly divided into a primary
cohort of 221 patients (mean age, 48.75 ± 7.94 years; range, 27–
69 years) and an independent validation cohort of 56 patients
(mean age, 46.36 ± 9.29 years; range, 27–67 years). Both cohorts
have comparable ratios of non-responders versus responders.
Baseline clinic-pathologic data including age, FIGO stage, HPV
infection status, tumor size, and level of SCC antigen before/after
chemotherapy were derived from medical records.

Neoadjuvant Chemotherapy
All the patients received preoperative neoadjuvant chemotherapy
intra-arterially or intravenously. Pre-treatment CT examinations
were performed within 1 week before the first cycle of
NACT. Tumor volume was carefully assessed by gynecological
examination together with either transvaginal ultrasound, pelvic
MRI, or CT scan at the start of each chemotherapy cycle
and 3 weeks after treatment. Final tumor size was confirmed
in postoperative tumor pathology. Compared to pre-treatment
evaluation, patients with sufficient tumor shrinkage to qualify
for operation underwent radical hysterectomy after one cycle
of chemotherapy. Patients with insufficient tumor shrinkage for
operation had additional 1–2 cycles of chemotherapy at 21-days
intervals. Surgery was performed within 21–28 days after the
completion of the last cycle. Radiotherapy was performed for
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FIGURE 1 | Patient population and exclusions.

patients who had progressive diseases or adverse side effects due
to the toxicity of anti-tumor agents during or after NACT.

At the present study, multicentric patients had distinct
courses of NACT. Thirty-six patients received only one
cycle of intra-arterial chemotherapy, which cisplatin (60–75
mg/m2)/carboplatin (300 mg/2)+bleomycin (45mg) was the
most adopted program(61.1%). Two hundred and forty-one
patients underwent platinum-based combination chemotherapy
intravenously, consisting of 1 (103 cases), 2 (124 cases), or 3
(14 cases) courses of treatment. Two hundred and eleven of
Two hundred and forty-one (87.5%) patients were treated with
paclitaxel (135–175mg/m2) or docetaxel (60–70mg/m2) plus any
kinds of platinum regimens. Details are presented in Table A6.

Assessment of Response
The short-term response was evaluated by change in tumor
size according to Response Evaluation Criteria In Solid Tumors
(RECIST v. 1.1) as follows: complete response (CR) was defined
as eradication of cervical lesion; partial response (PR) (a ≥30%
decrease in the longest tumor diameter); progressive disease
(PD) (a ≥20% increase in the longest diameter (LD) of tumor)
and stable disease (SD) as the decrease or increase of LD of
the cervical lesion was less than PR or PD (25). Many studies
proposed two cycles of NACT were adequate for LACC patients
to obtain optimal efficacy with relatively low adverse reactions
(9, 26). Based on various treatment courses in the study, we
set up new response evaluation criteria especially for upcoming
radiomic analysis as following: For patients with CR or PR by
RECIST (v.1.1) within two cycles of treatment are recognized
as “responder” (chemo-sensitive). Whereas, those still with PD
or SD after two cycles of chemotherapy were deemed as “non-
responder” (chemo-insensitive) regardless of final treatment
cycles. Thus, there were 201 responders and 76 non-responders
among the qualified 277 consecutive patients (Table A1).

CT Feature Extraction and Selection
Pre-treatment non-contrast and venous contrasted enhanced CT
images at 1.5–3mm thickness for each case were retrieved from
the image-archiving workstation. The whole tumor volume of
each patient was manually segmented as region of interest (ROI)
by a radiologist via the ITK-SNAP software (www.itksnap.org).
As contour of large tumor mass were better visible on contrast-
enhanced images. ROI were first drawn on each transverse slice
of pelvic venous phase images then applied to non-contrast
images. The reproducibility of extracted features from ROIs
were ensured through inter- and intra-observer reproducibility
evaluation (detailed in the Appendix 1).

In order to get a standard normal distribution of image
intensities, each slice of CT images was normalized with z-score.
Features were extracted from ROIs of non-contrast and venous
enhanced CT using MATLAB R2016b software, respectively.
Four groups of features were extracted for each modality:
17 first order statistical features, 8 shape features, 54 texture
features and 568 wavelet features (Appendix 2; Table A3). The
extracted features are reproducible and match the benchmarks
of IBSI (27, 28). Ultimately, a total of 1,294 features were
extracted from each patient. Each feature of patients was
also normalized with z-score to remove the effect of different
CT scanners.

The strategy of feature selection was as follow: Firstly, we
selected features with an inter-class correlation coefficients (ICC)
greater than 0.85, which usually have good reproducibility. Then,
five methods were used to further select predictive features of
response, including recursive feature elimination based on a
support vectormachine (SVM-RFE), least absolute shrinkage and
selection operator (LASSO), extremely randomized trees (ET),
random forest (RF), and ridge regression. The parameters of each
method were determined by grid search with five-fold cross-
validation. Ultimately, we selected ones that were repeatedly
appeared as the most predictive features among all five methods
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TABLE 1 | Characteristics of patients in the primary and validation cohorts.

Characteristics Primary cohort p Validation cohort p

Responder Non-responder Responder Non-responder

Age, mean ± SD, years 48.75 ± 7.94 47.87 ± 8.56 0.244 46.80 ± 9.29 43.60±9.72 0.264

FIGO STAGE

IB2 65 (40.63%) 13 (21.31%) 0.010* 19 (46.34%) 2 (13.33%) 0.064

IIA2 45 (28.13%) 17 (27.87%) 14 (34.15%) 7 (46.67%)

IIB-III 50 (31.25%) 31 (50.82%) 8 (19.51%) 6 (40.00%)

total 160 (72.40%) 61 (27.60%) 41 (73.21%) 15 (26.79%)

Maximum tumor diameter (cm) 5.13 ± 0.97 5.12 ± 1.35 0.111 5.10 ± 0.81 5.42 ± 0.98 0.209

CT-reported lymphatic status (%) 0.001* 0.763

LN-positive 46 (28.75%) 33 (54.10%) 20 (48.78%) 8 (53.33%)

LN-negative 114 (71.25%) 28 (45.90%) 21 (51.22%) 7 (46.67%)

Fisher Exact tests or Chi-Square were applied to compare the differences in categorical variables (CT-reported lymphatic status, pre-treatment FIGO stage). Two-sample t-test was

used to compare the differences in age, pre-treatment maximum diameter of tumor. Abbreviations: LN, lymph nodes detected by CT.*P < 0.05.

to be the optimal radiomic features. Feature selection was first
performed in the primary cohort and stored the name of the
selected features. Then, we selected the features with stored
names in validation cohort.

Building and Validation of Radiomic
Signature
For constructing radiomics signature, a RF model was used
to predict NACT response. The model was trained on the
primary cohort, and parameters of the model were set by grid
search with five-fold cross-validation. In the process of training
the model, the synthetic minority over-sampling technique
(SMOTE) was applied to expand the ratio between responders
and non-responders to 1, so that the model was not affected
by the sample rate and does not bias to either side during the
learning experience. The association of radiomic features with the
response of NACT was first assessed in primary cohort, and then
validated in validation cohort.

Construction and Validation of Combined
Model
To verify whether prediction performance will be improved
when adding clinical information, a multivariable logistic
regression model was constructed combining radiomics
signature with clinical factors. Clinical candidates include
age, FIGO stage and maximum diameter of tumor. Akaikes
information criterion (AIC) was adopted to select optimal
clinical factors.

After completing model construction, a nomogram was
employed to provide a quantitative tool to predict individualized
probability of response. For assessing the performance of the
model, calibration curves were applied to assess capabilities in
primary and validation cohorts, where the curves were used to
describe the difference in predictive and actual probability of
response. Hosmer-Lemeshow test was adopted to calculate p-
value to represent the fit degree of predictive and actual curves.
Besides, clinical usefulness of the combined model is determined
by decision curve analysis. It is created by plotting net benefit at
various threshold probability.

For comparing the performance between the combined
model and radiomics signature, Integrated Discrimination
Improvement (IDI) was calculated to quantificationally describe
the increment of accuracy between the two models. Study
flowchart is displayed in Figure 2A.

Statistical Analysis
The process of statistical analysis was performed on R
software (version 3.5.1; https://www.r-project.org). P < 0.05 was
considered to indicate a statistically significant difference and the
p-value was bilateral.

RESULTS

Clinical Characteristics
Patient characteristics in primary and validation cohorts are
given in Table 1. Of the 277 enrolled patients, there were 201
responders (72.56%) and 76 non-responders (27.43%). Median
age of the patients was 48 [40–56] years. There are no significant
differences between the two cohorts in age and maximum tumor
diameter. Primary cohort consisted of 160 responders (72.40%)
and 61 non-responders (27.60%) while validation cohort had 41
responders (73.21%) and 15 non-responders (26.79%). CT based
LN metastasis positivity was 28.75 and 48.78% in primary and
validation cohorts, respectively. Each cohort has a relative equal
ratio of different FIGO stages.

Feature Selection
A total of 1294 features were extracted from non-contrast
and venous enhanced CT images. Eight hundred and sixty-
three features of ICC > 0.85 was reserved for further feature
selection. The details of selected features by five methods were
presented in Table A4. Finally, six features that repeatedly
appeared in five series of the subset of features were selected
(Table A5). The comparison of these features between different
centers was shown in Figure 3. Because the number of
patients is scattered among 10 hospitals, we only selected two
hospitals with the largest number of patients for comparison.
Results revealed that there are no significant differences in the
distribution of five characteristics extracted from non-contrast
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FIGURE 2 | A schema for radiomics pipeline. (A) Flowchart of the study. One thousand and twenty-four features were extracted from pre-therapy CT scans. Both

extracted radiomic features of non-contrast and venous enhanced images are pooled as part of following feature selection analysis. After chosen by five different

feature selection methods, the final top predictive features were then constructed as radiomics signature by Random Forest. Finally, radiomics signature and clinical

factors were combined into a nomogram. (B) Difference of quantitative radiomic features and predictive probability between chemotherapy responder vs.

non-responder. Left images are their corresponding pre-therapeutic CT non-enhanced and venous enhanced images. ROIs are drawn in a purple circle. Right graph

indicated the value of radiomic features and predictive probability derived from radiomics signature.

TABLE 2 | Performance of radiomics signature and the combined model.

ACC (95% CI) AUC (95% CI) IDI (95% CI) p-value

Primary cohort Radiomics signature 78.28% (73.30–83.26%) 0.773 (0.701–0.845) 0.102 (0.055–0.150) 2.000e−5

Combined model 80.54% (76.02–85.07%) 0.803 (0.734–0.872)

Validation cohort Radiomics signature 80.36% (69.64–89.29%) 0.816 (0.690–0.942) 0.168 (0.032–0.304) 1.516e−2

Combined model 82.14% (73.21–89.29%) 0.821 (0.697–0.946)

Radiomics signature composed of 6 selected features and constructed by Random Forest method. The combined model incorporated radiomics signature with clinical factors (FIGO

stage and age). ACC represents the accuracy of prediction, where ACC describes the percentage of the number of accurately predictive patients and total patients. AUC is the acronym

of the area under the curve. 95%CI means a 95% confidence interval. IDI is acronym of Integrated Discrimination Improvement, which is for depicting the difference of two models.

CT images between hospitals (P > 0.05) while the distribution of
“HHL_glrlm_SRHGLE” feature derived from venous-enhanced
images showed slight difference (P = 0.02).

Construction and Validation of Radiomic
Signature
An RF model with Gini criterion was constructed using the
top features. The performance of model was first assessed

in primary cohort, and then validated in the validation
cohort. As shown in Table 2, radiomics signature yielded
good performance with an AUC of 0.773 (95% CI, 0.701–
0.845) and an accuracy of 78.28% (95% CI, 73.30–83.26%)
in primary cohort while achieved an AUC of 0.816 (95%
CI, 0.690–0.942) and an accuracy of 80.36% (95% CI,
69.64–89.29%) in validation cohort. There were difference in
corresponding quantitative values of radiomic features between
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FIGURE 3 | Probability density function of features between centers. Comparison of the six derived features between two hospitals with largest numbers of patients

revealed no significant difference exist in the five features from non-contrast CT images (glcm_correlation, LLH_glcm_entropy, HLL_glrlm_GLN, LHH_glcm_IDMN,

glcm_homogeneity1) (P > 0.05). “HHL_glrlm_SRHGLE” features from venous-enhanced images showed slight difference. P values are for Mann-Whitney U-test.

non-responders and responders extracted from CT images
(Figure 2B).

Construction and Validation of Combined
Model
The combined model was constructed incorporating radiomics
signature, age and FIGO stage while presented as a nomogram
(Figure 4A). The calibration curves of the combined model

in both primary and validation cohorts showed a good fit
between predictive probability of response and actual response
rate (Figure 4B). Non-significant statistics of the accompanied
Hosmer-Lemeshow test (primary cohort: p = 0.396; validation
cohort: p = 0.604) implied the model was adequately calibrated
without departure from the ideal model. Decision curve
demonstrated that the application of the model in clinical
decision-making could achieve greater benefits (Figure 4C).
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FIGURE 4 | Nomogram developed with the combined model and calibration curves, decision curve analysis for the combined model. (A) The developed nomogram.

(B) Calibration curve of the combined model in the primary and validation cohorts. The middle gray line represents a perfect prediction. The blue line represents the

performance of the combined model. Better prediction is demonstrated by a closer fit of the blue line to the grayline. (C) Decision curve analysis for the combined

model. The y-axis depicts the net benefit. The blue line represents the combined model. The grayline represents the assumption that all patients have response of

NACT. The black line is the opposite.

Comparison of Radiomics Signature and
Combined Model
The combined model achieved adequate discrimination
performance with AUC of 0.803 (95% CI, 0.734–0.872) and AUC
of 0.821 (95% CI, 0.697–0.946) in the primary and validation
cohorts respectively. In terms of predictive performance,
the combined model yielded significant improvement
compared to radiomics signature alone (Figure 5; Table 2).
Besides, the classification accuracy of the combined model
estimating response probability was also superior to sole
radiomics signature in both the primary [80.54% (95% CI,
76.02–85.07%)] and validation cohorts [82.14% (95% CI,
73.21–89.29%)], respectively.

DISCUSSION

In the present study, we successfully established and validated
a radiomic signature by pooling together non-enhanced and
venous enhanced CT imaging features for predicting response

to NACT in LACC using multicenter data set. This six-
features radiomics signature can discriminate responders in
both the primary (AUC: 0.773) and validation cohort (AUC:
0.816). Moreover, the combined model incorporating radiomics
signature and two clinical factors (age, FIGO stage) achieved
better performance than radiomic signature alone.

Genomic heterogeneity affect treatment response in
LACC. Different responders of neoadjuvant chemotherapy
in LACC exhibit diverse genomic profile (29). Twenty-seven-
predictive gene signature has been identified to be qualified
for distinguishing responders from non-responders in LACC
patients treated with concurrent chemoradiotherapy (30).
Previous research argued that radiomics could quantify
intra-tumor heterogeneity, reflecting underlying tumor gene-
expression patterns through the spatial arrangement of imaging
voxels (31). Indeed, in the presented study, the established
radiomics signature was comprised of six key features describing
intratumor voxel patterns (textures) that non-invasively captured
intratumor heterogeneity of different responders. “Gray-level
co-occurrence matrix” (GLCM) -correlation is a measure of
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FIGURE 5 | Receiver Operating Curve (ROC) of the models in each cohort. (A) ROC in primary cohort. (B) ROC in the validation cohort. The middle gray curve

represents the dividing line with AUC of 0.5.

linear dependency of grayscale while GLCM-homogeneity
measures local gray level uniformity of the image. As shown
in the Figure 2B, local gray level of responder’s images is
relatively uniform with a larger value of GLCM-homogeneity
while signal-intensity variations seem more apparent in non-
responder images. “glrlm_GLN” feature is informative for
gray level non-uniformity, which shows significant higher
value in chemotherapeutic non-responder (32). Note that
radiomic features (LHH_glcm_IDMN, LLH_glcm_entropy,
HHL_glrlm_SRHGLE) were generated from decomposing
original images through using a coiflet wavelet transformation,
which at multiple scales could further reflect tumor spatial
heterogeneity. This quantitative radiomic features may reflect
tumor hetergenous histopathological patterns that are associated
with different treatment response such as intratumoral necrosis,
vascularization, cellular density (33).

In addition, in order to evaluate the stability and consistency
of the established radiomic model, we combined patients from
different hospitals to construct two extra radiomic signature as
independent validation (Table A2). Only <4% difference was
observed between two groups in both training and validation
sets (no significant power). Meantime both groups showed good
predictive performance, consistent to the model established in
the article (Figure A1). This result revealed that our model
performed stable between different centers, and it was not
affected by patient composition of the training set. Moreover, the
reproducibility of derived radiomic features was also robust on
a multi-center basis, backed by evidence that after comparison
between two hospitals with largest numbers of patients, five of the
six features remained stable. Noticeably, the features extracted
from non-enhanced CT images were still reliable despite scan-
related parameters variation.

Evaluated by AIC methods, adding FIGO stage to radiomics
signature enhanced predictive power whereas primary tumor
maximal diameter failed. Strikingly, age, a characteristic that
rarely proposed to influence treatment response, showing value
in model improvement. Consistent with Zhou et al. argument
that age might affect NACT efficacy to some extent in cervical
cancer (34). The combined model uses a nomogram as a
noninvasive and easy-to-use tool for individualized prediction of
response to NACT. It simply requires conventional pretreatment
CT scans and basic clinical information that readily accessible
before the initiation of definitive therapy. Moreover, the
features extracted from images in this study were strictly
implemented according to the IBSI reference standard to
improve the reproducibility.

With its convenience and high predictive accuracy of NACT
response, the model could have several clinical implications.
The model could facilitate the optimization of individualized
LACC initial treatment planning. In fact, according to the
identification of chemo-sensitivity, physicians can select
chemotherapy-sensitive patients to undergo NACT followed
by surgery, whereas, chemotherapy-insensitive patients are
subject to radiotherapy instead. This not only benefits young
patients in preserving ovarian function and sexual capacity
but also improves survival outcome. Recently, NACT has been
explored as an approach to fasten the initiation of treatment
before access to radiation in some countries with insufficient
radiation equipment (35). Radiomic model may assist in
identifying qualified patients to undergo NACT before radiation.
Moreover, this pre-treatment radiomic model might be of
value in predicting response to chemotherapeutic response
in metastatic cervical cancer, helping to determine whether
alternative treatment approaches might be more appropriate.
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Further clinical implementation of this convenient model could
potentially accelerate the progress of personalized medicine in
hope of improving the prognosis of LACC patients.

The major shortcoming in our model is the lack of important
clinicopathologic predictive biomarkers such as Ki-67, P53, P
protein, especially pretreatment serum SCC antigen. It is largely
due to heterogeneous clinical data that was retrospectively
collected from different centers. Further researches incorporating
pretreatment biomarkers in radiomic model development is
needed. Another limitation is that the model can only be effective
in squamous cell carcinoma. As various histological type of
cervical cancer contributes to distinct chemosensitivity, training
cohort only consisted of cases of squamous cell carcinoma
for assuring data homogeneity for radiomic analysis. Other
histologic subtypes of cervical cancer such as adenocarcinoma,
neuroendocrine are unsuitable for model implementation.
External validation from a larger dataset of multicentric LACC
patients undergoing NACT ought to be applied in justifying the
reproducibility and robustness of our proposed radiomic model.

CONCLUSION

Pretreatment CT-based radiomic combined model has the
best predictive performance for NACT response with radiomic
signature remain relatively stable across centers. It may serve
as effective and convenient imaging-based predictors that help
in patient risk stratification and improved candidate selection
for neoadjuvant chemotherapy, facilitating the individualized
treatment strategies tailored for LACC patients.
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