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Review

Introduction

Plant fungal diseases and biotrophic, hemibiotrophic, and 
necrotrophic pathogens

Plant fungal diseases represent a worldwide threat to food 
security and ecosystem health.1 Based on their lifestyle, plant-
pathogenic fungi have been classified as biotrophs, hemi-bio-
trophs, and necrotrophs. Biotrophic pathogens must obtain 
nutrients from living host cells and tissues and often secrete 
limited amounts of cell wall-degrading enzymes and effectors 
to suppress the host immune system.2 In contrast, necrotrophic 
pathogens thrive on the dead host tissues that they kill before or 
during colonization; to induce cell necrosis, they often secrete 
phytotoxic secondary metabolites (SMs) and peptides, and pro-
duce reactive oxygen species (ROS).3 Hemi-biotrophic pathogens 
display a biotrophic phase early during infection and display a 
necrotrophic phase only later; these pathogens produce toxins 
only at late stages in order to kill the host cells and complete their 
life cycle on dead tissues.3

Necrotrophs can be further divided into host-specific and 
broad host-range species. Host-specific necrotrophs produce host-
specific toxins (HSTs) that are toxic only to host plants of the 
fungus. Host-specific necrotrophs include Cochliobolus carbonum 

(causal agent of northern corn leaf spot), C. heterostrophus (causal 
agent of southern corn leaf blight), C. victoriae (causal agent of 
Victoria blight of oats), Parastagonospora nodorum (previously 
Stagonospora nodorum,4 causal agent of Stagonospora nodorum 
blotch of wheat), and Pyrenophora tritici-repentis (causal agent 
of tan spot of wheat). The archetypical broad host-range fun-
gal necrotrophs are Botrytis cinerea, Alternaria brassicicola, 
Plectosphaerella cucumerina, and Sclerotinia sclerotiorum.

Necrotrophic pathogens cause severe economic losses in 
agriculture

The economic impact of necrotrophic pathogens on agricul-
ture was highlighted by a recent survey.5 The report indicated 
that the losses in wheat and barley in Australia resulting from tan 
spot and Stagonospora nodorum blotch, both of which are caused 
by necrotrophic pathogens, significantly exceeded losses resulting 
from wheat rusts and mildews, which are caused by biotrophic 
pathogens. In addition, the necrotroph B. cinerea infects almost 
all vegetable and fruit crops and annually results in worldwide 
losses of $10 to $100 billion. It is clearly important to develop 
effective methods to control plant diseases caused by necrotro-
phic fungi. Knowledge on the mechanism of pathogen virulence 
and host immune responses is most relevant to future manage-
ment of necrotrophic pathogens.

Plant innate immunity
Because they lack somatic adaptive immune systems, plants 

depend solely on innate immunity to cope with pathogens
.
6-8 

Regardless of the lifestyle of the attacking pathogen, the plant 
innate immune system has two layers: pathogen-associated 
molecular pattern (PAMP)-triggered immunity or PTI, and 
effector-triggered immunity or ETI. PTI is the first layer of innate 
immunity and is initiated in plants when PAMPs are recognized 
by pattern recognition receptors (PRRs); such recognition trig-
gers a relatively weak but broad-spectrum immune response to 
pathogen infection. In contrast, ETI (the second layer of innate 
immunity) is induced by direct or indirect recognition of highly 
variable pathogen avirulence effectors by host disease-resistance 
(R) proteins; the recognition in this case leads to a rapid and 
robust response that is often referred to as a hypersensitive reac-
tion (HR).

Plant immune responses to necrotrophs may be similar to or 
different from plant immune responses to biotrophs depending 
on the pathogen species and the primary determinant of viru-
lence. In the case of necrotrophs, plant immune systems are very 

*Correspondence to: Guo-Liang Wang; Email: wang.620@osu.edu
Submitted: 05/15/2014; Revised: 06/24/2014; Accepted: 07/01/2014; 
Published Online: 07/17/2014: http://dx.doi.org/10.4161/viru.29798

The role of effectors and host immunity  
in plant–necrotrophic fungal interactions

Xuli Wang1, Nan Jiang1,2, Jinling Liu2, Wende Liu1, and Guo-Liang Wang1,3,*

1State Key Laboratory for Biology of Plant Diseases and Insect Pests; Institute of Plant Protection; Chinese Academy of Agricultural Sciences; Beijing, PR China;  
2Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization and College of Agronomy; Hunan Agricultural University; Changsha, Hunan, PR China; 

3Department of Plant Pathology; Ohio State University; Columbus, OH USA

Keywords: effectors, necrotrophic fungi, innate immunity, defense response, PRR and epigenetic modification

Fungal diseases pose constant threats to the global econ-
omy and food safety. As the largest group of plant fungal 
pathogens, necrotrophic fungi cause heavy crop losses world-
wide. The molecular mechanisms of the interaction between 
necrotrophic fungi and plants are complex and involve sophis-
ticated recognition and signaling networks. Here, we review 
recent findings on the roles of phytotoxin and proteinaceous 
effectors, pathogen-associated molecular patterns (PAMPs), 
and small RNAs from necrotrophic fungi. We also consider the 
functions of damage-associated molecular patterns (DAMPs), 
the receptor-like protein kinase BIK1, and epigenetic regula-
tion in plant immunity to necrotrophic fungi.
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complex and reflect the multiplicity of necrotroph virulence 
mechanisms targeting diverse host cellular processes. Plants have 
evolved effective immune responses to counter the “pro-death” 
virulence strategies of necrotrophic fungi. Recent research has 
increased our understanding of the recognition events and 
defense signaling processes in necrotroph–host interactions. In 
this review, we highlight the recent advances in elucidating the 
roles of immune-related molecules from both necrotrophic fungi 
and plants in various plant pathosystems (Fig. 1).

Effector-Triggered Immunity to Necrotrophic Fungi

Gene-for-gene resistance to necrotrophic fungi is rare in 
plants. The semibiotrophic fungus Leptosphaeria maculans dis-
plays a gene-for-gene relationship with both Brassica napus and 
Arabidopsis.9 Using a microarray-based cloning strategy, research-
ers identified the RLM3 locus on chromosome 4 of Arabidopsis.10 

RLM3 encodes a putative Toll interleukin-1 receptor-nucleotide 
binding (TIR-NB) class protein. Interestingly, the rlm3 mutant 
not only loses resistance to L. maculans but also exhibits enhanced 
susceptibility to the necrotrophic fungi B. cinerea, A. brassici-
cola, and A. brassicae. A 3:1 segregation of resistance against A. 
brassicicola, A. brassiciae, and B. cinerea was observed in the F

2
 

population, indicating that RLM3 is a single dominant gene that 
governs resistance to these necrotrophic pathogens. The effector 
of RLM3 in the necrotrophic pathogens and the function of the 
RLM3 gene in response to these pathogens are unknown.

Effector-Triggered Susceptibility  
to Necrotrophic Fungi

In a broad sense, effectors are defined as any pathogen pro-
teins and small molecules that can alter the structure and func-
tion of host cells.11 Effectors of necrotrophic pathogens include 

Figure 1. The major immune signaling pathways in the interaction between necrotrophic fungi and plants. The effector victorin binds to the host viru-
lence target Trx-h5, which activates the NBS-LRR protein LOV1-mediated susceptibility to Cochliobolus victoriae. The transcription of Trx-h5 is regulated 
by the transcription factor YY1 through the interaction with the mediator MED18. In addition, the chaperone SGT1 is required for victorin-mediated cell 
death by affecting the accumulation of LOV1.ToxA-triggered susceptibility to necrotrophic pathogens is governed by an R-like protein Tsn1. PtrToxA 
targets to a chloroplastic protein ToxABP1 and this interaction may trigger ToxA-mediated cell death. Moreover, a pathogenesis-related protein PR-1–5 
is a potential target of SnToxA and the interaction between PR-1–5 and ToxA may mediate ToxA-induced necrosis in sensitive wheat. Three effectors, 
AG1IA_09161, AG1IA_05310 and AG1IA_07795, secreted by Rhizoctonia solani are delivered into rice cells and induce cell death in rice. Two major LysM-
containing receptor-like kinases AtLYK1 and AtLYK4 perceive the PAMP chitin to induce a PTI response. AtLYK1 and AtLYK4 positively regulate Arabidopsis 
resistance to necrotrophic fungi. However, AtLYK3 as a negative regulator in Arabidopsis modulates the resistance to the necrotrophic fungi depending 
on PAD3. The PAMPs PG and SCFE1 are recognized by the Arabidopsis LRR-RLP RBPG1 and RLP30, respectively, to trigger an Arabidopsis PTI response. 
SOBIR1 is required for the activation of RBPG1- and RLP30-mediated immune response. SCFE1-triggered immune responses also require the LRR-RLK 
BAK1. The DAMPs OGs, PEP1, PSKα and PSY1 are perceived by the PRRs WAK1, PEPR1/PEPR2, PSKR1 and PSY1R, respectively. DAMP and PRR recognition 
can trigger immune responses and may overlap with PAMP-triggered immunity. In particular, the Arabidopsis peptide Pep1 triggers immunity through 
the receptor kinases PEPR1 and PEPR2. PEPR1 directly phosphorylates BIK1 and BAK1 to activate downstream signaling. Some small RNAs delivered by 
Botryits cinerea into host cells can bind to the Arabidopsis RNA interference machinery and suppress host immune responses. The TIR-NB RLM3 protein 
shows a gene-for-gene resistance relationship to the semibiotrophic fungus Leptosphaeria maculans and three necrotrophic fungi B. cinerea, A. bras-
sicicola, and A. brassicae although the cognate effector needs to be determined.
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phytotoxins and traditional proteinaceous effectors (Table  1). 
Phytotoxins can be either non-HSTs that affect a broad range of 
plant species or HSTs that affect only a particular plant species or 
more often genotypes of that species.53,54 Based on their chemical 
structure, phytotoxins are commonly classified as polyketides, 
nonribosomal peptides, alkaloids, terpenes, or metabolites of 
mixed biosynthetic origin.55 So far, the protein effectors found in 
necrotrophs don’t have a conserved domain like the RXLR motif 
in oomycetes.56

ETI is triggered by the recognition of pathogen effectors by 
plant R proteins, a recognition that leads to a HR and localized 
host cell death.57 As a consequence, biotrophic pathogens, which 
require living host tissues, fail to survive and infect. Interestingly, 
HSTs secreted by necrotrophic fungi activate R protein-medi-
ated ETI to cause HR cell death, which leads to effector-trig-
gered susceptibility (ETS), as is the case for the cyclic peptide 
HST victorin that is produced and secreted by C. victoriae. 
Pathogenesis by C. victoriae, the causal agent of Victoria blight 

Table 1. Overview of effectors of necrotrophic fungi

Pathogen Effectors Structure Plant target R gene References

Parastagonospora nodorum SnToxA Protein Chloroplasts, ToxABP1 Tsn1 12 and 13

P. nodorum SnTox1 Protein Probably chloroplasts Snn1 14 and 15

P. nodorum SnTox2 Protein Probably chloroplasts Snn2 16

P. nodorum SnTox3 Protein Unknown Snn3 17

P. nodorum SnTox4 Protein Probably chloroplasts Snn4 18

P. nodorum SnTox5 Protein Unknown Snn5 19

Pyrenophora tritici-repentis PtrToxA Protein Chloroplasts, ToxABP1 Tsn1 12, 13, 20, 
and 21

P. tritici-repentis PtrToxB Protein Probably chloroplasts Tsc2 22

Alternaria alternata AM-toxin Cyclic depsipeptide Plasma membrane and chloroplasts Unknown 23 and 24

A. alternata AAL-toxin Aminopentol ester Asc Unknown 25 and 26

A. alternata AT-toxin Unknown Unknown Unknown 27 and 28

A. alternata AF-toxin Epoxy-decatrienoic acid Unknown Unknown 29 and 30

A. alternata AK-toxin Epoxy-decatrienoic acid Unknown Unknown 27 and 31

A. alternata ACT-toxin Epoxy-decatrienoic acid Unknown Unknown 32

A. alternata ACR-toxin Polyketide ACRS Unknown 33–35

Cochliobolus heterostrophus T-toxin Linear polyketide URF13 Unknown 36 and 37

C. carbonum HC-toxin Cyclic tetrapeptide HDACs Unknown 38

C. victoriae victorin Cyclic chlorinated pentapeptide Unknown LOV1 39 and 40

Rhynchosporium commune NIP1 A phytotoxic protein Plasma membrane H+-ATPase Rrs1 41–43

R. commune NIP2 Protein Unknown Unknown 41

R. commune NIP3 A glycoprotein Plasma membrane H+-ATPase Unknown 41 and 42

Botrytis cinerea NEP1-like Protein Cell membranes and nuclear 
envelope

Unknown 44

Mycosphaerella zeae-maydis PM-toxin Linear polyketide URF13 13-KDa mitochondrial protein Unknown 45

Periconia circinata PC toxin Unknown Unknown PC 46

Sclerotinia sclerotiorum SSITL Integrin protein Unknown Unknown 47

S. sclerotiorum Ss-caf1 Protein with a putative Ca2+-binding 
EF-hand motif

Unknown Unknown 48

S. sclerotiorum SSV263 A hypothetical secreted novel 
protein

Unknown Unknown 49

S. sclerotiorum Sspg1d Endopolygalacturonases IPG-1 Unknown 50 and 51

R. solani AG1IA_09161 Protein with a glycosyltransferase GT 
family 2 domain

Unknown Unknown 52

R. solani AG1IA_05310 Protein with a cytochrome C oxidase 
assembly protein CtaG/cox11 
domain

Unknown Unknown 52

R. solani AG1IA_07795 Protein with a peptidase 
inhibitor I9 domain

Unknown Unknown 52
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of oats, is determined by its production of victorin.58,59 Victoria 
blight exclusively appeared on oat plants carrying the R gene Pc2, 
which is associated with disease resistance to the biotrophic fun-
gus Puccinia coronate.60 HST victorin sensitivity is dominated by 
the Vb R gene in oats. The results of many genetic and mutagenic 
efforts to separate Pc2 and Vb suggest that Pc2 and Vb are the 
same gene.61-64 Susceptibility of Arabidopsis to C. victoriae is medi-
ated by the NBS-LRR R protein LOCUS ORCHESTRATING 
VICTORIN EFFECTS1 (LOV1).39

TRX-h5, a defense-associated thioredoxin, is required for 
victorin sensitivity mediated by LOV1 in Arabidopsis, and the 
trx-h5 mutant is insensitive to victorin.65 In LOV1’s absence, 
victorin inhibits TRX-h5, resulting in compromised defense 
but no disease symptoms after C. victoriae infection. In LOV1’s 
presence, the binding of victorin to TRX-h5 activates LOV1 
and elicits a HR-like response that confers susceptibility to C. 
victoriae. Recently, Lai et al.66 confirmed that the transcription 
of the TRX-h5 gene is repressed by the transcription factor YIN 
YANG1 through the interaction with mediator MED18. The 
chaperone SGT1 (SUPPRESSOR OF G2 ALLELE OF SKP1), 
which affects the accumulation of R proteins, is also involved in 
victorin-mediated cell death resulting from the reduced accumu-
lation of LOV1 protein.67 In addition, the silencing of six genes 
that encode different metabolic enzymes in Nicotiana benthami-
ana suppresses the LOV1-mediated, victorin-induced cell death. 
Simultaneously, cell death induced by a closely related RPP8 R 
gene is also suppressed due to silencing of these six genes.67

The proteinaceous HST ToxA is produced by two fungal 
pathogens of wheat, P. nodorum and P. tritici-repentis.12,20,68 The 
ToxA gene was originated in P. nodorum and was only recently 
transferred to P. tritici-repentis through interspecies hybridiza-
tion69,70 The dominant Tsn1 allele in wheat confers susceptibility 
to ToxA.12,71 In P. tritici-repentis, PtrToxA activates host responses 
that are typically observed in resistance responses to biotrophic 
pathogens, thereby providing additional evidence that necrotro-
phic pathogens such as P. tritici-repentis subvert host resistance 
mechanisms to cause disease.72-74 Recently, Du et  al.75 demon-
strate the induction of the monoamine serotonin in wheat after 
SnToxA infiltration. As a phytoalexin, serotonin can inhibit spor-
ulation of P. nodorum by interfering with spore formation and 
maturation within pycnidial structures.75 PtrToxA targets to the 
chloroplastic protein ToxABP1 and this interaction may induce 
alterations in photosystems I and II leading to a light-dependent 

accumulation of ROS in chloroplasts that disrupts their photo-
synthetic capacity and triggers PCD.13,14,73 In addition, PR-1–5, 
a dimeric PR-1-type pathogenesis-related protein, is a potential 
target of ToxA, and the site-specific interaction between PR-1–5 
and ToxA may mediate ToxA-induced necrosis in sensitive 
wheat.76 How the ToxABP1 and PR-1–5 mediate ToxA-induced 
necrosis remain to be investigated.

PAMP-Triggered Immunity to Necrotrophic Fungi

PAMPs are conserved microbe-specific molecules or sig-
natures that activate the plant defense response in a manner 
analogous to the way in which molecules trigger an immune 
response in animals.77 PAMPs are often structural components 
of the pathogen cell wall or other conserved macromolecules.78 
As noted earlier, PAMPs are perceived by PRRs, which are cur-
rently divided into receptor-like kinase proteins (RLKs) and 
receptor-like proteins (RLPs). RLKs have a cytoplasmic kinase 
domain that participates in intracellular signal transduction and 
an extracellular domain that is potentially responsible for ligand 
perception. RLPs have structures similar to RLKs but lack the 
cytoplasmic kinase domain. Plant resistance against necrotrophic 
pathogens with a broad host range is considered to be complex 
early in the research. Recent studies showed that the plant resis-
tance to necrotrophs also involves PRR perception of PAMPs 
(Table 2). The following examples demonstrate the relevance of 
PTI in resistance against necrotrophic fungi.

Chitin
 Chitin perception and signaling has been well characterized 

in Arabidopsis. Chitin perception depends on the lysin motif 
(LysM)-containing receptor-like kinases such as LysM RLK1/
CHITIN ELICITOR RECEPTOR KINASE 1 (AtLYK1/
AtCERK1). Arabidopsis resistance against an incompatible fun-
gus, A. brassicicola, was partly impaired in the AtLYK1/AtCERK1 
mutant.79,80 The lysM domain directly binds to chitin, and the 
intracellular kinase domain is responsible for the activation of 
the downstream signaling.79,80 The binding of chitin to the LysM 
motif induces the dimerization of AtCERK1, which is essential 
for the downstream response signaling.87 In addition, AtLYK4 
binds to chitin and is required for full induction of chitin sig-
naling; the lyk4 mutant confers enhanced susceptibility to the 
necrotrophic fungus A. brassicicola.81

Table 2. Overview of PAMPs/DAMPs of necrotrophic fungi and plant pattern recognition receptors (PRRs)

Molecule PAMP/DAMP Structure PRR PRR structure Target References

Chitin PAMP A polymer of 
N-acetyl-D-glucosamine

AtCERK1/ AtLYK4 LysM receptor kinase ? 79–81

PGs PAMP Enzyme RBPG1 Leucine-rich repeat receptor-like protein SOBIR1 82

SCFE1 PAMP Peptide RLP30 Receptor like protein BAK1/
SOBIR1

83

Pep1/Pep2 DAMP Peptide PEPR1/ PEPR2 Leucine-rich repeat protein kinase ? 84 and 85

OGs DAMP A polymer of 1,4-linked 
α-D-galacturonic acid

WAK1 Wall-associated kinase1 ? 86

PSKα and PSY1 DAMP The tyrosine-
sulfated peptides

PSKR1 Phytosulfokine (PSK) receptor ? 110 and 111
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There are five LYK genes (AtLYK1/AtCERK1, AtLYK2, 
AtLYK3, AtLYK4, and AtLYK5) in Arabidopsis. In contrast to 
the other members of the Arabidopsis LYK gene family, AtLYK3 
is transcriptionally repressed in response to B. cinerea infection 
and to treatments with different elicitors, including chitin.88-90 
The atlyk3 mutant shows increased expression of basal levels 
of defense-related genes and enhanced resistance to B. cine-
rea. Furthermore, the enhanced resistance of atlyk3 to B. cine-
rea depends on the increased expression of PHYTOALEXIN 
DEFICIENT 3 (PAD3), a defense-related gene that is regulated 
by fungal infection and elicitors independently of SA-, JA-, and 
ethylene-mediated pathways.88 In addition, AtLYK3 is a posi-
tive regulator of ABA signaling, which is involved in the plant 
immune response to necrotrophic fungi.91 These results demon-
strate that AtLYK3 regulates the cross talk between immunity 
and ABA responses.91

Fungal endopolygalacturonases
Fungal endopolygalacturonases (PGs) act as 

PAMPs that are recognized by the Arabidopsis LRR-
RLP RBPG1 (RESPONSIVENESS TO BOTRYTIS 
POLYGALACTURONASES1). Infiltration of B. cinerea PGs 
into the Arabidopsis accession Columbia induced necrotic cell 
death. Coimmunoprecipitation experiments demonstrated that 
RBPG1 and PG form a complex in Nicotiana benthamiana, 
which also involves the Arabidopsis leucine-rich repeat receptor-
like protein SOBIR1 (for SUPPRESSOR OF BIR1).82 PGs do 
not induce necrosis in sobir1 mutant plants, and PG-induced 
resistance to Hyaloperonospora arabidopsidis is compromised in 
such plants.82

SCLEROTINIA CULTURE FILTRATE ELICITOR1 
(SCFE1)

Recently, the novel proteinaceous elicitor SCFE1 was iden-
tified in the necrotrophic fungal pathogen S. sclerotiorum.83 Its 
corresponding receptor in Arabidopsis is the RECEPTOR LIKE 
PROTEIN30 (RLP30). The rlp30 mutant is more susceptible 
than the wild type to both S. sclerotiorum and B. cinerea. In 
addition, SCFE1-mediated immunity is dependent of the recep-
tor-like kinase BRASSINOSTEROID (BR) INSENSITIVE1-
ASSOCIATED RECEPTOR KINASE1, BAK1, and SOBIR1/
EVR. Double mutants of bak1 and sobir1 are more susceptible 
to S. sclerotiorum and the related fungus B. cinerea than the wild 
type.83

Three new PAMP effectors identified from Rhizoctonia 
solani

The fungus Rhizoctonia solani is an important soil-borne, 
necrotrophic pathogen with a broad host range.1 R. solani is the 
causal agent of the sheath blight of rice, a disease that causes 
severe yield losses in many rice-growing areas. There is little 
effective resistance against R. solani in rice or other crop plants. A 
large and diverse set of secreted proteins, enzymes of primary and 
secondary metabolism, carbohydrate-active enzymes, and trans-
porters were identified from the draft sequence of the AG1 IA 
strain of R. solani.52 Among the 25 candidate pathogen effectors, 
three secreted effectors, AG1IA_09161 (glycosyltransferase GT 
family 2 domain), AG1IA_05310 (cytochrome C oxidase assem-
bly protein CtaG/cox11 domain), and AG1IA_07795 (peptidase 

inhibitor I9 domain) caused cell death phenotypes after inocula-
tion in rice. In addition, these effectors show host-specific toxin 
characteristics for different hosts (rice, maize, and soybean). 
These results demonstrate that the three effectors are delivered 
into rice cells and might play a role in inducing cell death in rice 
during infection. How these effectors are delivered into rice cells 
and the identity of their host targets, however, remain unknown.

Damage-Associated Molecular Pattern (DAMP)-
Triggered Immunity

DAMPs are endogenous molecules with elicitor activity and 
are released from host cellular components during pathogen 
attack or abiotic stress. Well-characterized DAMPs include oligo-
galacturonides (OGs), peptides, and cutin monomers (Table 2). 
The responses triggered by DAMPs largely overlap with those 
activated by PAMPs. For instance, transcript profiling of seed-
lings treated with OGs and flg22 revealed an extensive overlap of 
responses at least during the early stages after treatments.89

Oligogalacturonides
Researchers have speculated that OGs are derived from the 

degradation of a major component of pectin in plant cell walls by 
microbial polygalacturonases during infections or by the action 
of endogenous polygalacturonases that are induced by mechani-
cal damage.92,93 OGs elicit a wide range of defense responses, 
including an oxidative burst,94 accumulation of phytoalexins,95 
an increase of glucanase, and chitinase activity,96,97 deposition of 
callose,98 increased hormone biosynthesis,89 and enhanced resis-
tance to B. cinerea.88 Cell wall-associated receptor kinases have 
historically been considered potential receptors of OGs because 
of their ability to bind to OGs in vitro.99 WAK1, a member of 
the wall-associated kinase family, acts as a receptor of OGs as 
revealed by a receptor domain-exchange approach.86 The EF-Tu 
receptor (EFR) is a LRR receptor kinase for the bacterial PAMP 
elf18.96 The chimeric receptor by fusing the extracellular domain 
of WAK1 with the kinase portion of EFR is able to activate the 
kinase domain in response to OGs.86,100 On the other hand, after 
the treatment with the cognate ligand elf18, the EFR ectodo-
main activates the WAK1 kinase that triggers defense responses 
similar with those activated by OGs and effective against fungal 
and bacterial pathogens. In addition, WAK1 overexpression in 
Arabidopsis increases resistance to B. cinerea.86,101

Peptides
In Arabidopsis, Peps, the small peptides derived from PROPEP 

genes, act as DAMPs. Six members of the PROPEP family are 
transcriptionally induced by pathogen infection and by PAMPs 
like elf18 and flg22.102,103 By binding to the promoter of the 
W-boxes, WRKY-type transcription factors are the major regula-
tors of PAMP-induced PROPEP2 and PROPEP3 expression.104 
Perception of Peps by the LRR receptor kinases PEPR1 and 
PEPR2 amplifies the immune response.84,85 The importance 
of the Pep immune signaling pathway is indicated by the find-
ing that PEPR can activate the PTI response.105 The impor-
tance of the Pep immune signaling pathway has been further 
demonstrated that PEPR1 specifically interacts with BIK1 and 
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PBS1-like 1 (PBL1) to mediate Pep1-induced defenses and both 
PEPR1 and PEPR2 directly phosphorylate BIK1 in response to 
Pep1 treatment. In addition, PEPR1, and PEPR2 were found 
to interact with BAK1.106 The pepr1/pepr2 double-mutant has 
a reduced sensitivity to ethylene (ET) and confers susceptibil-
ity to B. cinerea, demonstrating an important role of PEPRs in 
the ET-mediated defense response to necrotrophic pathogens.107 
In addition, a recent study indicated that PEPRs are required to 
connect local immunity to systemic immunity by reinforcing the 
separate defense signaling pathways.108

Phytosulfokine receptor
Phytosulfokines (PSKs) are secreted sulfated pentapeptides 

that have been purified from plant cell culture media.109 PSKα, 
a bisulfated five-amino acid peptide, and PSY1, an 18-amino 
acid sulfated and glycosylated peptide, are perceived by LRR-
RLK receptors PSKR1 (phytosulfokine receptor) and PSY1R, 
which are involved in plant growth and development.110,111 The 
Arabidopsis pskr1 plants showed enhanced PTI against the bacte-
rial pathogen Pseudomonas syringae, suggesting that PSKRs are 
involved in PAMP responses.112 Similarly, Mosher et al.111 deter-
mined that PSKα and PSY1 are involved in the PAMP-mediated 
defense. pskr1 and psyr1 mutants exhibit enhanced defense gene 
expression and heightened resistance to the biotrophic pathogen 
P. syringae. Conversely, pskr1 mutants showed enhanced sus-
ceptibility to the necrotrophic fungus A. brassicicola. Molecular 
analysis revealed that the mutants accumulate elevated levels of 
salicylate, enhance the transcription of salicylic acid (SA) respon-
sive or inducible pathogenesis-related genes, but repress the 
expression of jasmonic acid (JA)-responsive genes. These find-
ings are consistent with the antagonistic effect of SA and JA on 
biotrophic and necrotrophic pathogen resistance. Integration 
of PSKα and PSY1 signaling in plant development and defense 
may involve the interactions between different phytohormones. 
Further investigation about hormone crosstalk in PSKα/PSY1 
signaling is needed to determine the causal relationships in this 
complex network.111

Fungal Small RNAs as a Novel Type of Effector  
for Suppression of Plant Immunity

In most eukaryotic organisms, small RNAs regulate many 
biological processes, including development, stress responses, 
metabolism, and maintenance of genome integrity. Accumulating 
evidence has revealed that small RNAs play critical roles in 
plant–microbe interactions.113,114 A recent, surprising finding is 
that pathogen small RNAs and the host RNA silencing machin-
ery are important in the B. cinerea–plant interaction.115 The 
authors found that some B. cinerea small RNAs (Bc-sRNAs) 
can bind to the Arabidopsis Argonaute 1 (AGO1), a component 
of the RNA interference machinery, and selectively silence host 
immunity genes.115 The ago1 mutant confers reduced susceptibil-
ity to B. cinerea while the B. cinerea mutant that could not pro-
duce these Bc-sRNAs had reduced pathogenicity on Arabidopsis 
and tomato. These results demonstrate that the necrotrophic 

pathogen B. cinerea can deliver “virulent” small RNAs into host 
cells and that such small RNAs function as effectors that sup-
press plant immunity.

The Functions of the Receptor-Like Kinase BIK1  
in PTI to Necrotrophs

BIK1, a receptor-like cytoplasmic kinase in Arabidopsis, is 
induced early during infection by B. cinerea and plays an essen-
tial role in mediating plant resistance to necrotrophic patho-
gens.116 BIK1 is also a positive regulator in plant immunity as a 
component of the FLS2-BAK1 immune receptor complex and 
is directly phosphorylated by BAK1.117,118 The ligand-binding 
to FLS2 recruits BAK1, forming active receptor complexes.117 
The activation of these receptors results in a rapid phosphory-
lation of BIK1, which then dissociates from the receptor com-
plexes to activate downstream signaling. BIK1 also associates 
with several RLKs including BRI1, elongation factor-Tu receptor 
(EFR), and the LysM-RK CERK1, DAMP peptide 1 receptor 
(AtPEPR1).107,118 Lin et al.119 show that BIK1 acts as a negative 
regulator in BR signaling because the bik1 mutant displays vari-
ous BR hypersensitive phenotypes. A recent study shows that 
BIK1 directly interacts with and phosphorylates RBOHD upon 
PAMP perception, which is critical for the PAMP-induced ROS 
burst and antibacterial immunity.120 These results indicate that 
BIK1 acts as a central regulator of defense signals in that it inte-
grates PAMP, DAMP, ET, and BR signals from multiple surface-
localized receptors. However, it is not known how signals from 
distinct receptors are integrated to activate an overlapping set of 
downstream defense responses.

A recent study indicates that BIK1 is a dual-specific kinase 
and that both tyrosine and serine/threonine kinase activity are 
essential for its function in Arabidopsis innate immunity.121 The 
difference in BIK1 phosphorylation by BAK1 and BRI1 may 
account for the distinct functions of BIK1 in different signaling 
pathways. It will be interesting to determine whether tyrosine 
phosphorylation activity is required for BIK1 function in BR 
and ET signaling. In addition, more experiments are needed to 
determine whether the multiple functions of BIK1 are achieved 
through different phosphorylation sites mediated by different 
receptors or co-receptors.

Epigenetic Regulation of Plant Innate Immunity  
to Necrotrophic Fungi

A growing body of evidence shows that epigenetic mecha-
nisms, including DNA methylation and histone modifications, 
play important roles in plant defense responses.122-125 RNA-
directed DNA methylation (RdDM) is a small interfering 
RNA-mediated epigenetic modification that induces de novo 
methylation of cytosines at the target genomic regions and leads 
to transcriptional gene silencing.122,126 Lopez et  al. identified 
NRPD2, which encodes the subunit of the plant-specific RNA 
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Polymerases IV and V (Pol IV and Pol V); these polymerases 
are important components of the RdDM pathway and have been 
implicated in immune responses.123 The nrpd2 mutants are more 
susceptible than the wild type to the necrotrophic pathogens B. 
cinerea and P. cucumerina. Studies on other defective mutants 
related to the RdDM pathway suggest that Pol V is required for 
plant immunity to necrotrophs.123

Histone modifications are also involved in the regulation of 
defense genes.127 For example, HISTONE DEACETYLASE19 
(HDA19) modulates the resistance to A. brassicicola by medi-
ating the JA and ET signaling pathways.124 Interestingly, some 
toxins produced by necrotrophic pathogens can inhibit his-
tone deacetylases and thereby suppress immune responses and 
facilitate infection.128-130 For example, the necrotrophic patho-
gen C. carbonum produces HC toxins that induce histone 
hyperacetylation in maize.129 A. brassicicola produces the toxin 
depudecin, which can also inhibit histone deacetylase. In addi-
tion, the histone methyltransferase SET DOMAIN GROUP8 
(SDG8)-mediated histone H3 lysine 36 methylation is required 
for basal and R protein-mediated resistance to necrotrophs and 
biotrophs.126,131

Furthermore, HISTONE MONOUBIQUITINATION1 
(HUB1), a RING E3 ligase that ubiquitinates histone H2B, has 
been proved to regulate plant resistance to necrotrophic fungi.125 
HUB1 can interact with MED21, which is a subunit of the 
Arabidopsis mediator and an evolutionarily conserved transcrip-
tional cofactor complex in all eukaryotes. MED21 is involved 
not only in immune responses to necrotrophs but also in embryo 
development.125 Several mediator subunits in Arabidopsis (MED8, 
MED15, MED16, MED18, and MED25) are also implicated in 
resistance to necrotrophs and/or biotrophs.66,132-134 It remains 
unclear, however, how these mediator components and chroma-
tin modification regulate resistance.

Summary Points

1. Toxin effectors from necrotrophic fungi can target a host’s 
central signal regulator to trigger R gene-mediated resistance and 
to thereby increase host susceptibility to attack by necrotrophic 
fungi.

2. Chitin, PGs, SCFE1, and other PAMP effectors secreted 
by necrotrophic fungi can be recognized by RLPs or RLKs, and 
such recognition triggers a series of PTI responses.

3. Although necrotrophic fungi can secrete enzymes that 
degrade the host cell wall, some of the degradation products, i.e., 
DAMPs, act as elicitors that trigger host immune responses.

4. By binding to the host RNAi machinery, small RNAs deliv-
ered by necrotrophic fungi into host cells can act as virulence 
effectors that suppress host immune responses.

5. Although PAMPs/DAMPs are initially recognized by dis-
tinct upstream PRRs, the immune signaling pathways triggered 
by those PRRs may converge on a central regulator like BIK1 
and SOBIR1.

6. By regulating the expression of defense genes, epigen-
etic modifications, including DNA methylation and histone 

modifications, play important roles in plant immunity to necro-
trophic fungi.

Future Issues

1. To date, RLM3, a TIR domain-encoding gene in 
Arabidopsis, is the only cloned R gene that is involved in broad-
range immunity to necrotrophic fungal pathogens. Identifying 
additional R genes in host plants and their corresponding aviru-
lence effector genes from necrotrophic fungi will provide new 
insights into plant immunity against this group of important 
fungal pathogens.

2. Although the mechanisms by which effectors are translo-
cated into host cells during infection have been elucidated for 
biotrophic/hemibiotrophic plant pathogens, further research is 
required to determine how necrotrophic fungal effectors enter 
host cells.

3. Although a few PRRs targeted by effectors have been char-
acterized, additional effector targets should be identified and 
their functions in plant innate immunity to necrotrophic fungi 
should be determined.

4. Small RNAs from B. cinerea have been identified as a 
new type of effector that suppresses the host innate immunity. 
As additional necrotrophic fungi are sequenced in the next few 
years, new small RNAs with similar effector functions will be 
identified.

5. BIK1 is a central regulator connecting plant development to 
immune responses through its function in ET signaling. It will 
be interesting to determine how diverse biological processes are 
integrated in a way that increases plant fitness in dynamic envi-
ronments that provide only limited resources.

6. So far, only a few gene promoters that are targeted by epi-
genetic regulators have been described. Genome-level binding 
studies will be required to identify gene promoters that are tar-
geted by epigenetic regulators during infection. Similarly, it will 
be important to determine the specific epigenetic modifications 
that occur after the recognition of PAMP or DAMP effectors and 
to establish the direct relationship to the plant immune response.

7. Although recent advances in the understanding of necro-
trophic fungal and plant interactions have been substantial, few 
breakthroughs have been exploited for practical application. It 
is imperative that we begin to use this new understanding of 
pathogen effectors and R genes for the development of sustain-
able resistance to necrotrophic fungi.
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