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Abstract
Objective
To determine whether theGNAQR183Qmutation is present in the forme fruste cases of Sturge-
Weber syndrome (SWS) to establish a definitive molecular diagnosis.

Methods
We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQmutation in
tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular
or cutaneous manifestations.

Results
Low levels of theGNAQmutation were detected in the brain tissue of all 4 cases—ranging from
0.42% to 7.1% frequency—but not in blood-derived DNA. Molecular evaluation confirmed the
diagnosis in 1 case in which the radiologic and pathologic data were equivocal.

Conclusions
We detected the mutation at low levels, consistent with mosaicism in the brain or skin
(1.0%–18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of
SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful
where conventional diagnosis is uncertain.
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Sturge-Weber syndrome (SWS) is a rare, sporadic neuro-
cutaneous disorder that occurs in 1 in 20,000 newborns,
typically characterized by brain pathology—
leptomeningeal angiomatosis (LMA), cortical atrophy and
calcification, and layer 1 fusion—port-wine stain, and
vascular glaucoma.1 Clinical manifestations and severity
are heterogeneous with drug-resistant epilepsy, hemi-
paresis and cognitive impairment the most common neu-
rologic features, glaucoma the most frequent ocular
presentation, and port-wine stain the predominant der-
matological feature.1 Sometimes, the characteristic men-
ingeal lesions of SWS are seen without skin or ocular
features2,3—this is referred to as forme fruste of SWS, or
sometimes type III SWS, and diagnosis can be challenging.

A somatic mosaic mutation (c.548G>A; p.R183Q) of the
GNAQ gene that disrupts the activity of the encoded gua-
nosine triphosphatase is present in classic SWS and also in
patients who only have a port-wine stain.4 This mutation
was found in studies from different populations to be
present in the brain or skin of more than 80% of patients.4,5

Enrichment of this mutation in endothelial cells of both
SWS skin and brain specimens,6,7 and SWS brain paren-
chyma not affected by LMA,6 has also recently been
reported.

Droplet digital PCR (ddPCR) is an ultra-sensitive technique
recently reported for detection of the SWS mutation.5,7 It
uses microfluidics and surfactant chemistries to emulsify
input DNA into thousands of uniformly sized droplets and
then to amplify them with fluorescently labeled TaqMan
probes before measuring fluorescence on a droplet reader, as
we and others have previously described.8,9 Based on fluo-
rescence intensity, the number of mutation-positive and
wild-type templates is quantified to calculate the frequency
of a mutant allele. Here, we used this approach to screen 4
patients with forme fruste SWS including 1 in which the di-
agnosis was equivocal.

Methods
Patients
We ascertained 4 patients with forme fruste SWS through our
epilepsy surgery programs at Austin Health, Royal Children’s
Hospital, Melbourne, and the Lady Cilento Children’s Hos-
pital, Queensland, Australia. Genomic DNA was extracted
from the brain using the DNA Genotek PrepIt 2CD Kit
(Ontario, Canada) or Qiagen AllPrep DNA/RNA Kit and
peripheral blood using the Macherey-Nagel NucleoBond CB
100 Kit (Duren, Germany) or Qiagen QIAamp DNA Maxi
Kit (Hilden, Germany).

Standard protocol approvals, registrations,
and patient consents
The Human Research Ethics Committees of The Royal
Children’s Hospital, Melbourne, Australia (project no.
29077F), and Austin Health, Melbourne, Australia (project
no. H2007/02961), approved this study. Informed consent
was obtained from the patients, or their parents in the case of
minors, for participation in the study.

Droplet digital PCR
We used a commercially available ddPCR Mutation De-
tection Assay (ID: 10049047; Bio-Rad, Hercules, CA) to
detect the GNAQ c.548G>A (p.R183Q) mutation and
wild-type allele. Briefly, the ddPCR reaction mixture was
assembled from a 2× ddPCR Supermix for Probes (No
dUTP; Bio-Rad), 20× ddPCR Mutation Detection Assay,
and 10 ng of DNA sample to a final volume of 23 μL. Twenty
microliters of each reaction mixture was then loaded into the
sample well of an 8-channel droplet generator cartridge
(Bio-Rad), and droplets were generated with 70 μL of
droplet generation oil (Bio-Rad) using the manual QX200
Droplet Generator. Following droplet generation, samples
were manually transferred to a 96-well PCR plate, heat-
sealed, and amplified on a C1000 Touch thermal cycler using
the following cycling conditions: 95°C for 10 minutes for 1
cycle, followed by 40 cycles at 94°C for 30 seconds and 55°C
for 60 seconds, 1 cycle at 98°C for 10 minutes and 12°C for
infinite. Post-PCR products were read on the QX200 droplet
reader (Bio-Rad) and analyzed using QuantaSoft software.
We established the detection limit of the ddPCR assay by
serially diluting mutant samples with wild-type DNA to
obtain different mutant/(mutant + wild-type) ratios: 5%,
1%, 0.5%, 0.25%, and 0.1%. These mixed DNA samples were
subjected to ddPCR as described above.

Results
Clinical report
Four patients presented during childhood with forme fruste or
SWS type III with drug-resistant epilepsy (table 1) and LMA
on MRI and histopathology (figures 1, A–C and 2, A–C,
figure e-1, links.lww.com/NXG/A48, table 1), without port-
wine stains. Fresh-frozen (cases 1, 2, and 4) or formalin-fixed
paraffin-embedded (case 3) brain tissue was available fol-
lowing epilepsy surgery. The diagnoses of SWS type III for
cases 1, 2, and 4 were definitive based on imaging and path-
ologic data (figure 1, A–C, figure e-1, links.lww.com/NXG/
A48, table 1). In case 3, the diagnosis was less certain, as CT
and MRI showed calcification in the left occipital region
posteroinferiorly without convincing focal atrophy (figure 2,
A and B, table 1). Pathologically, in the subarachnoid plane,

Glossary
ddPCR = droplet digital PCR; LMA = leptomeningeal angiomatosis; SWS = Sturge-Weber syndrome.
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a small vascular malformation was seen with some arterial
features, coupled with underlying parenchymal calcification
and cortical dyslamination (figure 2C, table 1).

Mutation detection in the brain-derived
genomic DNA by ddPCR
We established the detection limit for the GNAQ mutation
detection ddPCR by assaying serially mixed mutant and wild-
type samples in triplicate. The mutant allele at a frequency
≥0.25% was consistently detected, while detection of the
mutant allele at 0.1% was only achieved in 2 of the 3 wells
(figure e-2, links.lww.com/NXG/A48, table e-1). Thus, the
detection limit in our hands was 0.25% mutant allele

frequency, comparable with a previously reported limit
(0.1%) for a similar assay.5

Genomic DNA isolated from the resected brain tissue and
that from the peripheral blood were analyzed using ddPCR.
The GNAQ p.R183Q mutant allele was detected only in ge-
nomic DNA extracted from the brain tissue (7.1% frequency
in case 1, 5.8% in case 2, 2.1% in case 3, and 0.42% in case 4)
but not in genomic blood-derived DNA from 3 patients
(figures 1, D, E and 2, D, E, figures e-1, e-3 to e-7, links.lww.
com/NXG/A48). Blood-derived DNAwas not available from
case 3. It should be noted that although very low, the 0.42%
mutant allele frequency of case 4 was above our established

Table 1 Clinical characteristics of forme fruste cases of Sturge-Weber syndrome

Case
Leptomeningeal
angiomatosisa

Seizure
onset
(mo) Seizure types Surgery

Age at
surgery
(y)

GNAQ R183Q, frequency
(%) of themosaicmutation

1 Definite 10 Focal impaired awareness seizures;
left hemiclonic seizures

Right temporo-parieto-
occipital disconnection

5 7.1

2 Definite 9 Right hemiclonic; focal impaired
awareness seizures; myoclonic,
atonic

Left temporo-parieto-
occipital disconnection

2 5.8

3 Subtle 20 Focal impaired awareness seizures;
tonic-clonic

Left occipital
lesionectomy

21 2.1

4 Definite 12 Focal impaired awareness seizures;
tonic-clonic

Left functional
hemispherotomy

7 0.42

a Based on imaging and histopathologic analyses.

Figure 1 Imaging, histopathology, and molecular evaluation of case 1 with definite leptomeningeal angiomatosis

(A) Precontrast T1-weighted axial
MRI scan showing right temporal
and occipital atrophy and right
occipital cortical calcification. (B)
Postcontrast T1-weighted axial
MRI scan showing leptomeningeal
enhancement. (C) Hematoxylin
and eosin–stained image of the
neocortex showing a small area of
densely clustered leptomeningeal
vessels. (D) Identification of the
wild-type GNAQ allele in green
(present in the brain and blood) by
digital PCR. (E) Identification of the
mutant GNAQ R183Q allele (in
blue) in the brain-derived but not
blood-derived DNA—rare blue
dots in blood are signal from
droplets containing multiple DNA
templates (supplemental data,
links.lww.com/NXG/A48). Droplets
without DNA templates are gray. Y-
axis, amplitude of fluorescent sig-
nal. WT = wild-type GNAQ probe;
MUT=mutantGNAQR183Qprobe.

Neurology.org/NG Neurology: Genetics | Volume 4, Number 3 | June 2018 3

http://links.lww.com/NXG/A48
http://links.lww.com/NXG/A48
http://links.lww.com/NXG/A48
http://links.lww.com/NXG/A48
http://neurology.org/ng


detection limit (figures e-2, e-3, and e-7, links.lww.com/
NXG/A48, table e-1).

For case 1, fluorescent droplets were observed in the blood-
derived genomic DNA below the expected amplitude, but
these did not overlap with the true positive signal in the brain-
derived genomic DNA when fluorescence intensity was
viewed on 2D plots (figure e-3, links.lww.com/NXG/A48).
Instead, this is fluorescent signal from droplets containing
multiple genomic templates, a phenomenon not infrequently
observed when running ddPCR assays.

Discussion
The important discovery of a recurrent, somatic GNAQ mu-
tation provided the first insights into the molecular biology of
SWS. Initial reports focused on classic SWS,4–6,10,11 and here,
we extend these findings to forme fruste cases, a far more
subtle, sometimes unrecognized, form of SWS. Our findings
confirm that forme fruste cases are caused by the somatic
GNAQ p.R183Q mutation present at low to very low levels in
brain tissue due to mosaicism, consistent with a few reported
cases.4,11 It is intriguing that the mutation was only present in
the brain tissue of these forme fruste cases, and not in blood (of
3 cases), suggesting that the mutation may have arisen later
during development than for classic cases, although we did
not have other tissues available from our cases to confirm this.
As MRI and even pathologic diagnosis can be equivocal for
subtle LMA lesions, as for case 3 (figure 2, table 1), molecular
evaluation may have specific diagnostic value. The relatively
low level of theGNAQmutation in the brain tissue of case 3 is
consistent with the milder imaging and pathologic manifes-
tations; however, case 4 had an even lower mutant load in

terms of percentage mosaicism in the tissue tested, suggesting
that there are other, as yet unidientified, influences on
genotype-phenotype correlation.

In formalin-fixed paraffin-embedded samples, low-level so-
matic mosaic mutations are challenging to detect because the
DNA is of low quality and often has impurities. Despite these
challenges, we were able to identify the somatic mutation in
case 3 from a 3-year-old pathologic specimen. This and other
sensitive mutation detection technologies are showing in-
creasing utility in elucidating the role of somatic mosaicism in
brain-specific neurologic disorders, as shown recently for tu-
berous sclerosis,12 in addition to SWS.
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