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Abstract: Information exchange is a critical process in all communication systems, including bio-
logical ones. Retroactivity describes the load that downstream modules apply to their upstream
systems in biological circuits. The motivation behind this work is that of integrating retroactivity, a
concept proper of biochemical circuits, with the metrics defined in Information Theory and Digital
Communications. This paper focuses on studying the impact of retroactivity on different biological
signaling system models, which present analogies with well-known telecommunication systems. The
mathematical analysis is performed both in the high and low molecular counts regime, by mean of
the Chemical Master Equation and the Linear Noise Approximation, respectively. The main goal of
this work is to provide analytical tools to maximize the reliable information exchange across different
biomolecular circuit models. Results highlight how, in general, retroactivity harms communication
performance. This negative effect can be mitigated by adding to the signaling circuit an independent
upstream system that connects with the same pool of downstream circuits.

Keywords: molecular communication; mutual information; systems biology; synthetic biology;
communication systems; retroactivity

1. Introduction

Molecular Communication (MC) is a field of research that has gained relevance in
recent years. This emerging discipline is directly inspired by natural communications
between cells in biology [1,2]. Characterizing living cells from an information and commu-
nication theoretical perspective is one of the keys to understand the fundamentals of MC
system engineering [3]. In parallel with the experimental applications of MC [4–6], the de-
velopment of mathematical models for many of the phenomena occurring in an MC system
has gained notice lately. There exist several types of MC channels, e.g., single-cell, multiple-
cell, and cell-population [7]. From a modeling perspective, great attention has been paid
to the methods of propagation of molecules in the extracellular environment [8–12]. A
step forward has been that of studying the communication performance in biochemical
circuits [13,14]. In fact, an open research problem in MC is that of finding optimal ways
to transfer information in biochemical circuits [15]. Several works have investigated this
problem recently. For example, in [16] the authors analyze the channel capacity of a biologi-
cal system considering both diffusion-based channel and ligand-based receiver. Moreover,
in [17] the authors provide a closed-form expression for the information capacity of an MC
system with a noisy channel. In [18], a different approach is taken, where the authors use
enzymatic reaction cycles to improve the upper bound on the mutual information (MI) for
a diffusion-based MC system. The work in [19] presents an analysis of the channel capacity
in diffusive MC by considering intersymbol interference from all the previous time slots
and the channel transmission probability in each time slot.
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Furthermore, there exist several works in the literature investigating parallelisms
between well-known telecommunication and MC models and evaluating information
exchange performance in different biological scenarios. For example, in [20] the authors
focus on the interference that is generated in the case of a broadcast channel, i.e., when
the same transmitter (e.g., a cell) sends the same message simultaneously to multiple
receivers (e.g., several cells). In [21], the authors present and develop models for the
molecular multiple-access, broadcast, and relay channels in a MC system and perform a
numerical analysis on their capacity expressions. The authors of [22] study the capacity of
a multiple-access channel that is affected by the parameters of the diffusive channel and
ligand-receptor binding mechanisms. The work in [23] presents a training-based channel
impulse response estimation for diffusive multiple-input multiple-output (MIMO) channels.
In [24], a MIMO design for MC is proposed, where multiple molecular emitters are used at
the transmitter and multiple molecular detectors are used at the receiver. Various diversity
techniques for MIMO transmissions based on molecular diffusion are proposed in [25] to
improve the communication performance in nanonetworks in the presence of multi-user
interference.

The common thread among the aforementioned works is the focus on the communica-
tion in the extracellular environment, where propagation of molecules plays a fundamental
role in the communication performance. In this paper, we concentrate on biomolecular
circuits whose communication is not prominently affected by propagation, and, in partic-
ular, we focus on isolating the impact of retroactivity on the communication performance.
Retroactivity is the effect that downstream systems receiving a signal apply to upstream
ones sending the signal. It can be seen as an extension of the concept of impedance of
electrical circuits to biomolecular systems because the additional binding/unbinding reac-
tion which constitutes the downstream system competes with the biochemical interactions
constituting the upstream system. Thus, it may disrupt the operation of the upstream
system [26].

Since its introduction in the literature [26], retroactivity has been studied in the con-
texts of control theory and systems biology, with the aim of characterizing and efficiently
designing modular biomolecular circuits [27–35]. The back-propagated signal generated by
the interconnected components plays a role not only in the design of biomolecular circuits
but also in the communication performance of the upstream system.

There exist a few works in the literature considering the effects of retroactivity on
the information exchange in molecular circuits. The author of [36] presents preliminary
results on the impact of retroactivity on the communication performance of a diffusive MC
system, composed of one transmitter and one receiver. A review of retroactivity in different
signaling systems and genetic circuits can be found in [37].

The main contribution of this paper consists of the analytical investigation of the
impact of retroactivity on the information exchange for different MC system models.
This is achieved by making parallelisms with some well-known telecommunication ones.
The ultimate objective is to lay foundations of how to efficiently maximize the reliable
information exchange when considering different signaling circuits. In the following, we
illustrate the results we achieved in this direction. Preliminary outcomes were presented
in [38].

The paper is organized as follows. Section 2 provides a high-level summary of the
work, by introducing its motivations and by presenting a visual scheme resuming the
main steps. In Section 3, we introduce the theoretical concepts on which our work lays its
foundations, and we contextualize them by explaining the preliminary assumptions we
made. Then, in Section 4, we present the biochemical system models on which we perform
the communication performance evaluation, by making parallelisms with well-known
telecommunication models. In Section 5, we present and discuss the analytical results. Last,
in Section 6 we conclude the paper.
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2. Overview

The fields of MC and of systems and synthetic biology have as a final goal that of
understanding biological phenomena, and that of “engineering” them to improve upon
their nature when possible or necessary, e.g., to combat diseases [39,40], or to enhance
agricultural processes [41,42]. We asked ourselves if the way a biological system is built
can affect its communication performance, and, in particular, if and how retroactivity affects
MC communication performance. In fact, to the best of our knowledge, this question has
not been answered in the literature yet. Awareness regarding the effect of retroactivity
on communication performance is relevant both in the context of understanding and
maximizing the information flow [43,44] and in that of designing biological circuits [45,46].
The goal of this paper is that of filling this gap.

Figure 1 visually summarizes the main steps we have taken. We consider five bio-
chemical systems, which enable us to quantify the effect of retroactivity in a variety of
scenarios. All of them present similarities with most of the common digital communication
models. These will be detailed in Section 4.

How does RETROACTIVITY affect
molecular communication performance?

1) BIOCHEMICAL SYSTEM MODELS

LOW molecular counts HIGH molecular counts

2a) CHEMICAL MASTER 
EQUATION

2b) LINEAR NOISE 
APPROXIMATION

3) Evaluation of MUTUAL INFORMATION

Figure 1. Overview of the structure of the paper. The biochemical system models are detailed later in
Figure 3. The Chemical Master Equation (CME) is a system of differential equations that describes
the rate of change of the probability of the system to be in any give state at time C [47]. The Linear
Noise Approximation (LNA) of the CME is a linear time-varying stochastic differential equation that
allows a stochastic characterization of the evolution of a chemical reaction network, still maintaining
scalability comparable to that of the deterministic models [48].

We model the stochastic behavior of each biochemical system both in the low molecu-
lar counts regime via the Chemical Master Equation (CME) [47], and in the high molecular
counts regime via the Linear Noise Approximation (LNA) [48]. Although the CME can
describe systems in high molecular count regimes, its analysis in these cases is computation-
ally demanding. Therefore, supposing that the biochemical reaction rates are time-invariant,
we opted for using the LNA in the high molecular count regime. In this way, we can com-
pute a tractable analysis for the simpler models, and to make some speculations on the more
complex ones. Both the CME and the LNA are solved at steady state. In fact, we consider
the symbol completely received when the system reaches steady state, so that we avoid the
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effects of the transient behavior of the biomolecular circuit on the communication exchange
performance, and we are able to isolate the contribution of the retroactivity. Please note that
when dealing with non-equilibrium systems, steady state solutions may not be achieved.
This would imply the necessity to compute the solution of the CME and of the LNA with
respect to time, thus the evaluation of the MI in time. In this work we suppose the steady
state solution of the considered systems to exist. The CME and LNA allow determining the
probability mass functions (pmf) and the probability density functions (pdf), respectively,
necessary for the evaluation of the MI between the input and the output of the system.

3. Preliminaries

The core of this work lays its foundations on concepts coming from different fields,
i.e., digital communication, information and control theory, and biology. In this section, we
introduce the main theoretical background of this study.

3.1. Retroactivity

Each chemical reaction that, starting from a compound, produces another molecule
can be regarded as an input/output system. Such an input/output system can, in turn, be
regarded as a module that, when connected with others, forms a more complex system.
A fundamental issue that arises when interconnecting different components is how the
process of transmitting a signal to a “downstream” module affects the dynamic state of
the “upstream” subsystem sending the signal. In fact, on interconnection, a signal that
goes from the downstream to the upstream system is generated. This phenomenon is
called retroactivity, formally defined as the back action from the downstream system to the
upstream one [26].

Retroactivity conceptually differentiates from feedback. In fact, while it is not possible
to transmit the output of the upstream system to the downstream one without retroactivity, on the
contrary, feedback from the downstream system can be eliminated even when the upstream system is
transmitting the signal. As previously mentioned, while the impact of retroactivity on the
design of biomolecular circuit has already been investigated, and solutions to mitigate this
effect have been presented, the effects of retroactivity on the communication performance
have not been analyzed in depth in the literature.

In our paper, we consider different models of signaling circuits. These are molec-
ular circuits that, given external stimuli (inputs), through a series of chemical reactions,
transform them to signals (outputs) that can control how cells respond to their environ-
ment. Then, we analyze to what extent retroactivity from downstream systems affects the
communication performance between the input and the output of the upstream system.

Figure 2 shows a general scheme of signal exchange between upstream and down-
stream systems. The blue arrows represent the signal passing through the input of the
upstream system to the downstream system. The mauve arrows represent the effect of
retroactivity, i.e., the signal that goes from the downstream to the upstream system. We will
perform the analysis for both the low and high molecular count regimes. In the figure, the
upstream system describes the communication models representing both scenarios, which
are detailed in the next sections.
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UPSTREAM SYSTEM

source 
message

(NUMBER OF 
MOLECULES)

LOW molecular counts

DOWNSTREAM
SYSTEM(S)

destination 
message

(NUMBER OF 
MOLECULES)

source 
message

(CONCENTRATION)

HIGH molecular counts

AWGN

+
destination 

message
(CONCENTRATION)

RETROACTIVITY

Stochastic
behavior of 

chemical
reactions

RETROACTIVITY

Figure 2. Upstream signaling system in the case of low and high molecular counts. The intercon-
nection between the upstream and the downstream system generates the signal going from right to
left in the figure (mauve arrow), that is the effect of retroactivity. The blue arrow from left to right
represents the signal transmitted throughout the system.

3.2. Stochastic Models for Biochemical Systems

The evaluation of the MI as difference of entropies [49] requires the knowledge of
the marginal pmfs (pdfs in the continuous case) %(-), %(. ), and the conditional pmfs
%(. | -), %(- | . ). Thus, a stochastic modeling to approximate the behavior of the con-
sidered systems at steady state is needed. Several modelings have been proposed in the
literature [48,50–53]. As anticipated in Section 2, in this paper we model the behavior of the
system in the low molecular count regime via the CME [47,51], while we use the LNA [48]
under the assumption of high molecular counts.

3.2.1. The Chemical Master Equation

The CME describes the rate of change of the probability of a molecular microstate
in a chemical reaction system [47]. For a system with N chemical species, a microstate
represents the number of molecules present for each species in the system at a given time.
Thus, it requires the enumeration of all the possible microstates of the system (i.e., each
possible microscopic configuration). In this work, as previously mentioned, we consider
steady state, i.e., we set to zero the rate of change of the probability in the CME.

The motivations behind the choice of the CME to model the behavior of the system are
two. First, we consider the accuracy of the results worth the complexity of the calculations.
Furthermore, the CME does not take into account any stochastic effects other than the ones
due to intrinsic noise in the chemical reactions. In this way, we can selectively quantify the
effect of retroactivity on information exchange for different biomolecular system models.
The major drawback of the CME is the computational complexity in computing the proba-
bility of being in each microstate at time C, which increases exponentially as the number
of molecules and reactions in the system increases. For this reason, we use the CME only
in the low molecular counts regime, and we rely on the LNA for studying the behavior of
systems with a higher number of molecules.



Molecules 2022, 27, 3130 6 of 19

3.2.2. The Linear Noise Approximation

The LNA lays its foundations on the central limit theorem from probability theory [54],
which states that, when independent random variables are added, their properly normal-
ized sum tends toward a normal distribution, even if the original variables themselves are
not normally distributed. This is why the LNA is valid only in the case of high molecular
counts. Thus, when applying the LNA to model the stochastic behavior of a biochemical
circuit, the resulting distributions of the species concentrations of the system in time are
Gaussian. When using the LNA, the channel noise is assumed Additive White Gaussian
(AWGN), with variance f2

=>8B4
= 1, hence simplifying the communication model. The mean

of the distribution is obtained by the reaction rate equations of the system [47]. In our case,
since we work at steady state, these differentials equations are solved for the equilibrium.
The steady state covariance matrix of the system is computed by solving the Lyapunov
Equation [47]. As it can be noticed in the upstream system of Figure 2, in the case of the
LNA model, the unit of measure of the biochemical species is concentration rather than
number of molecules as in the CME. Thus, the number of molecules in the system is to be
divided by the reaction volume.

4. System Model

In this section, we present the chemical reaction models analyzed in the paper. The
chemical reactions are divided into subgroups representing the upstream and downstream
systems. The addition of complex and realistic phenomena, e.g., particle movement dynam-
ics, intersymbol interference, and memory is out of the scope of this work. Retroactivity is
an effect present in all biocommunication systems, and the goal is to analyze and isolate its
impact on MI. The construction of a realistic biological scenario implies the introduction of
many factors in the evaluation of the MI, making unnecessarily difficult the isolation of the
impact of retroactivity in this context.

More specifically, we consider the five signaling system models shown in Figure 3.
Figure 3a represents an isolated signaling system, which is not connected to any down-
stream target. In digital communication, this could be viewed as a Single-Input Single-Output
(SISO) system, where the input is I1, and the consequent output is Z1. Then, in Figure 3b,
the same isolated system is connected through Z1 to # chemical circuits. Thus, in Figure 3b,
the system of Figure 3a becomes an upstream system directly linked to # downstream
ones. This model could be viewed as a Broadcast channel (BC), where the output of the
upstream system Z1 is the same message sent to different receivers, i.e., the downstream
systems. The third signaling system (Figure 3c) models the same upstream system in the
presence of a second circuit that shares the same enzyme E. We model the second circuit
as a replica of the first one. This recalls the MIMO setup typical of the telecommunication
systems, where the multiple inputs are I1 and I2 and the outputs are Z1 and Z2, respectively.
The fourth considered signaling system is illustrated in Figure 3d. It is a MIMO model in
which the output of the first upstream system Z1 is connected to # downstream targets.
The last model considers two isolated SISO upstream systems that can connect to the same
# downstream systems. Please note that only one of the two upstream systems can connect
with a specific downstream system at a time. This means that when both upstream systems
are sending information, the number of downstream systems available to receive the mes-
sage Z1 is & ≤ # . This recalls the Multiple-Access Channel (MAC) of digital communication,
where the two upstream systems are the different transmitters that do not coordinate, and
the downstream systems are the receivers that communicate with both the transmitters.
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Figure 3. Diagrams of the signaling systems analyzed in the paper: (a) isolated SISO, (b) SISO with #
downstream targets, (c) isolated MIMO, (d) MIMO with # downstream targets, (e) two isolated SISO
with MAC.

The two-step enzymatic reaction representing the upstream system can be described as

I1 + E
k0−−−⇀↽−−−M1

M1
c1−−−→ E +Z1

Z1
c2−−−→ I1,

with conservation laws Etot = E +M1, and Itot1 = I1 +M1 +Z1, where I1 is the protein (input
message) that binds to an enzyme E to form the complex M1, that in turn is transformed
in the output protein Z1 [47]. The coefficients c1 and c2 are the catalytic rates of the uni-
directional chemical reactions, and k0 = k−0/k+0 is the so-called dissociation constant of the
reversible binding reaction, k+0 and k−0 being the association and dissociation rate con-
stants [47]. The last reaction is represented by a one-step rather than a two-step enzymatic
reaction to reduce the complexity of the calculations in the following. Furthermore, note
that this last reaction makes the system cyclic. This is a major discrepancy with respect
to traditional communication models, which are unidirectional. The secondary upstream
circuit in the last three models is composed of an analogous two-step enzymatic reaction,
with input I2 and output Z2, with conservation law Itot2 = I2 +M2 + Z2. Thus, the con-
servation law that preserves the total amount of enzyme present in the system becomes
Etot = E +M1 +M2 for the models in Figure 3c,d. The model in Figure 3e is characterized by
two separate conservation laws that preserve the quantity of the enzymes E and E2, that
are, respectively, Etot1 = E +M1 and Etot2 = E2 +M2.

Each 9th downstream system is composed of one reversible reaction

Z1 +D 9

k3 9−−−⇀↽−−− C 9

with conservation law Dtot 9 = D 9 +C 9 Here, the output of the upstream system Z1 (and
also Z2 in Figure 3e) binds with the DNA D to form the complex C. Please note that for the
model in Figure 3e, the conservation law becomes Dtot 9 = D 9 +C 91 +C 92 , where C 91 is the
complex formed by the binding of Z1 with D and C 92 the one coming from the binding of
Z2 with D. The coefficient k3 9

is the dissociation constant of the reversible binding reactions
and is equal to k−3 9/k+3 9 , where k+3 and k−3 are the association and dissociation rate constants,
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respectively. The presence of the downstream systems modifies the conservation laws of
Itot1 and Itot2 . These become Itot1 = I1 +M1 +Z1 +

∑&

9=1 C 9 and Itot2 = I2 +M2 +Z2 +
∑#−&
9=1 C 9 ,

where & is the number of upstream systems connected to the first upstream system, that in
the second and in the fourth model is equal to # , while in the last one we have 0 ≤ & ≤ # .
Thus, supposing no M1, M2, Z1, Z2, C 9 present in the system before C0, we can write
Itot1 (C0) = I1 (C0) and Itot2 (C0) = I2 (C0).

5. Results: Communication Performance Evaluation

In this section, we present the results obtained supposing a low and a high molecular
count regime. Please note that due to the complexity of the calculations, not for all the
case studies we determine an analytical formula of the MI. Nevertheless, we discuss
whether retroactivity causes a reduction of the communication performance in all the
considered scenarios.

5.1. Low Molecular Counts

For all the signaling system models, we make the same hypotheses on the values of
Etot, Dtot 9 and on the number of input symbols =I1 , =I2 , and their corresponding I1 (C0), I2 (C0)
to compute the steady state solution of the CME. We choose =I1 = =I2 = 2. This means that
both the upstream systems have two available input symbols, one composed by 0 molecules
of I (I(C0) = 0, no transmission) while the second composed by one molecule of I (I(C0) = 1).
This corresponds to a Concentration On-Off Keying modulation [55]. This choice allows the
explicit enumeration of all the microstates of the system, thus the analytical investigation
of the role of retroactivity in the information exchange between I1 (C0) and Z1 (CB), where CB
stands for steady state time. Accordingly, we also set Etot, Dtot 9 = 1.

By solving the CME to obtain the necessary pmfs and by substituting - with I1 (C0)
and . with Z1 (CB), it is possible to show (see the derivations in the Appendix A) that the
formula of the MI we obtain as difference of entropies � in the five considered cases is the
same, corresponding to

� (I1 (C0), Z1 (CB)) = � (I1 (C0)) − � (I1 (C0) | Z1 (CB))

= log4

(
%
(−%01 )
01

%

(
−%11

)
11

)
− log4

©«
((

%01

%01 + �%11

) (−%01 )
)
· ©«

(
�%11

%01 + �%11

) (
−�%11

)ª®¬ª®¬ (1)

nat/symbol, where %01 and %11 are the probabilities of the two possible input symbols
I1 (C0) = 0 and I1 (C0) = 1. The term � is a constant depending on the coefficients of the
chemical reactions of the upstream and downstream systems, and on the probabilities %02

and %12 of the input symbols of the second upstream system in the two MIMO models.
Isolated SISO. In the first case, when the model is composed by a single isolated SISO

signaling system (Figure 3a), we obtain

� = �0 =
(1 + k0)c2

c1 + (1 + k0)c2
, (2)

where k0 = (k−0Ω)/k+0 , Ω being the volume in which the reactions take place, as detailed in the
Appendix A. This shows that the probability of the output Z1 (CB) is affected by the presence
of the reaction Z1

c2−−−→ I1 that transforms the output protein Z1 in the input I1, not allowing
the complete consumption of I1 at steady state.

SISO with N downstream targets. The term � in the second system (Figure 3b)
captures the impact of retroactivity on the information exchange due to # downstream
systems. In this case, the formula of � is affected by the coefficients of the reactions
connecting the upstream and the downstream systems. We obtain

� = �# = 1 − c1

(1 + k0)c2 +
(
1 +∑#

9=1

(
1/k3 9

))
c1

, (3)
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where k3 9
=

(
k−3 9Ω

)
/k+3 9 . Please note that if we remove the downstream systems effect∑#

9=1

(
1/k3 9

)
, we return to �0. This system captures the impact of retroactivity on the in-

formation exchange performance in a generic biomolecular signaling BC. If we assume
that all the # downstream systems have the same dissociation constant k3, we can rewrite
�# = 1 − c1

(1+k0)c2+(1+#/k3)c1
. We observe that, for # → ∞, �# is equal to 1. By substituting

� = 1 in (1), we obtain that � (I1 (C0), Z1 (CB)) = 0, i.e., I1 (C0), Z1 (CB) are completely inde-
pendent. This is a coherent result if we note that, for infinite downstream systems, the
probability of the number of free molecules of Z1 (CB) being different from 0 tends to 0,
independently of the value of I1 (C0).

We also note that, for c2 = 0, i.e., if the upstream system is not cyclic, �0 becomes

0, leading to � (I1 (C0), Z1 (CB)) = log4

(
%
(−%01 )
01

%

(
−%11

)
11

)
. This corresponds to having the MI

equal to the entropy of I1 (C0). Thus, in this case I1 (C0) and Z1 (CB) are fully dependent. On
the contrary, removing the cycle in the upstream system results in �# = 1 − c1(

1+∑#
9=1

(
1/k3 9

))
c1

.

This is because the load given by the connected downstream systems still has an impact
on the information exchange between I1 and Z1 by subtracting free Z1 (i.e., the output
message) from the system environment. If c2 →∞ we obtain � = �0 = �# = 1, thus the MI
becomes 0, meaning that the input and the output are completely independent. In fact, for
c2 → ∞, the produced Z1 is immediately transformed into I1, so that the number of free
molecules Z1 (CB) is equal to 0 for all values of I1 (C0). In general, the higher the �, the lower
the communication exchange performance measured via (1).

Isolated MIMO. The formula of � for the third model (Figure 3c) is influenced by the
presence of the second upstream system

� = �0, MIMO = �0%02 + �%12 , (4)

where �0 comes from (2), and � is a constant depending on the chemical reaction rates as
follows. Supposing all equal catalytic rates c1 = c2 = c and supposing binding/unbinding
rates k+0 , k−0 � c, we can write � as

� =
3
(
k+0

)2 +
(
k−0

)2 + 4k−0 k+0 + 3k−0 c + 6k+0c

5
(
k+0

)2 +
(
k−0

)2 + 5k−0 k+0 + 3k−0 c + 8k+0c
, (5)

where k+0 = k+0/Ω (see Appendix A). If %12 = 0 and by consequence %02 = 1, we obtain
�0, MIMO = �0, thus we return to the single isolated SISO model. We demonstrated via
Wolfram Mathematica® software that �0%02 + �%12 ≥ �0 is always true, for every value of
%02 and %12 , with the constraint that their sum should always be 1 and they cannot assume
negative values. Thus, since �0, MIMO is always greater than �0, the MI in (1) is always
lower in the case of isolated MIMO rather than in the case of isolated SISO. As in digital
communication, also in MC, the communication performance of a MIMO system is worse
than the ones of a SISO system given the same boundary conditions.

MIMO with N downstream targets. Likewise, the formula of � for the fourth system
(Figure 3d) becomes

� = �# , MIMO = �# %02 +�%12 (6)

where �# is (3) and � depends on the rates of the chemical reactions. The analytical
formula of � cannot be easily expressed in closed form, although it is worth noticing that it
depends not only on the reaction rates of the upstream, but also on the binding/unbinding
rates of the downstream systems. This is a key difference with respect to � (5). Under
some assumptions, i.e., all equal (un)binding rates k+, k−, all equal catalytic rates c, and
k+, k− � c, we obtain via Wolfram Mathematica® software � > � and �# > �0. From
these, it follows �# , MIMO > �0, MIMO (4), i.e., when the output Z1 of the MIMO upstream
system is connected with # downstream systems, the MI lowers.
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In this case, when %12 = 0, we return to the second model, i.e., the SISO upstream
system and BC. Notwithstanding this, we would like to understand if �# , MIMO is always
greater than �# , i.e., if the presence of a second upstream system lowers the MI. To do that,
we set the inequality �# , MIMO ≥ �# , and we solve it with respect to �. Specifically

�# %02 +�%12 ≥ �#
⇒ �#

(
%02 − 1

)
−��#

(
%02 − 1

)
≥ 0

⇒ � ≥ �# . (7)

From (7), we observe that it would be theoretically possible that for some values of �
(i.e., for � < �# ), � (I1 (C0), Z1 (CB)) of the system in Figure 3d becomes higher than the one in
Figure 3b. This would imply that a MIMO upstream system binding with the same number
# of downstream as the single SISO upstream can mitigate the impact of retroactivity on
� (I1 (C0), Z1 (CB)).

Two isolated SISO with MAC. The expression of � in the model of Figure 3e is
noteworthy. In fact, although there are two upstream systems in the environment, they
are completely independent, meaning that the presence of the second does not have any
influence on the communication performance of the first one. Since the two systems share
the binding with the same # downstream systems, � becomes

� = �&, MAC = 1 − c1

(1 + k0)c2 +
(
1 +∑&

9=1

(
1/k3 9

))
c1

. (8)

The number of downstream systems binding with the second upstream is always
complementary to &, and it is equal to # −&. Supposing that the two upstream systems
emit the same number of molecules, i.e., Z1, Z2, then on average & = #/2. If & = 0, then (8)
becomes (2), while in the opposite case, when & = # , then �&, MAC = �# (3). From this,
we note that the fifth model represents an improvement in relation to the communication
performance with respect to the model of Figure 3b. In fact, since the second upstream
system binds with some of the available downstream systems, the retroactivity observed at
the first upstream system is lowered.

Study of A term via Z-channel capacity and capacity bounds. Please note that re-
gardless of the specific signaling system, each of these cases can be traced back to a
Z-channel. In fact, the joint pmf %(I1 (C0), Z1 (CB)) is for all the five models

%(I1 (C0), Z1 (CB)) =
[
%01 0
�%11 (1 − �)%11

]
, (9)

where the rows represent the 0 and 1 possible values of I1 (C0) and the columns that of Z1 (CB)
(see Appendix A for the exact derivation). From (9), it is clear that if I1 (C0) = 0, then Z1 (CB)
is certainly equal to 0, while if I1 (C0) = 1, then Z1 (CB) is 1 with a certain probability (1 − �)
and 0 with probability �.

For this reason, we validate our MI Formula (1), by plotting the Z-channel capacity [56],
where the conditional probability %(- = 1 | . = 0) in our case is to be substituted with �,
and by varying the values of � and of %01 . Please note that since both � and %01 are
probabilities, the range of valid values that they can assume is included between 0 and 1.
Furthermore, we plot on the same graph the MI we obtained (1). By doing this, as it can
be observed from the graph, we are also finding a lower bound on the channel capacity
for each

(
�, %01

)
and, for each �, what is the value of %01 that maximize it, thus the value

of the channel capacity. We plot also the upper bound on the channel capacity starting
from the definition of MI as Kullback–Leibler divergence as described in [57] in 3D space.
In this way, we note that the minimum of the upper bound, the Z-channel capacity, and
the maximum of the lower bound for each value of � coincide (red line). Figure 4a is the
visualization of what has just been described. Thanks to this 3D plotting, we are able to
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isolate the channel capacity value for each value of � (Figure 4b), that, as for each value of
the MI, decreases as � increases, confirming our theoretical results.
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Figure 4. (a) Upper, lower bounds on the channel capacity, and Z-channel capacity for the four
signaling systems, by varying %01 and �. (b) Channel capacity bounds and Z-Channel capacity with
respect to the valid range of � values.

5.2. High Molecular Counts

As mentioned in Section 3.2, the LNA describes the system through an ordinary
differential equation and a linear (time-varying) stochastic differential Equation [48]. To
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mitigate the analytical complexity, when only a single upstream system is present, we
reduce it to a one-step cyclic enzymatic reaction

I1 + E
c1−−−→ E +Z1

Z1
c2−−−→ I1,

with conservation law Itot1 = I1 + Z1 +
∑#
9=1 C 9 . Thus, in the case of isolated SISO system,

the differential equation characterizing the variation of the mean of Z1 with time can be
written as

3Z1

3C
= c1E

(
Itot1 −Z1

)
− c2Z1, (10)

where
∑#
9=1 C 9 is equal to 0 (no downstream systems). Then, the mean of the Gaussian

distribution characterizing Z1 (CB) can be found easily by setting (10) equal to 0 and by
solving the resulting equation with respect to Z1

`0 =
c1EItot1

c2 + c1E
. (11)

The variance f2
0 of the same distribution is obtained by solving the Lyapunov equation

2(−c1E − c2)f2
0 = −

1
Ω

(
c1E

(
Itot1 −

c1EItot1

c2 + c1E

)
+ c2

c1EItot1

c2 + c1E

)
⇒ f2

0 =
c1EItot1 c2

Ω(c1E + c2)2
, (12)

where Ω is the volume of the environment (i.e., usually a cell). Then, remembering that
the LNA supposes f2

=>8B4
= 1, it is straightforward deriving the channel capacity by

substituting (12) in its well-known formula [49].
Supposing equal dissociation constant k3 for all the downstream systems, their char-

acterizing differential equation is

3C 9

3C
= k+3Z1D 9 − k−3 C 9 = k+3Z1

(
Dtot 9 −C 9

)
− k−3 C 9 , (13)

where Z1 is to be substituted with Z2 when the second upstream system connects with
the 9th downstream one. Thus, the steady state value of C 9 when connected to the first
upstream system is

C 9 =
Z1Dtot 9

k3 +Z1
. (14)

Then, for the second model (SISO with # downstream systems, Figure 3b) we obtain

3Z1

3C
= c1E©«Itot1 −Z1 −

#∑
9=1

C 9
ª®¬ + k−3

#∑
9=1

C 9 − c2Z1 − k+3Z1

#∑
9=1

(
Dtot 9 −C 9

)
. (15)

To obtain the mean value of Z(CB) distribution, we should substitute (14) in (15). Then,
supposing that the # downstream systems have equal conservation law Dtot = D +C, we
obtain `# = `0. This means that in the high molecular count regime the mean of the Z(CB)
distribution is not impacted by the presence of the downstream systems. Due to the higher
computational complexity, we do not provide the formula of the variance f2

#
in this case.

However, to determine it one would have to solve the Lyapunov equation for this system
with respect to f2

#
.

A two-step enzymatic reaction for the upstream systems is intrinsic of MIMO models.
Thus, we reuse the chemical reactions modeling of the low molecular counts regime. For this
reason, the system of differential equations characterizing the third model (Figure 3c) is
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3Z1

3C
= c1M1 − c2Z1

3M1

3C
= k+0EI1 −

(
k−0 + c1

)
M1

3Z2

3C
= c1M2 − c2Z2

3M2

3C
= k+0EI2 −

(
k−0 + c1

)
M2.

(16)

From the conservation laws, I1 = Itot1 −M1 −Z1, I2 = Itot2 −M2 −Z2, and E = Etot −M1 −M2.
Similarly, the system in Figure 3d can be written as

3Z1

3C
= c1M1 + k−3

#∑
9=1

C 9 −Z1
©«c2 + k+3

#∑
9=1

(
Dtot 9 −C 9

)ª®¬
3M1

3C
= k+0 (Etot −M1 −M2)

©«Itot1 −M1 −Z1 −
#∑
9=1

C 9
ª®¬ −

(
k−0 + c1

)
M1

3Z2

3C
= c1M2 − c2Z2

3M2

3C
= k+0 (Etot −M1 −M2)

(
Itot2 −M2 −Z2

)
−

(
k−0 + c1

)
M2,

(17)

where C 9 is to be substituted with (14) in the first two differential equations.
Both (16) and (17), after being set equal to 0, are to be solved with respect to Z1 to

obtain the mean value of the Gaussian-distributed Z(CB). We do not report here these
results and the Lyapunov equation that would give the variance in these cases, due to their
analytical complexity.

The differential equation characterizing Z1 of the fifth system (Figure 3e) is analogous
to (15), considering the number of downstream systems 0 ≤ & ≤ # and remembering
Dtot = D+C 91 +C 92 . The same analytical complexity applies for the calculation of the variance.

6. Conclusions

In this paper, we evaluate the effect of retroactivity on communication performance of
different signaling systems. More specifically, we considered five different biomolecular
circuits with analogies to some well-known digital communication system models. For
each of them, we evaluated the analytical formula of the MI between the input at time 0
(i.e., the beginning of the transmission of a symbol) and the output evaluated at steady
state. The steady state assumption implies the absence of intersymbol interference and the
mitigation of the transient behavior of the system.

Our results show that retroactivity has a negative impact on the communication
performance, by reducing the MI as the number of downstream systems increases. We
note also how the effect of retroactivity can be mitigated by the presence of a second
independent upstream system, that connects with the same pool of downstream systems.
The same behavior occurs for all the five systems both in the high and in the low molecular
count regime.

The analytical computation of the Gaussian distributed output in the high molecular
count regime for the remaining cases, as well as a biological interpretation of the � constant
in the low molecular count regime are left for future work.

Nevertheless, we can make some hypotheses on the analytical results in the high
molecular counts. For the SISO with # downstream targets model, given that in the low
molecular count regime the MI of this system is lower than the one in the isolated SISO
case, and by remembering the AWGN channel capacity formula [49], we can speculate that
f2
#
= f2

0 −  , where  is a positive constant. If true, this would imply a lower channel
capacity value than in the isolated SISO scenario. Regarding the two isolated SISO with
MAC model, since the number of downstream systems connected to /1 is less or equal than
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the one of SISO with # downstream targets case, we speculate that in this case the variance
f2
&, MAC would be greater than f2

#
.

Future work will develop in multiple directions. First of all we are interested in linking
the effect of retroactivity on cell behavior, in the same line of [58]. Another line of research is
that of comparing strategies to quantify the MI and information transmission and observe
if the quantification of the impact of retroactivity holds. Furthermore, it would be worth
generalizing our method to evaluate the impact of retroactivity in the case of more complex
systems, as for example in the case of a set of non linear differential equations.
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Appendix A

This appendix is devoted to the derivation of the expression of the MI (1). In all the five
considered scenarios, the first step to perform is that of recalling the marginal distribution
of the input

%(I1 (C0)) =
[
%01

%11

]
, (A1)

and that of evaluating %(I1 (C0) | Z1 (CB)). To do this, it is necessary to solve the CME. The
first step consists of enumerating all the possible microstates of the biomolecular system.
Clearly, for the same number of molecules, as the number of species present in the system
increases, also the number of possible microstates becomes higher. In our work, we consider
=I1 = =I2 = 2, thus Itot1 ≤ 1 and Itot2 ≤ 1. Furthermore, we set Etot = Dtot 9 = 1. The following
Tables A1 and A2 resume all the possible microstates @8 for each considered system when
Itot1 = 0, Itot2 = 1 and Itot1 = 1, Itot2 = 1, respectively. Please note that we consider Itot2 = 1
because we are interested in the value of the MI in the presence of the molecule emitted
by the second upstream system. For simplicity, we suppose to have only one downstream
system, i.e., 9 = 1.

Table A1. Microstates of the systems when Itot1 = 0, Itot2 = 1.

System Model State M1 I1 Z1 C1 M2 I2 Z2 C2 E E2 D

Isolated SISO @1 0 0 0 0 0 0 0 0 1 0 0

SISO + downst. @1 0 0 0 0 0 0 0 0 1 0 1

Isolated MIMO
@1 0 0 0 0 0 0 1 0 1 0 0
@2 0 0 0 0 0 1 0 0 1 0 0
@3 0 0 0 0 1 0 0 0 0 0 0

MIMO with 1
downstream
target

@1 0 0 0 0 0 0 1 0 1 0 1
@2 0 0 0 0 0 1 0 0 1 0 1
@3 0 0 0 0 1 0 0 0 0 0 1

Two isolated
SISO with MAC

@1 0 0 0 0 0 0 0 1 0 1 0
@2 0 0 0 0 0 0 1 0 0 1 1
@3 0 0 0 0 0 1 0 0 0 1 1
@4 0 0 0 0 1 0 0 0 0 0 1
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Table A2. Microstates of the systems when Itot1 = 1, Itot2 = 1.

System Model State M1 I1 Z1 C1 M2 I2 Z2 C2 E E2 D

Isolated SISO
@1 0 0 1 0 0 0 0 0 1 0 0
@2 0 1 0 0 0 0 0 0 1 0 0
@3 1 0 0 0 0 0 0 0 0 0 0

SISO with 1
downstream
target

@1 0 0 0 1 0 0 0 0 1 0 0
@2 0 0 1 0 0 0 0 0 1 0 1
@3 0 1 0 0 0 0 0 0 1 0 1
@4 1 0 0 0 0 0 0 0 0 0 1

Isolated MIMO

@1 0 0 1 0 0 0 1 0 1 0 0
@2 0 0 1 0 0 1 0 0 1 0 0
@3 0 0 1 0 1 0 0 0 0 0 0
@4 0 1 0 0 0 0 1 0 1 0 0
@5 0 1 0 0 0 1 0 0 1 0 0
@6 0 1 0 0 1 0 0 0 0 0 0
@7 1 0 0 0 0 1 0 0 0 0 0
@8 1 0 0 0 1 0 0 0 0 0 0

@1 0 0 0 1 0 0 1 0 1 0 0

MIMO with 1
downstream
target

@2 0 0 0 1 0 1 0 0 1 0 0
@3 0 0 0 1 1 0 0 0 0 0 0
@4 0 0 1 0 0 0 1 0 1 0 1
@5 0 0 1 0 0 1 0 0 1 0 1
@6 0 0 1 0 1 0 0 0 0 0 1
@7 0 1 0 0 0 0 1 0 1 0 1
@8 0 1 0 0 0 1 0 0 1 0 1
@9 0 1 0 0 1 0 0 0 0 0 1
@10 1 0 0 0 0 0 1 0 0 0 1
@11 1 0 0 0 0 1 0 0 0 0 1

Two isolated
SISO with MAC

@1 0 0 0 1 0 0 1 0 1 1 0
@2 0 0 0 1 0 1 0 0 1 1 0
@3 0 0 0 1 1 0 0 0 1 0 0
@4 0 0 1 0 0 0 0 1 1 1 0
@5 0 0 1 0 0 0 1 0 1 1 1
@6 0 0 1 0 0 1 0 0 1 1 1
@7 0 0 1 0 1 0 0 0 1 0 1
@8 0 1 0 0 0 0 0 1 1 1 0
@9 0 1 0 0 0 0 1 0 1 1 1
@10 0 1 0 0 0 1 0 0 1 1 1
@11 0 1 0 0 1 0 0 0 1 0 1
@12 1 0 0 0 0 0 0 1 0 1 0
@13 1 0 0 0 0 0 1 0 0 1 1
@14 1 0 0 0 0 1 0 0 0 1 1
@15 1 0 0 0 1 0 0 0 0 0 1

From now on, we report the mathematical steps only for the isolated SISO system,
analogous results are obtained for the remaining models. Both in the case of Itot1 = 0 and of
Itot1 = 1, the set of chemical reactions representing the biomolecular system can be rewritten
as a set of transitions between the enumerated microstates, as depicted in Figure A1 for
the isolated SISO system in the case of Itot1 = 1. Clearly, since the case with Itot1 = 0 is
characterized only by one microstate, the system remains in @1 with probability equal to 1
in each instant of time C, i.e., %(@1, C) = 1. When Itot1 = 1, and assuming that all reactions
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take place in a volume Ω, it is possible to use the propensity functions, i.e., the probability
that a given reaction occurs in a sufficiently small amount of time, to obtain

I1 + E
k+0−−−→M1 : @2 → @3; 01 (@2) = k+0 =

(
k+0/Ω

)
I1 + E

k−0←−−−M1 : @3 → @2; 02 (@3) = k−0
M1

c1−−−→ E +Z1 : @3 → @1; 03 (@3) = c1

Z1
c2−−−→ I1 : @1 → @2; 04 (@1) = c2.

𝒒𝟑

𝒒𝟏

𝒒𝟐

Figure A1. Transitions between microstates for the isolated SISO system model.

Then, the CME can be written down using the propensity functions for each reaction.
For the isolated SISO system it becomes

3

3C


%(@1, C)
%(@2, C)
%(@3, C)

 =

−c2 0 c1
c2 −k+0 k−0
0 k+0 −k−0 − c1



%(@1, C)
%(@2, C)
%(@3, C)

 . (A2)

In turn, the steady state solution for the probabilities %(@8 , CB) can be solved by setting ¤% = 0,
which yields

%(@1, CB) =
k+0c1

k+0c1 + c2
(
k−0 + k+0 + c1

)
%(@2, CB) =

c2
(
k−0 + c1

)
k+0c1 + c2

(
k−0 + k+0 + c1

) (A3)

%(@3, CB) =
k+0c2

k+0c1 + c2
(
k−0 + k+0 + c1

) .

Note that these probabilities can be seen as the joint pmf %(I1 (CB), Z1 (CB)), where

%(@1, CB) = %(I1 (CB) = 0, Z1 (CB) = 1),
%(@2, CB) = %(I1 (CB) = 1, Z1 (CB) = 0), (A4)

%(@3, CB) = %(I1 (CB) = 0, Z1 (CB) = 0).
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Thus, if we multiply %(@1, C) = 1 by %01 and (A4) by %11 , we easily obtain the joint probability
%(I1 (CB), Z1 (CB), I1 (C0)). By marginalizing over I1 (CB), we finally obtain

%(I1 (C0), Z1 (CB)) =
[

%01 0
c2 (k−0 +k+0+c1)

k+0 c1+c2 (k−0 +k+0+c1) %11

(
1 − c2 (k−0 +k+0+c1)

k+0 c1+c2 (k−0 +k+0+c1)
)
%11

]
, (A5)

where the rows represent the possible values assumed by I1 (C0), i.e., 0 and 1, and the
columns the ones assumed by Z1 (CB).

By remembering that the dissociation constant is defined as k0 = k−0/k+0 , we introduce
k0 = k−0/k+0 . Furthermore, we hypothesize c1, c2 � k−0 , k+0 . Then, we rewrite (A5) as

%(I1 (C0), Z1 (CB)) =
[

%01 0
(1+k0)c2

c1+(1+k0)c2
%11

(
1 − (1+k0)c2

c1+(1+k0)c2

)
%11

]
, (A6)

where (1+k0)c2
c1+(1+k0)c2

= �.
Having %(I1 (C0), Z1 (CB)), it is straightforward to obtain %(Z1 (CB)) by marginalizing

over I1 (C0), and then

%(I1 (C0) | Z1 (CB)) =
%(I1 (C0), Z1 (CB))

%(Z1 (CB))
=


%01

%01+�%11
0

�%11
%01+�%11

1

 . (A7)

The entropies are now easily evaluated

� (I1 (C0)) = −
1∑
9=0

%

(
I1 9
(C0)

)
log

(
%

(
I1 9
(C0)

))
= log4

(
%
(−%01 )
01

%

(
−%11

)
11

)
, (A8)

and

� (I1 (C0) | Z1 (CB))

= −
1∑
8=0

1∑
9=0

%
(
Z18 (CB)

)
%

(
I1 9
(C0) |Z18 (CB)

)
log4

(
%

(
I1 9
(C0) |Z18 (CB)

))
= log4

©«
((

%01

%01 + �%11

) (−%01 )
)
· ©«

(
�%11

%01 + �%11

) (
−�%11

)ª®¬ª®¬. (A9)

In turn, the MI is

� (I1 (C0), Z1 (CB)) = � (I1 (C0)) − � (I1 (C0) | Z1 (CB))

= log4

(
%
(−%01 )
01

%

(
−%11

)
11

)
− log4

©«
((

%01

%01 + �%11

) (−%01 )
)
· ©«

(
�%11

%01 + �%11

) (
−�%11

)ª®¬ª®¬ (A10)

nat/symbol.
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