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Abstract: Usually caused by Candida albicans, buccal candidiasis begins with the morphological
transition between yeast and hyphal cells. Over time and without the correct treatment, it can be
disseminated through the bloodstream becoming a systemic infection with high mortality rates.
C. albicans already shows resistance against antifungals commonly used in treatments. Therefore, the
search for new drugs capable of overcoming antifungal resistance is essential. Histatin 5 (Hst5) is
an antimicrobial peptide of the Histatin family, that can be found naturally in human saliva. This
peptide presents high antifungal activity against C. albicans. However, Hst5 action can be decreased
for interaction with enzymes and metal ions present in the oral cavity. The current work aims to bring
a brief review of relevant aspects of the pathogenesis and resistance mechanisms already reported
for C. albicans. In addition, are also reported here the main immune responses of the human body
and the most common antifungal drugs. Finally, the most important aspects regarding Histatin 5 and
the benefits of its interaction with metals are highlighted. The intention of this review is to show the
promising use of Hst5 metallopeptides in the development of effective drugs.

Keywords: Candida albicans; Histatin 5; antifungal peptides; metallopeptides

1. Introduction

The resistance to antimicrobials is currently one of the biggest health problems in
the world. Several factors contribute to the rise of cases of infections caused by multi-
drug resistant microorganisms: the increase in patients with suppressed immune systems
due to diabetes, cancer and AIDS; the higher number of patients who need invasive
treatments such as hemodialysis, venous catheters, transplants and mechanical ventilation;
and the higher prevalence of treatment with steroids, hyperglycemia, use of broad-spectrum
antibiotics and antifungals in subinhibitory concentrations [1–5].

After the development of antibiotics, with the discovery of penicillin in the first
half of the 20th century, the interest in fungal infections increased. Infections caused by
opportunistic yeast species, such as the Candida genus, are among the most recurrent ones
and may present as topical infections in the oral cavity, genitourinary tract, or skin. The
Candida genus also appears to cause systemic infections, which can spread through the
blood reaching different organs [2–7].

In some cases, infections caused by the Candida genus could become long-lasting
and easily progress to severe cases that can increase healthcare costs and extended hos-
pital stays. Besides that, it is important to emphasize that prolonged hospital treatment
results in the use of second- or third-line drugs which have higher chances of treatment
failure [7]. The use of antimicrobial agents has been exponential since its development.
In the period 2000–2010, BRICS countries (Brazil, Russia, India, China, and South Africa)
were responsible for three-quarters of the global increase in antibiotic consumption [8,9].
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The unrestrained use of antimicrobial agents contributes to the increase in resistance by
microorganisms to commonly used drugs, affecting global health severely.

It is estimated that around 700,000 deaths occur annually worldwide because of
antimicrobial resistance, at a cost of around 9 billion euros only in Europe [7,8,10]. If
no action is taken, predictions indicate that antimicrobial resistance could cause up to
10 million deaths per year, and cost trillions of dollars by 2050 [8,11]. This topic was
discussed by the UN General Assembly in 2016, and antimicrobial resistance is considered
today as one of the top 10 global health problems facing humanity [8,12,13].

Studies have already shown that pandemic caused by the SARS-CoV-2 virus increases
the susceptibility of critically ill patients to fungal diseases such as pulmonary aspergillosis,
pneumocystis pneumonia, mucormycosis and oral candidiasis [14–19]. The frequent use
of mechanical respirators, catheters and complete parenteral nutrition in severe cases of
COVID-19, may also be associated with an increase in mucormycosis incidence. Mucormy-
cosis is a rare and aggressive opportunistic fungal infection, characterized by infarction
and necrosis of host tissues, caused by Rhizopus gender. Factors such as low oxygen rate,
high iron levels, high glucose levels and low phagocytic activity of the immune system
caused by COVID-19 contribute to the infection’s development [20–25]. The number of
Candida infections is also affected by prolonged clinical treatments, due to the formation of
biofilms on equipment surfaces [15]. The biofilm formation can promote the spread of the
fungus causing systemic infections.

Data show that about 90% of all cases of invasive infections are caused by
Candida albicans, Candida tropicalis, Candida parapsilosis, Candida glabrataand Candida kru-
sei [1,3,26]. An increasing incidence of C. parapsilosis, C. glabrata and C. tropicalis species was
observed in recent years, and all of the species have been showing some type of antifungal
resistance. The super-resistant species, Candida auris, has already had its incidence reported
in different countries. Some studies have shown the influence of COVID-19 in antimicrobial
resistance, mainly in fungal infections. These studies highlight the high occupancy rate of
hospitals and the high number of patients in intensive care units as a critical factor for the
rise in antimicrobial resistance because they are exposed to multidrug-resistant organisms,
such as C. auris [14,27–29]. C. auris is found mainly in hospitals, and is resistant to almost all
available treatments, being mainly associated with systemic infections, with high mortality
rates [30]. Despite that, the predominant species in topical and systemic infections are still
Candida albicans [31–33].

C. albicans are eukaryotic microorganisms like human cells, and this factor reduces
the number of selective targets that can be explored and impair the development of
new antifungal agents. For this reason, the search for alternative therapies such as active
molecules of natural products, polymeric materials, synthetic agents and bioactive peptides
is important [2,34].

In this context, bioactive peptides present in the human body become interesting
molecules since they have low cytotoxicity with less chance of side effects [2]. These
peptides are considered key elements to the immune system, being often the first immune
response against microbial infections. Some peptides isolated from the human body with
antimicrobial activity are classified as antimicrobial peptides (AMPs). In general, they are
characterized as small basic cationic peptides derived from proteins that exhibit antimicro-
bial activity. These ones include lactoferrins, defensins, cathelicidins and histatins [35].

A member of the Histatin family, Hst5 is a proteolytic fragment of Histatin 3, with
24 amino acids. It is produced and secreted by the sublingual, parotid and submandibular
glands and is found naturally in human saliva. Hst5 is the peptide with the greatest
antifungal activity in the family, and it can inhibit the growth of yeasts and hyphae of
C. albicans. However, the antifungal activity of Hst5 is lower in vivo than in vitro because
it may be influenced by external agents such as proteins, metals, salts and proteases found
in saliva that reduce its antifungal activity [35]. The decrease in antifungal activity due to
interferents presents in saliva environment, as well as the already existing resistance of
the fungus to the peptide, requires new strategies for the improvement of Hst5 antifungal
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activity. Among such strategies are the synthesis of Hst5 fragments and the development
of metal complexes formed with the peptide, which could increase the activity against
C. albicans [36–42].

Thus, the aim of this work is to review concepts about the morphology, pathogenicity,
and virulence factors of C. albicans as well as the human body’s immune response against
these microorganisms. In addition, this review proposes to highlight existing antifungal
treatments, their mode of action and the mechanisms of resistance already reported, to
thus present the characteristics and mechanisms of antifungal action of Hst5. Finally, we
report here the works that were carried out in order to increase the action of Hst5 through
an association between peptides and metallic ions. This strategy could generate new
molecules derived from Hst5, with greater antifungal potential, making them a possible
treatment against fungal infections caused by C. albicans and other species.

2. Candida albicans: Morphology and Virulence

The Candida genus includes more than 200 species of single-celled eukaryotic organ-
isms. These organisms have a cell wall composed of sterols outside the plasma membrane
and have an ideal growth temperature around 37 ◦C. Furthermore, they are able to metabo-
lize glucose in both aerobic and anaerobic conditions [1,26]. Several species such as Candida
albicans, Candida dubliniensis, Candida glabrata, Candida guilliermondii, Candida kefyr, Candida
krusei, Candida parapsilosis, Candida tropicalis and Candida viswanathii can be found naturally
in the oral, gastrointestinal and genitourinary tracts of 40–60% of the population. C. albicans
is the most recurrent and it appears in the commensal form of yeast, being harmless. The
interaction between the fungal cells and the host immune systems is what maintains it is in
the commensal form [43].

However, sometimes, the environmental conditions can allow the growth of filaments
in the fungal cell, enabling the morphological transition to the hyphae form, which is the
virulent morphology of C. albicans [2,3,33,44]. During infection, yeast cells are primarily
responsible for the spread of the fungus, while hyphal cells are predominant in the mecha-
nisms of invasion and acquisition of nutrients. The morphological transitions that allow
the hyphae growth in C. albicans cells are induced after initial contact with the host cell and
by the expression of different proteins. Some of these proteins are: Hwp1, Als3, secreted
aspartic proteases Sap4, Sap5, Sap6, hypha-associated proteins Ece1, Hyr1 and contribute
to adhesion and invasion mechanisms [3,26,33,45,46]. The genes from Sap1 to Sap7 were
already found in drug-resistant C. albicans isolates. While Saps 1 to 3 act directly on tissue
damage on superficial invasion, Saps 4 to 6 tend to act in deeper tissues during penetration
and interact with the cellular defense [47].

C. albicans has developed several adaptation mechanisms in order to survive in the
host organism, even in situations of pH changes and low nutrient availability [33,44,45,48].
Its high genomic plasticity allows genetic variants to better adapt to the microorganism
in the environment. These mutations can affect the polymorphism, variation in chromo-
some copy number, recombination and total or partial loss of chromosomes under stress
conditions [33]. Thus, it is possible to modulate the fungus behavior and control growth
rate, morphology, and adaptation to nutrient availability. It also allows the fungus to deal
with the stress induced by antifungal agents, contributing to the acquisition of resistance
to drugs used in the treatment [2,33,49]. One example of this modulation is that the pH
of the environment can be regulated by the fungus by excreting nitrogen, in ammonia
form, promoting the growth of hyphae. Molecules such as farnesol, tyrosol and dodecanol,
which act in microbial communication mechanisms, can also regulate morphogenesis by
indicating cell density. When this amount is less than 107 cells mL−1, the transition to the
virulent form of hyphae occurs, being the ideal host for colonization. Contact between the
fungal cell and biotic or abiotic surfaces also triggers the growth of hyphae, and on certain
substrates, hyphae have the ability to invade [26,45,50].

Adhesion to epithelial cell surfaces is the first major virulence factor of C. albicans,
being induced and controlled by a cascade of signals between the fungus and the host
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environment. Adhesion is favored by several components of the fungal cell wall, including
mannose, mannoproteins and saccharins. In addition, factors such as the formation of
germ tubes, the presence of mycelia and endotoxins also help with the fungus’ adhesion.
On biotic surfaces, hyphae cells are capable of secreting adhesins, which allow adhesion to
the epithelial cell by binding to amino acids and sugars from other surfaces, facilitating
invasion [3,26,50].

The adhesion to abiotic surfaces is also facilitated through the formation of biofilms.
Biofilm formation is an important pathogenic factor that favors cell growth and prolifer-
ation. Biofilms also offer protection from external influences, including drug treatment,
because it is generally polymicrobial in nature, and the production of the extracellular
matrix increases the resistance to antimicrobial therapy by preventing drug diffusion [51].
Thus, fungal biofilms are highly resistant to antifungal therapies, representing a clinical
challenge, which demonstrates the importance of research aimed at its prevention and
control [5]. Biofilm formation is responsible, directly or indirectly, for more than 80%
of microbial infections. Besides that, the highly resistant form of biofilms is capable of
facilitating the spread of the fungus in the bloodstream, leading to invasive infections in
tissues and in several internal organs [1,3,44,52,53].

Two predominant mechanisms of invasion are performed by C. albicans cells: active
penetration and induced endocytosis. In the active penetration mechanism, entry into
cells is facilitated by the secretion of hydrolases capable of digesting epithelial cell surface
components. These hydrolases are necessary for the disruption of host membranes and
damage to the human epithelium [26,50–54]. Aspartic proteinase isoenzymes (Saps) are
of great importance for the functionality of C. albicans cells, acting in adhesion processes
(Saps 1-6), digestion of the epithelial cell wall, favoring invasion (Saps 2 and 9), as well
as preserving the integrity of yeast cells (Saps 9 and 10). The directional growth of hy-
phae, called thigmotropism, helps the entry of fungal cells to host tissues by directing
invasion to gaps present in epithelial cells surfaces [33,45]. In the mechanism of induced
endocytosis, C. albicans induces the epithelial cell to promote the formation of structures
similar to pseudopods, enabling the entry of the fungus by the host itself [26,50–54]. This
induction is performed through the release of different adhesins and invasins, such as
Als3 and E-cadherin. With access to epithelial cells or submucosal layers, C. albicans ends
its pathogenicity with the induction of damage in two different ways. The fungal cell is
capable of inducing apoptosis in healthy cells, through the inactivation of anti-apoptotic
proteins Bcl-2 and Bcl-xL [26]. The other form of damage induction is necrosis, caused by
secreted agents or associated with the hyphae of C. albicans. These mechanisms lead to
mitochondrial edema and increase the permeability of the plasma membrane of the host
cell, favoring its disruption [53,54].

Another important factor that needs to be highlighted here is the fact that C. albicans
uses some metals to maintain and modulate its metabolism. Metals such as cobalt, iron,
zinc, manganese, molybdenum, and copper are essential for biological processes and for
structural and catalytic functions. These metals are also involved in the glycosylation and
phosphorylation reactions as well as in electron transfer and oxygen transport [55,56]. Iron
is one of the most relevant micronutrients during the growth and spread of C. albicans.
Being necessary for cellular processes such as DNA replication, mitochondrial respiration
and chromatin remodeling. In addition, it acts in enzymatic functions, detoxifying reactive
oxygen species and in the formation of biofilms [57,58]. Besides that, iron also allows the
fungus to survive in the human gastrointestinal tract as a commensal. Due to the great
importance of iron for fungal metabolism, C. albicans has developed several metabolic
mechanisms for the acquisition of the metal, being able to compete with the host for this
micronutrient [58].

The presence of copper is also extremely important for fungal biological systems, as it
offers protection against oxidative stress. In addition, copper acts as an essential cofactor
in several enzymes, including energy metabolism, carbon assimilation and metabolic gene
expression [55,59,60]. Zinc is essential for the functions of microbial metabolism, being
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the catalytic and structural center of several enzymes, and a necessary factor for fungal
growth. Besides that, this metal has relevant roles in virulence factors, participating in the
endothelial colonization and cells invasion of the host’s immune system by C. albicans. Zinc
also acts in the detoxification of ROS generated by the host [61,62].

Although essential for fungal metabolism, metals have the ability to change their
oxidation state, which can result in reactive oxygen species (from the Fenton reaction,
for example) that can oxidize lipids, proteins and DNA [55]. Thus, in some situations,
the accumulation of these metals can be toxic to the fungus. For this reason, the host
organism can manipulate the availability of metals, decreasing or increasing them. This
modulation can cause nutritional hunger or poisoning due to metal overload. C. albicans,
on the other hand, has specific mechanisms to deal with this induced stress [60]. However,
it is interesting to note that the use of these metals, associated or not with antifungals drugs,
could increase their antifungal action. The association between conventional or news drugs
could cause the imbalance of these metals inside the C. albicans cells, causing their death.

3. Immune Response and Conventional Treatment Therapies

The virulence mechanisms for adhesion and colonization used by C. albicans activate
some host immunological mechanisms, necessary for successful control of the infection [51].
The presence of hyphae, essential to the pathogenic mechanisms of C. albicans, is the main
indication of infection for the host’s immune system [26]. Epithelial cells are responsible for
the initial recognition of the infection, through the detection of candidalysin. This 31-amino
acid peptide presents an α-helix conformation and acts as a cytolytic toxin generated by the
fungus from the Ece1 protein. Candidalysin is secreted by the hyphal portion of the fungal
cell and has a cell lysis function through intercalation and permeabilization of epithelial
membranes [51,52]. The detection of the toxin by the epithelial cell occurs at lower levels
than the ones necessary for candidalysin inducing damage. Thus, a danger response is
readily activated, leading to the initiation of innate and adaptive immunity. The recognition
of candidalysin is extremely important, as it prevents benign commensal yeast cells from
being unnecessarily attacked, preventing an excessive immune response that could be
harmful to the host [52].

The detection of candidalysin leads to the recruitment, differentiation and activation
of several immune cells. The first line of defense consists of phagocytic cells, which try to
kill the fungal cell through changes in pH, potassium fluxes and activation of proteases.
Besides that, the neutrophils are the main effector cells at the beginning of systemic infection
and are capable of capturing and killing the fungus through extracellular traps, such as
chromatin fiber networks. On the other hand, neutrophils are also able to phagocytose
fungal cells, inhibiting growth and morphological transition. In addition, they can produce
reactive oxygen species, and also induce the release of antimicrobial substances in the body.
Macrophages are also present in the first line of defense of the immune system. They are
less efficient against C. albicans once the phagocytosed fungal cell is able to break up the
macrophage avoiding the mechanisms of death [45,63].

The adaptive arm of the anti-C. albicans involves the recruitment of dendritic cells
at the target of infection. Besides killing fungal cells by phagocytosis, dendritic cells are
responsible for recognizing pathogen cells and for processing an antifungal antigen, which
is used by T cells to develop resistance to reinfection [63]. The release of inflammatory
and chemotactic cytokines, activated by macrophages, dendritic cells and neutrophils
through C. albicans recognition, also helps in the infection resolution [51]. As can be seen,
innate immunity is extremely important to fight infections because it is the first reaction
against the pathogen, preventing fungal cells from proliferating and spreading in the host
organism [63].

Deficiencies in immune cells make the organism more susceptible to pathogens and
have been associated mainly with topical skin infections. For systemic infections, the
deficiency is associated with the number or action of neutrophils [5]. C. albicans cells also
have mechanisms to neutralize the host’s immune response. Some of these strategies
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include secretion of hydrolytic enzymes, β-glucan protection, hyphal growth, phenotypic
exchange, modulation of host T cell response and inactivation of the complement system.
C. albicans also can induce or inhibit apoptosis, which ensures preservation, dissemination
and survival of the fungal cells in the body [26,44].

To help the immune system to fight the infection or when the immune response
alone is not enough, it is necessary to use drugs treatment. The similarity between the
human epithelial cell and one of C. albicans cells makes it difficult to develop drugs that
are not harmful to the human body [2,64]. Some classes are available for treatment and
many of them have been improved over the last decades, especially in order to reduce the
toxicity [3,4,64].

The ergosterol, a sterol similar to cholesterol, is specific to the fungal cell and is the
main target for antifungal drugs. The class of azoles, which includes popular drugs such as
miconazole, clotrimazole, itraconazole and fluconazole, are the most common treatments.
They have fungistatic properties and can lead to the accumulation of toxic compounds in
the intracellular compartment of fungal cells. Azoles act inhibiting the enzymatic activity
necessary for ergosterol biosynthesis. The action occurs in the endoplasmic reticulum of the
cell, causing interference in the enzyme lanosterol 14-α-desmethylase, responsible for the
transformation of lanosterol into ergosterol. The low concentration of ergosterol is harmful
to the structural integrity of the cell and the accumulation of 14-α-methyl-3,6-diol leads to
a toxic effect for the microorganism [2,4,65,66]. The specificity of ergosterol prevents the
human cell from being attacked. Although well tolerated by the human body, azole agents
can present hepatotoxicity and are capable of inhibiting the action of different human
enzymes [2,4].

Polyenes are another class of drugs widely used in antifungal therapy, such as ampho-
tericin B and nystatin. These drugs break the fungal cell membrane by binding to ergosterol,
causing the formation of aqueous pores along the membrane. The pores formation causes
the destabilization of the cell structure and allows the leakage of intracellular content,
leading to cell death [2,4,67]. Amphotericin B is one of the oldest treatments for antifungal
infections, having been approved in 1957. Currently, has less toxicity than the original
formulation, but it still presents some nephrotoxicity, besides the high-cost production,
which makes their use less common. On the other hand, even with a slightly narrower
activity spectrum than amphotericin B, nystatin is widely used, although it has some
side effects and its use is not recommended for diabetic patients, due to the high level of
sucrose [1,2,4,5,47].

Echinocandins are the more recently discovered class with antifungal action, being the
only novel antifungal drug class to enter medical practice in decades [68]. It is composed by
drugs such as anidulafungin, mycofungin and caspofungin. They are lipopeptides whose
action depends on the concentration of C. albicans [2,65]. Echinocandins are able to damage
the structural integrity of the cell wall through the non-competitive blocking of β-D-glucan
synthase. Without the presence of glucan, the cell wall becomes more vulnerable to osmotic
lysis [4,65,67]. Because they act on the fungal cell wall, echinocandins have a lower risk of
side effects or toxicity on epithelial cells than other classes of antifungal agents [2]. As it
presents a great safety profile, echinocandins were often chosen as the primary treatment
of invasive candidiasis, replacing other drugs, such as fluconazole [5].

Other drugs, less common but still widely used, are flucytosine, allylamine, thiocarba-
mate and griseofulvin. Flucytosine, analogous to pyrimidine, is transported into fungal
cells through cytosine-permease, where it acts by interfering with DNA synthesis. Flucyto-
sine mode of action includes the inhibition of thymidylate synthase, or it can bond with
RNA, interfering in translation and in protein synthesis. As a small molecule highly soluble
in water, flucytosine is able to diffuse rapidly in the body when administered orally. It is a
treatment rarely used as monotherapy, due to its toxic effects in high concentrations, and is
generally associated with other drugs, such as amphotericin B and fluconazole [2,4,5,65].
Allylamine and thiocarbamate, on the other hand, also act by interfering with the ergosterol
synthesis and affecting the integrity of the fungal cell membrane [2,65].
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The increase in the occurrence of fungal infections, as well as the development of less
toxic formulations of drugs, has considerably expanded the use of antifungal agents [64].
As a consequence, an increasing antifungal resistance was observed due to the adaptability
shown by Candida species. The antifungal resistance led to an increasing in the cost and
time of treatment and limits the drugs that can be used [64,69]. Microbiological resistance
can occur naturally in the pathogenic fungus, without prior exposure to the antifungal
agent or it can be acquired after frequent contact with the drug in question [69]. The most
common mechanisms of resistance include permeability barriers (biofilms) and decreased
cellular concentration of the antifungal agent. The resistance to the drug occurs when the
microorganism is trying to circumvent the effects caused by the drug. The microorganism
can change the molecule target or increase the transporters that remove the agent from
inside the cell. Another possibility of fungus’ resistance is the adaptation to induced
stress for minimizing the drug’s toxicity [2,4,67]. In the case of fluconazole, there is an
up-regulation for efflux pumps capable of decreasing the intracellular concentration of the
drug. Positive regulation mechanisms of the gene encoding lanosterol 14-demethylase can
also occur, leading to an increase in intracellular concentration or inhibition of ergosterol
formation. The replacement of the sterol by a similar molecule is another possibility for
present azoles to have some effect [2,64,69,70]. Additionally, the use of fluconazole in
resistant C. albicans can enhance the production of Saps, according to recent studies [47].

For echinocandins, resistance involves the acquisition of mutations in genes encoding
catalytic glucan synthase subunits [64]. The mutations can be punctual, but they give the
fungus resistance to the whole class of echinocandins. On the other hand, resistance to
polyenes occurs mainly through the replacement of ergosterol by another sterol in the
fungal cell membrane. These resistance mechanisms are caused by mutations in genes
that encode enzymes present in ergosterol biosynthesis [2,64,65]. Resistance to flucytosine
occurs with a decrease in drug uptake by cytosine permease or by changes in cytosine
deaminase enzymes, that prevent the action of the antifungal agent [2].

The development of resistance to antimicrobial agents by microorganisms is inevitable.
Factors such as the indiscriminate use of antibiotics and the current COVID-19 pandemic,
as mentioned in previous topics, aggravate this situation. Thus, the need for efficient
treatments and the search for new antifungal agents, which are not limited by resistance
mechanisms is extremely important to eradicate the challenges associated with antifungal
resistance and biofilm formation caused by C. albicans [4,65,71].

4. Histatin 5: New Antifungal Therapies

New molecules have been the target of several types of research in recent years because
it is necessary to search for potential antifungal treatments that do not present resistance.
These can be obtained from different sources such as natural products, synthetic agents or
polymeric materials. Marine organisms, endophytic fungi, saponins, alkaloids, peptides
and proteins were also investigated [65]. Peptides are molecules of great interest since
they can be found naturally in the human body and some already have a function as
antimicrobial agents [72].

Antimicrobial peptides (AMPs) display a large range of activities, being one of the first
lines of defense in the human body as they are able to rapidly inhibit a broad spectrum of
pathogenic microorganisms [72]. They can be isolated from prokaryotic and eukaryotic cells
in the animal, plant, bacterial and fungal kingdoms. These peptides can play a fundamental
role in the successful evolution of complex multicellular organisms. In general, they are
characterized as amphipathic and cationic molecules with considerable variation in chain
length, which can be composed of up to 50 amino acid residues and can be categorized
according to their secondary structure [73].

Unlike conventional drugs, antimicrobial peptides have a low probability of acquiring
resistance by microbial strains, probably due to their different mode of action [73]. The
cationic properties of AMPs enable the interaction with the negative plasma membrane of
the microorganism. Its affinity for the microorganism’s membrane causes an accumulation
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on the surface, which allows rearrangements in the membrane structure and is responsible
for the translocation of the peptide for the intracellular environment. This passage across
the membrane and the interactions with intracellular targets allow AMPs to bypass some
resistance mechanisms [74,75].

Histatins are an important family of endogenous AMPs rich in histidine, that have
antifungal activity against C. albicans, as wells as immunomodulatory, and pro-wound
healing effects [76]. Therefore, it is a possible topical or systemic treatment, which can
act alone or synergistically with other known drugs. Histatins are a family of small basic
cationic peptides, which have a large presence of basic amino acids such as arginine, lysine
and, mainly, histidine. With an isoelectric point of 6.5, histidine can modulate the cationicity
of the peptide at low pH values. Its side chains are known as metal chelators, allowing the
association of these peptides with metal ions [77].

Histatins peptides can be found in human saliva at concentration ranges of
50–425 µM [78]. They adopt a random conformation in aqueous solvents and α-helices
structure in non-aqueous solvents. They are produced and secreted by the sublingual,
parotid and submandibular glands. Secreted Histatins can undergo proteolytic degradation
before reaching the mouth, and are also able to interact with other salivary molecules,
becoming part of the salivary lining of hard and soft tissues [79]. These peptides were
first described in the 1970s as enhancers of the glycolytic activity in some microorganisms.
Around 1984, its bactericidal and fungicidal activities were described [78]. Histatins 1, 3
and 5 are the most relevant members of the family. All of them present linear structure
and have 38, 32 and 24 amino acid residues, respectively, being seven of them histidines.
The Hst5 primary amino acid sequence is DSHAKRHHGYKRKFHEKHHSHRGY and is
characterized by a random secondary structure, presenting α-helices with only slightly
amphipathic. The α-helices facilitate its entry into the pathogen’s cell cytoplasm [77].

Being the one with the greatest antifungal action among the Histatins, it acts against
pathogenic fungi such as C. albicans, Cryptococcus neoformans and Aspergillus fumigatus [78].
The antimicrobial activity of Hst5 is concentrated in the region of amino acid residues
located in positions 11 to 24 from the C-terminal end, called the functional domain [80].
Furthermore, the amino acids Lys13, Arg12 and Glu16 were identified through mutational
analysis, as important residues for the action of the peptide [81]. Although the mechanism
of action of Hst5 in C. albicans has not been fully elucidated, it is known that the peptide is
taken up by the cell, acting intracellularly, and causes ATP efflux and production of reactive
oxygen species [78]. Data presented by Moffa et al. suggest that coating oral surfaces with
Hst5 in the form of a salivary film is able to reduce colonization by C. albicans on epithelial
cell surfaces [43].

Although it has efficient antifungal activity when tested in vitro, Hst5 has its action
reduced in the oral cavity by some interactions with metals, salts and proteins found in
saliva. After its secretion, Hst5 undergoes proteolytic degradation by native enzymes
present in saliva resulting in a reduction of its antifungal activity. Such proteolytic degrada-
tion represents one of the greatest challenges in the use of Hst5 as a therapeutic agent [38].
With the proteolytic cleavage, it is expected that some biological properties of the peptide
also disappear. However, data presented by Helmerhorst et al. show that the initial phase
of Hst5 proteolysis does not eliminate its antifungal properties. The initial degradation
mixture proved to be as active as the intact peptide in antifungal assays, demonstrating
that oral fluid-mediated proteolysis may be an intrinsic biological property of saliva [82].

Another important barrier for the use of Hst5 as a topical treatment is related to
the limited activity that the peptide exhibits when present in total saliva, even in high
concentrations. The processes that may help explain this factor are the binding of Hst5 with
salivary salts and metals, and the dynamic turnover of salivary proteins [83]. Although the
use of antifungal peptides as a treatment has a low probability of resistance development,
it was found that C. albicans can become resistant to Hst5 after successive exposure [79].
C. albicans has several mechanisms to prevent death by Hst5 and is able to tolerate the
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presence of the peptide at low levels. C. albicans presents a group of Saps enzymes that is
already known for causing the proteolytic cleavage of Hst5 [84].

Studies have shown the preference of Saps for basic or hydrophobic amino acids
as cleavage sites. It was shown that Sap6, which is secreted by the fungus during the
hyphae growth, reduces the Hst5 activity. The result was proven by Puri et al., through
the inactivation of this enzyme by heat, who observed the non-inactivation of the activity
of the peptide [35]. Bochenska et al. demonstrated that cleavage occurs first between
residues K17 and H18 of Hst5 by Saps [85]. Another mechanism for C. albicans to avoid the
action of Hst5 is binding the Msb2 protein to the peptide. Msb2 is a mucin-like sensing
protein in the fungal plasma membrane, with a high molecular weight. Studies indicate
that binding Msb2 to Hst5 negatively affects the activity of the peptide. In addition, the
Msb2 protein also acts for stabilizing the cell wall and promoting the growth of C. albicans
filaments [35,86].

To overcome the obstacles found in the use of Hst5 as an oral topical treatment against
C. albicans, new mechanisms were proposed. Common ways of manipulating AMPs such as
Hst5 include shortening of the peptide and amino acid substitution [72]. The introduction
of unusual amino acids and modifications in the terminal regions could preserve the
peptides from proteolytic degradations. In addition, reducing the size of the peptide to
prevent protease attack and to decrease the cost of production is also an option. The use
of efficient drug delivery systems, such as encapsulation in liposomes, for better stability
and reduction of peptide toxicity, and use of tetrahedral DNA nanostructures, for their
editability, biocompatibility and transportation efficiency as delivery vehicles, were also
reported as a strategy to promote its use in therapy [67,87].

The 12-residue Hst5 fragment called P-113 is one of the smallest fragments with
efficient activity. It has antifungal action similar to the original peptide, with high activity
on strains resistant to fluconazole. Tests for modifications in amino acid residues in the
structure of P-113 were performed by Rothstein et al., with the aim of improving the stability
and activity of the peptide. These modifications make it a potential peptide for therapeutic
use, without the obstacles found in the molecule mother [39,40]. Helmerhorst et al., as
well as Lu et al., also presented some Hst5 proteolytic fragments, resulted from fungal
Saps, saliva proteolysis or synthesized derivatives, that keep their antifungal activity close
to or the same as the original peptide and have the advantage of not been being easily
degraded [36,82,88].

Using amino acid modifications, Ikonomava et al., showed that substitutions of K11R-
K17R residues in the Hst5 structure increased the stability of the peptide [89]. This analog
can also be efficient against biofilms, once it changes one of the peptide’s main cleavage sites
by Saps, and by that, reduces the biofilm viability [71]. Combinations of different peptides
are also proposed to increase antifungal activity. Han et al. proposed the hybridization
of Hst5 fragments with halocidin, a peptide that exerts its activity by attacking the cell
membrane of C. albicans. All of the six hybrids generated, di-PH2, di-WP2 and HHP1,
showed strong activity against different strains tested without showing cytotoxicity to
epithelial cells [90].

It is important to consider here the association between Hst5 and some metals, such
as the ones mentioned in the topic “Candida albicans: morphology and virulence” in this
review. This association can intensify the antifungal effect of this peptide. Using the solid
phase peptide synthesis (SPPS) strategy, it is possible to produce only the active fragments
for this type of association. There are some studies in the literature that demonstrate this
approach, such as those describe in the topic below.

5. Metal Complexes and Hst5 as a Strategy to Fight C. albicans

Several transition metals, such as Ni, Zn, Cu, Co and Fe, as well as alkali and alkaline
earth metals, such as Ca and Mg, are present in human saliva in different concentrations.
Amino acids present in the sequence of Hst5, such as aspartic acid, glutamic acid, histidine,
tyrosine, and serine, are known for their ability to bind to metals. Thus, 13 out 24 amino acid
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residues of Hst5 are potential ligands for metallic coordination, through stable complexes
formed by bonds between metallic cations and coordination groups such as side chains
of amino acids [83,91]. The metallic center is able to improve the peptide’s specificity,
bioavailability, solubility and stability [91].

The properties of the Hst5-metal bond were studied for decades through in vitro
investigations [92]. Such studies demonstrate the importance of coordination with metals,
such as Zn (II) and Ni (II), for the secondary structure of the C-terminal region and for the
α-helix conformation of Hst5. Coordination with a metallic ion can lead to differences in the
interaction of the peptide with macromolecules [41,42]. The binding of metal with Hst5 can
result in physiological actions related to the protection of the enamel and inhibit bacterial
growth by decreasing the metal concentration. This inhibition is possible because the peptide
is capable of sequestering ions necessary for microbial survival, in addition to the formation
of reactive oxygen species, commonly associated with redox-active metals [92–94].

Two important binding motifs were revealed by the functional and structural char-
acterization of the N-terminal domain of Hst5: the amino-terminal DXH motif, known as
ATCUN (amino-terminal copper and nickel binding unit) motif, and the HEXXH binding
motif, characteristic of several metalloproteases, appears once in the Hst5 chain, and binds
to Zn (II). They are both represented in the Hst5 structure in Figure 1. The dissociation
constants of Hst5 with Cu (II) and Zn (II) are quite low, reaching nanomolar values, which
indicates that such metals are able to bind to Hst5 motifs in saliva under physiological
conditions [93,95]. The specificity loss and conformational destabilization of copper and
zinc sites can be associated with a decrease in antimicrobial activity [96].
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Mass spectroscopy studies show that the formation of the Cu (II)-peptide complex
by the ATCUN motif is a necessary pre-requisite for the oxidative activity of Hst5 [95],
being related to the increased production of reactive oxygen species after cellular uptake of
Hst5, which can triplicate total intracellular levels. Copper is present in eukaryotic cells
metabolism and is an important metal for cell survival [97]. The entry of Hst5 into fungal
cells can lead to a competition for this metal, which can be prejudicial to the cell, even
leading to cell death. Only one site for Cu (II) binding was found in Hst5, with high affinity
and in a 1:1 ratio. Susceptibility tests, performed by Conklin et al., demonstrated that
the binding constant was high, showing specificity between the peptide’s motif and the
metal [92,93]. On the other hand, Frączyk demonstrated that serine phosphorylation may
be an important mechanism of metal ion binding regulation since it weakens the stability of
Cu (II) complexes [98]. Tests to assess the influence of Cu (II) ions on the antifungal activity
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of Hst5 showed a decrease in the EC50 value, from 5.15 µM (of Hst5 alone) to 1.36 µM,
after binding to the metal [92].

Data suggest that Hst5 has three zinc-binding sites, two of them with higher affinity
and one with lower affinity. It has already been discovered that Ca (II) ions interfere
with peptide bonds and some metals, such as Zn (II). Thus, when the Ca (II) is present,
only one of the sites with the highest affinity for zinc ions are detected, and only this one
presents high selectivity [93]. Experiments carried out by Sonia Melino et al., with Hst5 in
a hydrophobic environment, demonstrated the induction of peptide dimerization by zinc
ions, which supports its fusogenic activity [42]. Thus, it is believed that the antimicrobial
action of Hst5 can be influenced by specific molecular interactions, such as membrane
aggregation by charge interaction, structural stabilization of the functional domain induced
by Zn (II) and destabilization of the lipid bilayer [42]. The Hst5-Zn (II) complex also
influences the antibacterial activity of the peptide, being able to induce the fusion of
small negatively charged unilamellar vesicles and the hydrolysis of nucleic acids, and also
increases the surface adsorption capabilities of Hst 5 at a broad pH range [95,99]. On the
other hand, the binding of Zn (II) to the peptide offered little protection against proteolytic
degradation [83].

Iron is one of the most abundant metallic ions in saliva, with a concentration that
varies according to the diet. In the human body, it is mostly linked to other compounds,
which help nourish invading pathogens. It is believed, based on the data presented by
Puri et al., that the sequestration of iron by Hst5 reduces the availability of nutrients for the
pathogen. However, iron-binding negatively affects the antifungal activity of Hst5 against
C. albicans. This negative influence may result from the change in the secondary structure
of the peptide, which affects the binding to the fungus cell wall [83]. Susceptibility tests
have already demonstrated the complete loss of Hst5 antifungal activity in the presence of
Fe (III) [92].

Circular dichroism studies show that Hst5 can bind up to 10 iron equivalents, and the
increase in iron concentration in the structure is inversely proportional to the antimicrobial
activity of the peptide. The results of Puri’s studies also demonstrated changes in the
iron absorption genes of C. albicans treated with Hst5, showing that the binding of the
peptide to iron may also contribute to a mechanism of death interfering with cellular iron
metabolism. It is also possible that Hst5 can bind to intracellular iron, redistributing the
cell’s reserves and leading to malfunction of the cellular perception of the metal level. The
mitochondrial dysfunction in the Hst5 death mechanism can be explained by the location
of iron redistributed around the mitochondria, an organelle that is extremely sensitive to
metal [83].

Due to the affinity with Ni (II) in the ATCUN motif, it is expected that the metal is
interacting with Hst5 in the human mouth [100]. The binding to the metal can have an
impact on the peptide’s conformation increasing the stability of the α-helix, which can
induce a significant difference in the peptide’s interaction with other macromolecules. The
binding with Ni (II) can facilitate the Hst5 and DNA binding by locating all positive side
chains on one side of the molecule [41]. However, there is still no certainty about the
influence of Ni (II) ions on the antimicrobial activity of Hst5.

On the other hand, calcium has shown to be a major inhibitor of the antifungal activity
of Hst5 against C. albicans, at physiological concentrations. It may be the ion responsible
for the decrease Hst5 detection in saliva. The inhibition of the binding between Hst5 and
C. albicans appears to be one of the main effects demonstrated by extracellular Ca (II) [101].
Studies performed by Dong et al. showed that not only was there a reduction of up to 90%
in fungal cell death in the presence of Ca (II) but also the efflux of ATP was interrupted.
Similar studies were performed for salivary anions Cl−, CO3− and for Mg (II). For the Cl−,
CO3−, there was no reduction in the binding between the peptide and the fungal cell, but
there was a decrease in ATP efflux [101].

In the presence of magnesium, there was an inhibition of up to 40% of death by Hst5,
and a reduction in ATP efflux of approximately 40%. The inhibitory effects resulting from
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the presence of metallic cations were more pronounced than the effect for anions. The
interference of calcium is much higher than the interference of magnesium, which still
presents a minimal inhibitory effect within the physiological concentration ranges. The
additional effect of dissociation between Hst5 and Ca (II) suggests that instead of binding
to the peptide, the ion interrupts its binding to C. albicans cells [101]. The information about
metallic complexation effects is summarized in Table 1.

Table 1. Summary of the main findings of the effects on Histatin 5 by the metallic complexation.

Metal Coordination Site in Hst5 Complexation Effects Reference

Copper ATCUN

Improves peptide stability
Enhances antifungal activity

Raises ROS liberation
Enhances the fungus nutritional hunger

[92]
[93]
[95]

Zinc HEXXH

Improves peptide’s functional domain stability
Improves the stability of peptide’s α-helical conformation

Destabilizes fungus lipidic bilayer
Promotes fungus acid nucleic hydrolysis

Little protection on peptide proteolytic degradation

[42]
[83]
[95]

Nickel ATCUN Improves the stability of peptide’s α-helical conformation
Facilitates the peptides bond with fungus DNA

[41]
[100]

Iron uncertain

Minimizes drastically antifungal activity
Enhances the fungus nutritional hunger

Affects the peptides interaction with the fungal cell wall
Interferes on iron cellular metabolism, leading fungal

mitochondria to death

[83]
[92]

Calcium uncertain
Inhibits antifungal activity

Suppresses ATP efflux
Interrupts the bond between peptide and fungus cell

[101]

Magnesium uncertain Minimizes antifungal activity
Decreases ATP efflux [101]

The association between metal and Hst5 has a wide diversity and variation, as de-
scribed here. Several metals demonstrated improvements in the original peptide, being
marked as potential antifungal agents with a great interest for study and development.
However, it is not yet a largely explored research area. Although it is possible to find
studies about Hst5 associated with metals, not all of them explore the antifungal activity
against fungal pathogens such as C. albicans. There are several other metals associations
that can be made with Hst5, as it has many amino acids in its chain that are able to bind to
metals, another possibility is the binding to other motifs present in the Hst5 amino acid
chain not yet widely studied. It is also important to consider other possibilities, such as the
SPPS for new peptides fragments and analogs based on the Hst5 original chain. These are
just a few possibilities to be explored that can bring interesting results to help overcome
the problem of antimicrobial resistance.

6. Conclusions

As described here, the growing increase in antimicrobial resistance, possibly intensi-
fied by the COVID-19 pandemic, has caused worldwide concern about its consequences.
C. albicans, being the main cause of fungal diseases, must be monitored carefully. Although
it is mainly associated with mild topical cases of the disease, C. albicans is already resistant
to important drugs such as fluconazole, nystatin and amphotericin B. The resistance to
these drugs favors the evolution of simple cases for more severe infections, which are
associated with high morbidity and mortality rates. The increase in the use of drugs that
no longer have the expected efficacy can aggravate the resistance problem. The similarity
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between fungal and human cells impairs the development of new drugs, that must be more
specific for fungal cells and not cause toxicity to human organisms.

The use of peptides as antimicrobial agents is promising, and Hst5 has already shown
good action against C. albicans cells. However, the peptide has disadvantages in its stability
in physiological environments, such as the oral cavity, and some mechanisms of resistance
to its action can already be observed in fungal cells. The search for improvements in Hst5
action already includes several methodologies, such as the exchange of amino acid residues
and the use of fragments of the original peptide. The association of Hst5 with metallic ions
is an alternative not yet widely explored, but already very promising for certain metals.

There is a greater number of studies describing the binding sites between peptide
and metal, as well as the modulation of their activity after association. However, few
studies investigate the antifungal capacity of Hst5 after binding to a wide variety of metals.
Many of these metals are present in the oral cavity, such as Ni, Zn, Cu, Co and Fe, and can
naturally bind to Hst5. For this reason, one important strategy is a wide investigation of
Hst5 antifungal activity after the binding to metals.

In summary, we present here some possibilities for using Hst5, some of them include
a change in the amino acid chain, development of hybrid peptides and synthesis of smaller
fragments. All these possibilities can promote the increase in the antifungal potential of
Hst5. However, the focus here is the association between Hst5 and metals, producing
metallopeptides. This is a field with several possibilities to be explored, that certainly could
contribute to the development of new antifungal therapies that can overcome the resistance
barriers presented by C. albicans.
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